En 16 día(s), 7 hora(s) y 5 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Películas de DLC producidas por pecvd utilizando intercapas de Tix-Siy, AlxTiy y WX-Tiy, sobre sustratos de aceros AISI 316-L, AISI H13 y aleaciones de Ti6Al4V, depositadas por sputtering con magnetrón

dc.contributor.advisorCapote Rodriguez, Gilspa
dc.contributor.authorHincapie Campos, Williams Stevespa
dc.contributor.researchgroupGrupo de Ciencia de Materiales y Superficiesspa
dc.date.accessioned2020-07-13T20:55:15Zspa
dc.date.available2020-07-13T20:55:15Zspa
dc.date.issued2020-04-23spa
dc.description.abstractIn this research, it was possible to sinter by the rf plasma erosion technique, individual films of TiSi, TiAl and TiW on AISI H13, AISI 316l and Ti6Al4V alloy substrates, with thicknesses of 100 nm, 200 nm and 300 nm, with in order to determine its influence on adhesion on diamond like carbon coatings “DLC” (a-C:H). The DLC coatings were sintered by the chemical vapor phase “CVD” deposition technique with pulsed D.C source using a novel configuration which is to use the active screen, using three precursor gases: methane, acetylene and hexane. In order to determine if any of these had greater adherence. The TiSi, TiAl and TiW films, their morphology was characterized by scanning electron microscopy and their chemical composition by X-ray energy dispersion spectrometry, as its crystalline structure by X-ray diffraction in grazing mode, the energies were determined of bond between substrates and different coatings by X-ray photoelectron spectroscopy “XPS”. The morphology of DLC were characterized by Raman spectroscopy and their hardness was determined by the nanohardness test. Adhesion was measured by the scratch test increasing the load until reaching the critical load Lc and by the indentation test under the VDI 3198 standard. The diffractograms showed that the TiSi and TiAl films did not show any characteristic peak, therefore, cannot be determined if the interlayer grew amorphous or crystalline. The adhesion results showed that the methane-grown hydrogenated amorphous carbon films presented a critical load of 10 N, therefore, the growth of the hydrogenated amorphous carbon films was modified using another interlayer of (a-Si:H) on the TiSi, TiAl and TiW coatings to have the substrate/TiSi/a-Si:H/DLC and substrate/TiAl/a-Si:H/DLC configuration, increasing its critical load to 25 N, the hardness of the DLC film was of 25.3 GPa and a modulus of elasticity of 199 GPa. Finally, the corrosion resistance was increased in the substrate /TiAl/a-Si:H/DLC coatings.spa
dc.description.abstractEn esta investigación se consiguió sinterizar por la técnica de erosión por plasma r.f, películas individuales de TiSi, TiAl y TiW sobre sustratos de acero AISI H13, AISI 316l y aleaciones de Ti6Al4V, con espesores de 100 nm, 200 nm y 300 nm, con el fin de determinar su influencia en la adherencia en los recubrimientos de carbono amorfo hidrogenado (a-C:H). Los recubrimientos de carbono amorfo hidrogenado se sinterizaron por la técnica deposición química en fase vapor con fuente D.C pulsada utilizando una novedosa configuración la cual es usar la pantalla activa, usando tres gases precursores: metano, acetileno y hexano, con el fin de determinar con cuales condiciones los recubrimientos presentaba mayor adherencia. En las películas de TiSi, TiAl y TiW, se caracterizó su morfología por microscopía electrónica de barrido y su composición química por espectrometría de dispersión de energía de rayos X, así como su estructura cristalina por difracción de rayos X en modo haz rasante. Además, se determinó las energías de enlace entre los sustratos y los diferentes recubrimientos por espectroscopía de fotoelectrones de rayos X (XPS). La morfología de las películas de carbono amorfo hidrogenado se caracterizó por espectroscopía Raman y se determinó su dureza por el ensayo de nanoindentación. La adherencia se midió por el ensayo de rayado aumentando la carga hasta llegar a la carga crítica Lc y por el ensayo de indentación bajo la norma VDI 3198. Los difractogramas mostraron que las películas de TiSi y TiAl no presentan ningún pico característico, por lo tanto, no se pudo determinar si las películas crecieron amorfas o cristalinas. Los resultados de adherencia mostraron que las películas de carbono amorfo hidrogenado crecidos sobre las intercapas con el gas metano presentaron una carga crítica de aproximadamente 10 N. Por tal motivo, se procedió a modificar el crecimiento de los recubrimientos de carbono amorfo hidrogenado, usando una intercapa adicional de a-Si:H sobre las intercapas de TiSi, TiAl y TiW para tener la configuración sustrato/TiSi/a-Si:H/DLC y sustrato/TiAl/a-Si:H/DLC. Estas nuevas intercapas permitieron aumentar considerablemente la adherencia de los recubrimientos, obteniendo valores de carga crítica de hasta 25 N, mientras que la dureza del recubrimiento de DLC alcanzó 25,3 GPa y un módulo de elasticidad de 199 GPa. Por último, se aumentó la resistencia a la corrosión en los recubrimientos de sustrato/TiAl/a-Si:H/DLC.spa
dc.description.additionalLínea de Investigación: Ciencia de Materiales y Superficiesspa
dc.description.degreelevelDoctoradospa
dc.format.extent181spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77765
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.references[1]J. Robertson, “Diamond-Like Carbon Films, Properties and Applications,” in Comprehensive Hard Materials, Elsevier., Elsevier Ltd, 2014, pp. 101–139.spa
dc.relation.references[2] N. Nelson, R. T. Rakowski, J. Franks, P. Woolliams, P. Weaver, and B. J. Jones, “The effect of substrate geometry and surface orientation on the film structure of DLC deposited using PECVD,” Surf. Coat. Technol., vol. 254, pp. 73–78, 2014.spa
dc.relation.references[3] V.G. Ralchenko, A.A. Smolin, V.G. Pereverzev, E.D. Obraztsova, K.G. Korotoushenko, V.I. Konov, Yu.V. Lakhotkin, E.N. Loubnin, “Diamond deposition on steel with CVD tungsten intermediate layer,” Diam. Relat. Mater., vol. 4, no. 5–6, pp. 754–758, 1995.spa
dc.relation.references[4] R. Polini and M. Barletta, “On the use of CrN / Cr and CrN interlayers in hot filament chemical vapour deposition ( HF-CVD ) of diamond films onto WC-Co substrates,” Diam. Relat. Mater., vol. 17, pp. 325–335, 2008.spa
dc.relation.references[5] G. Capote, L. F. Bonetti, and V. J. Trava-Airoldi, “Deposición de películas protectoras de DLC sobre superficies metálicas tratadas térmicamente,” Rev. Colomb. Física, vol. 42, no. 1, pp. 1–6, 2010.spa
dc.relation.references[6] W. J. Yang, Y.-H. Choa, T. Sekino, K. B. Shim, K. Niihara, and K. H. Auh, “Thermal stability evaluation of diamond-like nanocomposite coatings,” Thin Solid Films, vol. 434, no. 1–2, pp. 49–54, 2003.spa
dc.relation.references[7] W. Zhang, A. Tanaka, B. S. Xu, and Y. Koga, “Study on the diamond-like carbon multilayer films for tribological application,” Diam. Relat. Mater., vol. 14, no. 8, pp. 1361–1367, 2005.spa
dc.relation.references[8] G. Capote, L. F. Bonetti, L. V. Santos, V. J. Trava-Airoldi, E. J. Corat, “Adherent amorphous hydrogenated carbon films on metals deposited by plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 516, no. 12, pp. 4011–4017, Apr. 2008.spa
dc.relation.references[9] Liu L., Z. Wu, X. An, S. Xiao, S. Cui, H. Lin, R.K.Y. Fu, X. Tian, R. Wei, P.K. Chu, F. Pan, “Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment,” J. Alloys Compd., vol. 735, pp. 155–162, 2017.spa
dc.relation.references[10] I. plasmaterials, “Plasmaterials Materials Listing page | Plasmaterials,” 2018. [Online]. Available: https://www.plasmaterials.com/materials-listing/. [Accessed: 11-Jun-2019].spa
dc.relation.references[11] F. J. G. Silva, A. J. S. Fernandes, F. M. Costa, A. P. M. Baptista, E. Pereira, “A new interlayer approach for CVD diamond coating of steel substrates,” Diam. Relat. Mater., vol. 13, no. 4–8, pp. 828–833, 2004.spa
dc.relation.references[12] V. J Trava-Airoldi, L. F Bonetti, G Capote, L. V Santos , E. J Corat, “A comparison of DLC film properties obtained by r.f. PACVD, IBAD, and enhanced pulsed-DC PACVD,” Surf. Coat. Technol., vol. 202, no. 3, pp. 549–554, Dec. 2007.spa
dc.relation.references[13] Y. Fu, B. Yan, and N. L. Loh, “Effects of pre-treatments and interlayers on the nucleation and growth of diamond coatings on titanium substrates,” Surf. Coat. Technol., vol. 130, no. 2–3, pp. 173–185, 2000.spa
dc.relation.references[14] X. Xiao, B. W. Sheldon, E Konca, L. C. Lev, M. J. Lukitsch, “The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide,” Diam. Relat. Mater., vol. 18, no. 9, pp. 1114–1117, 2009.spa
dc.relation.references[15] W. M. Silva, V. J. Trava-airoldi, and Y. W. Chung, “Surface modification of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings,” Surf. Coat. Technol., vol. 205, no. 12, pp. 3703–3707, 2011.spa
dc.relation.references[16] J G. Buijnsters, P. Shankar, P Gopalakrishnan, W. J. P. Van Enckevort, J. J. Schermer, S.S. Ramakrishnan, J.J. ter Meulen, “Diffusion-modified boride interlayers for chemical vapour deposition of low-residual-stress diamond films on steel substrates,” Thin Solid Films, vol. 426, no. 03, pp. 85–93, 2003.spa
dc.relation.references[17] Helmersson U, Lattemann Martina, Bohlmark Johan Ehiasarian Arutiun P, Gudmundsson Jon Tomas, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Thin Solid Films, vol. 513, no. 1–2, pp. 1–24, 2006.spa
dc.relation.references[18] Helmersson U, B. O. Johansson, J.E. Sundgren, H. T. G. Hentzell, P. Billgren, “Adhesion of titanium nitride coatings on high-speed steels,” J. Vac. Sci. Technol. A3, vol. 3, no. 2, pp. 308–315, 1985.spa
dc.relation.references[19] M. Y. Al-Jaroudi, H. T. G. Hentzell, S. E. Hörnström, A. Bengtson, “Deposition of titanium nitride on surface-hardened structural steel by reactive magnetron sputtering,” Thin Solid Films, vol. 182, pp. 153–166, 1989.spa
dc.relation.references[20] Chi-Lung Chang,Shu-Man Li, Wei-Yu Ho,Da-Yung Wang, “Characteristics of Stripping TiN Coating by Chemical Solution Method,” J. Chinese Corros. Eng., vol. 9, no. 3, pp. 273–278, 2006.spa
dc.relation.references[21] N. R. Glavin, “Ultra-thin boron nitride films by pulsed laser deposition: Plasma diagnostics, synthesis, and device transport,” Purdue University Purdue e-Pubs, 2016.spa
dc.relation.references[22] J. Sundgren, Formation and characterization of titanium nitride and titanium carbide films prepared by reactive sputtering, 1st ed., no. 79. Linkoping, Sweden, 1982.spa
dc.relation.references[23] C. C. Cheng, A. Erdemir, and G. R. Fenske, “Correlation of interface structure with adhesive strength of ion-plated TiN hard coatings,” Surf. Coat. Technol., vol. 40, pp. 365–376, 1989.spa
dc.relation.references[24] Pