Aplicación del sistema phage display para la producción de anticuerpos monoclonales: Una aproximación al desarrollo de herramientas para la detección de proteínas

dc.contributor.advisorRamírez Hernández, María Helena
dc.contributor.authorRiascos Orjuela, Laura Estefanía
dc.contributor.researchgroupLaboratorio de Investigaciones Básica en Bioquímica - LIBBIQspa
dc.date.accessioned2024-01-12T19:44:48Z
dc.date.available2024-01-12T19:44:48Z
dc.date.issued2023-10-27
dc.descriptionilustraciones, diagramas, gráficas, tablasspa
dc.description.abstractLa tecnología phage display se ha constituido como una alternativa para la producción de anticuerpos recombinantes monoclonales (rmAbs) de alta calidad. En este trabajo, empleando el modelo aviar, se realizó una primera aproximación a la producción local de herramientas de importancia para la investigación científica en Colombia como los rmAbs desde IgYs para la detección de proteínas clínicamente importantes. En este caso, se utilizaron como antígenos los dominios N-terminal (NTD) y el dominio de unión al receptor (RBD) de la proteína Spike (S) de SARS-CoV-2. Estos dominios se expresaron en el sistema heterólogo de E. coli y se purificaron a partir de cuerpos de inclusión. Las proteínas recombinantes obtenidas (6xHis-SUMO-NTD y 6xHis-SUMO-RBD) fueron inoculadas en gallinas Hy-Line Brown siguiendo un esquema de inmunización previamente estandarizado. Durante el proceso de inmunización, se recolectaron huevos y sangrías con el objetivo de evaluar los anticuerpos policlonales (pAbs) allí presentes. Esto, permitió establecer que los IgYs de los últimos sueros de cada animal permitieron la detección de hasta 15,6ng de 6xHis-SUMO-NTD y 7,8ng de 6xHis-SUMO-RBD respectivamente. Los ensayos de especificidad evidenciaron el reconocimiento cruzado de otras proteínas recombinantes que cuentan con las etiquetas 6xHis o 6xHis-SUMO, indicando que en el proceso de inmunización se generaron anticuerpos contra dichas etiquetas. Con base en esto, se estableció que los dominios NTD y RBD expresados pueden funcionar como proteínas transportadoras o carrier de las etiquetas que se desempeñarían como haptenos. Por otro lado, una vez se finalizó el esquema de inmunización, se sacrificaron los animales para obtener los bazos a fin de extraer ARN. Luego, se sintetizó ADN complementario (ADNc) desde el cuál se amplificaron las regiones encargadas de codificar las cadenas variables ligeras (VL) y pesadas (VH) de las IgYs. Estas regiones fueron clonadas en el fásmido pSEX81 que cuenta con la secuencia codificante de una proteína de cobertura (pIII) del bacteriófago M13 a la cual se acoplan VL y VH. De esta forma, se construyeron librerías de un tamaño de 6,25x106 cfu para NTD y de 3,75x106 cfu para RBD. Células E. coli TG1 fueron transformadas por electroporación con los constructos obtenidos (pSEX81-ScFv) para el antígeno 6xHis-SUMO-RBD e infectadas con el hiperfago M13K07ΔPIII. Finalmente, después de llevar a cabo las rondas de biopanning, se obtuvo la librería a partir de la cual se han aislado clones específicos que reconocen a 6xHis-SUMO-RBD que podrán ser caracterizados y empleados en la producción de los rmAbs. (Texto tomado de la fuente)spa
dc.description.abstractPhage display technology has become an alternative to produce high-quality recombinant monoclonal antibodies (rmAbs). In this work, using the avian model, we made a first approach to the local production of important tools for scientific research in Colombia such as rmAbs from IgYs for the detection of clinically important proteins. In this case, the N-terminal domains (NTD) and receptor-binding domain (RBD) of the SARS-CoV-2 Spike (S) protein were used as antigens. These domains were expressed in the E. coli heterologous system and purified from inclusion bodies. The recombinant proteins obtained (6xHis-SUMO-NTD and 6xHis-SUMO-RBD) were inoculated into Hy-Line Brown hens following a previously standardized immunization scheme. During the immunization process, eggs and sera were collected in order to evaluate the polyclonal antibodies (pAbs) present there. This allowed us to establish that the IgYs from the last collected sera of each animal allowed the detection of up to 15.6ng of 6xHis-SUMO-NTD and 7.8ng of 6xHis-SUMO-RBD respectively. The specificity assays evidenced the cross recognition of other recombinant proteins that have the 6xHis or 6xHis-SUMO tags, indicating that antibodies against these tags were generated in the immunization process. Based on this, it was established that the expressed NTD and RBD domains can function as transporter proteins or carriers of the tags that would act as haptens. On the other hand, once the immunization scheme was completed, the animals were sacrificed to obtain the spleens in order to extract RNA. Then, complementary DNA (cDNA) was synthesized from which the coding regions for the variable light (VL) and heavy (VH) chains of the IgYs were amplified. These regions were cloned in the phasmid pSEX81 that has the coding sequence for a coat protein (pIII) of the M13 bacteriophage to which VL and VH are coupled. In this way, libraries with a size of 6.25x106 cfu for NTD and 3.75x106 cfu for RBD were built. E. coli TG1 cells were transformed by electroporation with the constructs obtained (pSEX81-ScFv) for the 6xHis-SUMO-RBD antigen and infected with the M13K07ΔPIII hyperphage. Finally, after carrying out the rounds of biopanning, a library was obtained from which specific clones that recognize 6xHis-SUMO-RBD have been isolated, which can be characterized and used in the production of rmAbs.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaDesarrollo de herramientas biotecnológicasspa
dc.format.extentxx, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85255
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbbas A, Lichtman A, Pillai S. Cellular and Molecular Immunology. Ninth edit. Journal of Chemical Information and Modeling. Philadelphia: ELSEVIER; 2017.spa
dc.relation.referencesMeyers AJ, Grohs BM, Hall JC. Antibody Production in planta [Internet]. Second Edi. Vol. 4, Comprehensive Biotechnology, Second Edition. Elsevier B.V.; 2011. 287–300 p. Available from: http://dx.doi.org/10.1016/B978-0-08-088504-9.00271-3spa
dc.relation.referencesSingh A, Chaudhary S, Agarwal A, Verma AS. Antibodies: Monoclonal and Polyclonal [Internet]. Animal Biotechnology: Models in Discovery and Translation. Elsevier; 2013. 265–287 p. Available from: http://dx.doi.org/10.1016/B978-0-12-416002-6.00015-8spa
dc.relation.referencesSchroeder HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol [Internet]. 2010 Feb;125(2):S41–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091674909014651spa
dc.relation.referencesBeenhouwer DO. Molecular basis of diseases of immunity [Internet]. Second Edi. Molecular Pathology: The Molecular Basis of Human Disease. Elsevier Inc.; 2018. 329–345 p. Available from: https://doi.org/10.1016/B978-0-12-802761-5.00017-1spa
dc.relation.referencesMashoof S, Criscitiello MF. Fish immunoglobulins. Biology (Basel). 2016;5(4):1–23.spa
dc.relation.referencesMunhoz LS, Vargas GDÁ, Fischer G, Lima M de, Esteves PA, Ḧbner S de O. Anticorpos IgY aviário: Características e aplicações em imunodiagnóstico. Cienc Rural. 2014;44(1):153–60.spa
dc.relation.referencesKumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol [Internet]. 2019;135:907–18. Available from: https://doi.org/10.1016/j.ijbiomac.2019.06.006spa
dc.relation.referencesSmith G. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science (80- ). 1985;228(4705):1315–1317.spa
dc.relation.referencesBazan J, Całkosiñski I, Gamian A. Phage displaya powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccines Immunother. 2012;8(12):1817–28.spa
dc.relation.referencesHentrich C, Ylera F, Frisch C, Haaf A Ten, Knappik A. Monoclonal antibody generation by phage display: History, state-of-the-art, and future [Internet]. Handbook of Immunoassay Technologies: Approaches, Performances, and Applications. Elsevier Inc.; 2018. 47–80 p. Available from: http://dx.doi.org/10.1016/B978-0-12-811762-0.00003-7spa
dc.relation.referencesHuse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. 1989. Biotechnology. 1989;24(1984):517–23.spa
dc.relation.referencesAlfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, et al. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol. 2020;11(August).spa
dc.relation.referencesReader RH, Workman RG, Maddison BC, Gough KC. Advances in the Production and Batch Reformatting of Phage Antibody Libraries. Mol Biotechnol [Internet]. 2019;61(11):801–15. Available from: https://doi.org/10.1007/s12033-019-00207-0spa
dc.relation.referencesChiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies. 2019;8(4):55.spa
dc.relation.referencesErcan I, Tufekci KU, Karaca E, Genc S, Genc K. Peptide Derivatives of Erythropoietin in the Treatment of Neuroinflammation and Neurodegeneration [Internet]. 1st ed. Vol. 112, Advances in Protein Chemistry and Structural Biology. Elsevier Inc.; 2018. 309–357 p. Available from: http://dx.doi.org/10.1016/bs.apcsb.2018.01.007spa
dc.relation.referencesAitken R. Antibody Phage Display / METHODS IN MOLECULAR BIOLOGY TM. 2009. 238 p.spa
dc.relation.referencesSomasundaram R, Choraria A, Antonysamy M. An approach towards development of monoclonal IgY antibodies against SARS CoV-2 spike protein (S) using phage display method: A review. Int Immunopharmacol [Internet]. 2020 Aug;85(January):106654. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576920315010spa
dc.relation.referencesGe S, Xu L, Li B, Zhong F, Liu X, Zhang X. Canine Parvovirus is diagnosed and neutralized by chicken IgY-scFv generated against the virus capsid protein. Vet Res [Internet]. 2020;51(1):1–11. Available from: https://doi.org/10.1186/s13567-020-00832-7spa
dc.relation.referencesFinlay WJJ, Shaw L, Reilly JP, Kane M. Generation of high-affinity chicken single-chain Fv antibody fragments for measurement of the Pseudonitzschia pungens toxin domoic acid. Appl Environ Microbiol. 2006;72(5):3343–9.spa
dc.relation.referencesPark KJ, Park DW, Kim CH, Han BK, Park TS, Han JY, et al. Development and characterization of a recombinant chicken single-chain Fv antibody detecting Eimeria acervulina sporozoite antigen. Biotechnol Lett. 2005;27(5):289–95.spa
dc.relation.referencesNoakes PS, Michaelis LJ. Innate and adaptive immunity [Internet]. Diet, Immunity and Inflammation. Woodhead Publishing Limited; 2013. 3–33 p. Available from: http://dx.doi.org/10.1533/9780857095749.1.3spa
dc.relation.referencesPereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol [Internet]. 2019 Aug;73(January):293–303. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576919302206spa
dc.relation.referencesCabanillas-Bernal O, Dueñas S, Ayala-Avila M, Rucavado A, Escalante T, Licea-Navarro AF. Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One. 2019;14(6):1–24.spa
dc.relation.referencesAlkan SS. Monoclonal antibodies: The story of a discovery that revolutionized scienceand medicine. Nat Rev Immunol. 2004;4(2):153–6.spa
dc.relation.referencesZhao A, Tohidkia MR, Siegel DL, Coukos G, Omidi Y. Phage antibody display libraries: A powerful antibody discovery platform for immunotherapy. Crit Rev Biotechnol. 2016;36(2):276–89.spa
dc.relation.referencesBrüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B, et al. Human Antibody Production in Transgenic Animals. Arch Immunol Ther Exp (Warsz). 2015;63(2):101–8.spa
dc.relation.referencesLee W, Syed Atif A, Tan SC, Leow CH. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. J Immunol Methods [Internet]. 2017;447:71–85. Available from: http://dx.doi.org/10.1016/j.jim.2017.05.001spa
dc.relation.referencesComor L, Dolinska S, Bhide K, Pulzova L, Jiménez-Munguía I, Bencurova E, et al. Joining the in vitro immunization of alpaca lymphocytes and phage display: Rapid and cost effective pipeline for sdAb synthesis. Microb Cell Fact. 2017;16(1):1–13.spa
dc.relation.referencesAndris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF. Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods. 2000;242(1–2):159–81.spa
dc.relation.referencesContreras Rodríguez LE, Jutinico Shubach LLM, García Castañeda JE, Ramírez Hernández MH. Functional identification and subcellular localization of NAD kinase in the protozoan parasite Giardia intestinalis. Rev Colomb Química [Internet]. 2019 Jan 1;48(1):16–25. Available from: https://revistas.unal.edu.co/index.php/rcolquim/article/view/75273spa
dc.relation.referencesOstos Peña DM. Aproximación a la regulación de algunas enzimas involucradas en el metábolismo del NAD+ en Giardia duodenalis. 2019. p. 1–128.spa
dc.relation.referencesHu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol [Internet]. 2020;(December). Available from: http://dx.doi.org/10.1038/s41579-020-00459-7spa
dc.relation.referencesWu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.spa
dc.relation.referencesZhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020;579(7798):270–3. Available from: http://dx.doi.org/10.1038/s41586-020-2012-7spa
dc.relation.referencesZhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.spa
dc.relation.referencesLv Z, Deng Y-Q, Ye Q, Cao L, Sun C-Y, Fan C, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science (80- ). 2020;1509(September):eabc5881.spa
dc.relation.referencesÁlvarez-Díaz DA, Franco-Muñoz C, Laiton-Donato K, Usme-Ciro JA, Franco-Sierra ND, Flórez-Sánchez AC, et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect Genet Evol [Internet]. 2020;84(May):104390. Available from: https://doi.org/10.1016/j.meegid.2020.104390spa
dc.relation.referencesChan JF, Kok K, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect [Internet]. 2020 Jan 1;9(1):221–36. Available from: https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1719902spa
dc.relation.referencesTakahashi H, Iwasaki Y, Watanabe T, Ichinose N, Okada Y, Oiwa A, et al. Case studies of SARS-CoV-2 treated with favipiravir among patients in critical or severe condition. Int J Infect Dis [Internet]. 2020; Available from: https://doi.org/10.1016/j.ijid.2020.08.047spa
dc.relation.referencesWorld Health Organization. Weekly Epidemiological Update on COVID-19. 2020;(October). Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdfspa
dc.relation.referencesZhou L, Chandrasekaran AR, Punnoose JA, Bonenfant G, Charles S, Levchenko O, et al. Programmable low-cost DNA-based platform for viral RNA detection. 2020;6246:1–15.spa
dc.relation.referencesGrzelak L, Temmam S, Planchais C, Demeret C, Tondeur L, Huon C, et al. A comparison of four serological assays for detecting anti-SARS-CoV-2 antibodies in human serum samples from different populations. Sci Transl Med. 2020;12(559).spa
dc.relation.referencesDao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LP, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(556).spa
dc.relation.referencesPonomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:1–8.spa
dc.relation.referencesLife Technologies. Champion pET SUMO Protein Expression System. 2010;5(January):1833–9.spa
dc.relation.referencesFroger A, Hall JE. Transformation of Plasmid DNA into E . coli Using the Heat Shock Method. 2007;2007.spa
dc.relation.referencesLessard JC. Molecular cloning, a laboratory manual. Vol. 529, Methods in Enzymology. 2013. 85–98 p.spa
dc.relation.referencesPalmer I, Wingfield PT. Preparation and extraction of insoluble (Inclusion-body) proteins from Escherichia coli. Curr Protoc Protein Sci. 2012;1(SUPPL.70):1–25.spa
dc.relation.referencesBradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem [Internet]. 1976 May;72(1–2):248–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/0003269776905273spa
dc.relation.referencesMahmood T, Yang PC. Western blot: Technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429–34.spa
dc.relation.referencesHoward GC, Kaser MR. Making and Using Antibodies: A Practical Handbook, Second Edition [Internet]. 2013. 458 p. Available from: https://books.google.com/books?id=AfnRBQAAQBAJ&pgis=1spa
dc.relation.referencesPauly D, Chacana PA, Calzado EG, Brembs B, Schade R. Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. J Vis Exp. 2011;i(51):2–7.spa
dc.relation.referencesThermo Fisher Scientific. TRIzol Reagent User Guide - Pub. no. MAN0001271 - Rev. A.0. User Guid. 2016;15596018(15596026):1–6.spa
dc.relation.referencesApplied Biosystems Ambion. Gel Loading Buffer II (Denaturing PAGE) User Manual. 2008;1–2.spa
dc.relation.referencesCorporation P. RQ1 RNase-Free DNase Product Infomation. 2018;1–2.spa
dc.relation.referencesThermo Scientific. Thermo Scientific RevertAid Reverse Transcriptase. 2016;(3):3–6.spa
dc.relation.referencesZhang J, Gao Y, Huang Y, Fan Q, Lu X. Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers in yellow-feathered broilers. Ital J Anim Sci [Internet]. 2018;0(0):540–6. Available from: https://doi.org/10.1080/1828051X.2017.1365633spa
dc.relation.referencesRajput R, Sharma G, Rawat V, Gautam A, Kumar B, Pattnaik B, et al. Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus. Front Immunol. 2015;6(SEP):1–9.spa
dc.relation.referencesProgen. Surface Expression Phagemid Vector pSEX81. Biotechnol Adv [Internet]. 2003;13(1991). Available from: https://www.progen.com/media/downloads/datasheets/PR3005.pdfspa
dc.relation.referencesProgen. Mouse IgG Library Primer Set. 2000;1–3.spa
dc.relation.referencesThermo Fisher Scientific. MluI User Guide. :1–3. Available from: https://www.thermofisher.com/order/catalog/product/ER0561?SID=srch-hj-ER0561spa
dc.relation.referencesThermo Fisher Scientific. NcoI User Guide. :1–3. Available from: https://www.thermofisher.com/order/catalog/product/ER0572?SID=srch-hj-ER0572spa
dc.relation.referencesFAVORGEN. FavorPrep GEL / PCR Purification Kit Kit Contents : Brief procedure : Specification : Important Notes : PCR Clean-Up Protocol : For purification of PCR products or reaction mixtures. :1–2.spa
dc.relation.referencesThermo Fisher Scientific. Product information: T4 DNA Ligase. :1–2. Available from: https://www.thermofisher.com/order/catalog/product/EL0014?SID=srch-srp-EL0014spa
dc.relation.referencesMoradi-Kalbolandi S, Davani D, Golkar M, Habibi-Anbouhi M, Abolhassani M, Shokrgozar MA. Soluble Expression and Characterization of a New scFv Directed to Human CD123. Appl Biochem Biotechnol. 2016;178(7):1390–406.spa
dc.relation.referencesHust M. Phage Display [Internet]. Hust M, Lim TS, editors. Methods in Molecular Biology. New York, NY: Springer New York; 2018. 331–347 p. (Methods in Molecular Biology; vol. 1701). Available from: http://link.springer.com/10.1007/978-1-4939-7447-4spa
dc.relation.referencesThermo Fisher Scientific. Hind III User Guide. :1–3. Available from: https://www.thermofisher.com/order/catalog/product/ER0502?SID=srch-hj-ER0502spa
dc.relation.referencesProgen. Product datasheet Hyperphage e M13 KO7pIII. 2022;1–3. Available from: https://us.progen.com/Hyperphage-M13-KO7DpIII/PRHYPE-1spa
dc.relation.referencesKay BK, Winter J, McCafferty J. Phage Display of Peptides and Proteins, a Laboratory Manual. 1996. 61–62 p.spa
dc.relation.referencesKim H, Ho M. Current Protocols in Protein Science: Isolation of Antibodies to Heparan Sulfate on Glypicans by Phage Display. Curr Protoc Protrin Sci. 2018;94(1):1–32.spa
dc.relation.referencesZhang M-Y, Dimitrov DS. Sequential Antigen Panning for Selection of Broadly Cross- Reactive HIV-1-Neutralizing Human Monoclonal Antibodies. Methods Mol Biol. 2009;562:143–54.spa
dc.relation.referencesLi Y, Ma M, Lei Q, Li Y, Ma M, Lei Q, et al. Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1 , 051 COVID-19 patients. CellReports [Internet]. 2021;34(13):108915. Available from: https://doi.org/10.1016/j.celrep.2021.108915spa
dc.relation.referencesWang H, Wu X, Zhang X, Hou X, Liang T, Wang D, et al. SARS-CoV ‑ 2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. 2020;spa
dc.relation.referencesShang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21).spa
dc.relation.referencesTye EXC, Jinks E, Haigh TA, Kaul B, Patel P, Parry HM, et al. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4 + T cell recognition. 2022;23(December).spa
dc.relation.referencesChen L, Pang P, Qi H, Yan K, Ren Y, Ma M, et al. Evaluation of Spike Protein Epitopes by Assessing the Dynamics of Humoral Immune Responses in Moderate COVID-19. 2022;13(March):1–14.spa
dc.relation.referencesPoh CM, Carissimo G, Wang B, Amrun SN, Lee CY, Chee RS, et al. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun [Internet]. 2020; Available from: http://dx.doi.org/10.1038/s41467-020-16638-2spa
dc.relation.referencesKrempl C, Schultze B, Laude H. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of Transmissible Gastroenteritis Coronavirus. 1997;71(4):3285–7.spa
dc.relation.referencesLu G, Wang Q, Gao GF. Bat-to-human : spike features determining ‘ host jump ’ of MERS-CoV , and beyond. 2020;(January).spa
dc.relation.referencesChi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. 2020;655(August):650–5.spa
dc.relation.referencesXiaojie S, Yu L, Guang Y, Min Q. Neutralizing antibodies targeting SARS-CoV-2 spike protein. 2020;(January). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737530/pdf/main.pdfspa
dc.relation.referencesRobichon C, Luo J, Causey TB, Benner JS, Samuelson JC. Engineering Escherichia coli BL21 ( DE3 ) Derivative Strains To Minimize E . coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography ᰔ †‡. 2011;77(13):4634–46.spa
dc.relation.referencesMcguire BE, Mela JE, Thompson VC, Cucksey LR, Stevens CE, Mcwhinnie RL, et al. Escherichia coli recombinant expression of SARS ‑ CoV ‑ 2 protein fragments. Microb Cell Fact [Internet]. 2022;1–13. Available from: https://doi.org/10.1186/s12934-022-01753-0spa
dc.relation.referencesGlycoprotein S-S, Zhang S, Go EP, Ding H, Anang S, Kappes JC, et al. Analysis of Glycosylation and Disul fi de Bonding of Wild-Type. 2022;96(3):1–27.spa
dc.relation.referencesRosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli : advances and challenges. 2014;5(April):1–17.spa
dc.relation.referencesLaura M, Puglisi A, Dal F, Hochkoeppler A. Production in Escherichia coli of recombinant COVID-19 spike protein fragments fused to CRM197. 2020;(January).spa
dc.relation.referencesRahbar Z, Nazarian S, Dorostkar R, Sotoodehnejadnematalahi F. Recombinant expression of SARS-CoV-2 receptor binding domain ( RBD ) in Escherichia coli and its immunogenicity in mice. 2022;spa
dc.relation.referencesLiu L, Chen T, Zhou L, Sun J, Li Y, Nie M, et al. A Bacterially Expressed SARS-CoV-2 Receptor Binding Domain Fused With Cross-Reacting Material 197 A-Domain Elicits High Level of Neutralizing Antibodies in Mice. 2022;13(April).spa
dc.relation.referencesGao X, Peng S, Mei S, Liang K, Saleem M, Khan I, et al. Expression and functional identification of recombinant SARS-CoV-2 receptor binding domain ( RBD ) from E . coli system. Prep Biochem Biotechnol [Internet]. 2021;0(0):1–7. Available from: https://doi.org/10.1080/10826068.2021.1941106spa
dc.relation.referencesGe S, Wu R, Zhou T, Liu X, Zhu J, Zhang X. Specific anti ‑ SARS ‑ CoV ‑ 2 S1 IgY ‑ scFv is a promising tool for recognition of the virus. AMB Express [Internet]. 2022; Available from: https://doi.org/10.1186/s13568-022-01355-4spa
dc.relation.referencesBalasubramaniyam A, Ryan E, Brown D, Hamza T, Harrison W, Gan M, et al. Unglycosylated Soluble SARS-CoV-2 Receptor Binding Domain ( RBD ) Produced in E . coli Combined with the Army Liposomal Formulation Containing QS21 ( ALFQ ) Elicits Neutralizing Antibodies against Mismatched Variants. 2023;21.spa
dc.relation.referencesTungekar AA, Ruddock LW. Production of neutralizing antibody fragment variants in the cytoplasm of E . coli for rapid screening : SARS ‑ CoV ‑ 2 a case study. Sci Rep [Internet]. 2023;1–12. Available from: https://doi.org/10.1038/s41598-023-31369-2spa
dc.relation.referencesSingh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. 2015;1–10.spa
dc.relation.referencesKong B, Guo GL. Soluble Expression of Disulfide Bond Containing Proteins FGF15 and FGF19 in the Cytoplasm of Escherichia coli. 2014;9(1):1–8.spa
dc.relation.referencesBhatwa A, Wang W, Hassan YI, Abraham N, Li X. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. 2021;9(February):1–18.spa
dc.relation.referencesSivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. 2009;18(1):936–48.spa
dc.relation.referencesHata S, Kitamura F, Sorimachi H. Efficient expression and purification of recombinant human l -calpain using an Escherichia coli expression system. 2013;753–63.spa
dc.relation.referencesTrabbic-carlson K, Liu LI, Kim B, Chilkoti A. Expression and purification of recombinant proteins from Escherichia coli : Comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. 2004;3274–84.spa
dc.relation.referencesRienzo L Di, Ruocco G, Desantis F, Grassmann G, Milanetti E. Dynamical changes of SARS-CoV-2 spike variants in the highly immunogenic regions impact the viral antibodies escaping. 2023;(March):1116–29.spa
dc.relation.referencesChacón ME. Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi. 2021;spa
dc.relation.referencesEliana S, Silva V. Exploration of a Nad + Transporter and / or Its Precursors in. 2021;spa
dc.relation.referencesLin TW, Huang PH, Liao BH, Chao TL, Tsai YM, Chang SC, et al. Tag-Free SARS-CoV-2 Receptor Binding Domain (RBD), but Not C-Terminal Tagged SARS-CoV-2 RBD, Induces a Rapid and Potent Neutralizing Antibody Response. Vaccines. 2022;10(11):1–11.spa
dc.relation.referencesGefen T, Vaya J, Khatib S, Rapoport I, Lupo M, Barnea E, et al. The effect of haptens on protein-carrier immunogenicity. Immunology. 2015;144(1):116–26.spa
dc.relation.referencesErtekin Ö, Akçael E, Kocaağa H, Öztürk S. Biological activity of the carrier as a factor in immunogen design for haptens. Molecules. 2018;23(11).spa
dc.relation.referencesGonzalez-montalban N, Natalello A, Garcı E, Villaverde A, Doglia SM. In Situ Protein Folding and Activation in Bacterial Inclusion Bodies. 2008;100(4):797–802.spa
dc.relation.referencesRamón A, Señorale-pose M, Marín M. Inclusion bodies : not that bad . . . 2014;5(February):2010–5.spa
dc.relation.referencesLi S, Zhao Q, Wu T, Chen S, Zhang J, Xia N. The development of a recombinant hepatitis E vaccine HEV 239. 2015;11(4):908–14.spa
dc.relation.referencesSarantos K, Cleo K. European Journal of Pharmaceutical Sciences Analysis of the landscape of biologically-derived pharmaceuticals in Europe : Dominant production systems , molecule types on the rise and approval trends. Eur J Pharm Sci [Internet]. 2013;48(3):428–41. Available from: http://dx.doi.org/10.1016/j.ejps.2012.11.016spa
dc.relation.referencesLua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering Virus-Like Particles as Vaccines. 2014;111(3):425–40.spa
dc.relation.referencesHuang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli- derived virus-like particles in vaccine development. npj Vaccines [Internet]. 2017;(October 2016):1–8. Available from: http://dx.doi.org/10.1038/s41541-017-0006-8spa
dc.relation.referencesWei M, Zhang X, Yu H, Tang Z, Wang K, Li Z, et al. Bacteria expressed hepatitis E virus capsid proteins maintain virion-like epitopes. Vaccine [Internet]. 2014;1–7. Available from: http://dx.doi.org/10.1016/j.vaccine.2014.02.025spa
dc.relation.referencesQiagen. RNA Isolation with TRIzol ( Invitrogen ) and Qiagen RNAeasy. 2013;1–7.spa
dc.relation.referencesGandhi V, Brien MHO, Yadav S. High-Quality and High-Yield RNA Extraction Method From Whole Human Saliva. 2020;spa
dc.relation.referencesYan J, Li G, Hu Y, Ou W, Wan Y. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. 2014;1–12.spa
dc.relation.referencesBashir S, Paeshuyse J. Construction of Antibody Phage Libraries and Their Application in Veterinary Immunovirology. 2020;(Figure 1).spa
dc.relation.referencesLim CC, Woo PCY, Lim TS. Development of a Phage Display Panning Strategy Utilizing Crude Antigens: Isolation of MERS-CoV Nucleoprotein human antibodies. Sci Rep [Internet]. 2019;9(1):1–15. Available from: http://dx.doi.org/10.1038/s41598-019-42628-6spa
dc.relation.referencesLi J, Xu Y, Wang X, Li Y, Wang L, Li X. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. Int Immunopharmacol [Internet]. 2016;35:149–54. Available from: http://dx.doi.org/10.1016/j.intimp.2016.02.024spa
dc.relation.referencesHu Z, Liu J, Li H, Xing S, Xue S, Zhang J. Generation of a Highly Reactive Chicken-Derived Single-Chain Variable Fragment against Fusarium verticillioides by Phage Display. 2012;7038–56.spa
dc.relation.referencesYang T, Yang L, Chai W, Li R, Xie J, Niu B. A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr Purif [Internet]. 2011;76(1):109–14. Available from: http://dx.doi.org/10.1016/j.pep.2010.10.006spa
dc.relation.referencesZhan Y, Song Y, Ren H, Zeng Q, Yuan Y, Xia L, et al. Preparation of a Single-Chain Antibody against Nucleocapsid Protein of Porcine Deltacoronavirus by Phage. 2022;spa
dc.relation.referencesLee YC, Leu SJC, Hung HC, Wu HH, Huang IJ, Hsieh WS, et al. A dominant antigenic epitope on SARS-CoV spike protein identified by an avian single-chain variable fragment (scFv)-expressing phage. Vet Immunol Immunopathol. 2007;117(1–2):75–85.spa
dc.relation.referencesAnandakumar S, Boosi KN, Bugatha H, Padmanabhan B, Sadhale PP. Phage displayed short peptides against cells of Candida albicans demonstrate presence of species, morphology and region specific carbohydrate epitopes. PLoS One. 2011;6(2).spa
dc.relation.referencesO’Brien P, Aitken R. Methods in Molecular Biology: antibody Phage Display. Vol. 178. 2002.spa
dc.relation.referencesPitaksajjakul P, Lekcharoensuk P, Upragarin N, Barbas CF, Ibrahim MS, Ikuta K, et al. Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library. Biochem Biophys Res Commun [Internet]. 2010;395(4):496–501. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.04.040spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsAnticuerpos Monoclonalesspa
dc.subject.decsAntibodies, Monoclonaleng
dc.subject.decsInmunizaciónspa
dc.subject.decsImmunizationeng
dc.subject.proposalPhage displayspa
dc.subject.proposallibrerías de fagosspa
dc.subject.proposalSpikespa
dc.subject.proposalSARS-CoV-2spa
dc.subject.proposalanticuerpos recombinantesspa
dc.subject.proposalPhage displayeng
dc.subject.proposalphage librarieseng
dc.subject.proposalSpikeeng
dc.subject.proposalrecombinant antibodieseng
dc.subject.proposalSARS-CoV-2eng
dc.titleAplicación del sistema phage display para la producción de anticuerpos monoclonales: Una aproximación al desarrollo de herramientas para la detección de proteínasspa
dc.title.translatedApplication of the phage display system for the production of monoclonal antibodies: An approach to the development of tools for protein detectioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026291353.2023.pdf
Tamaño:
4.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: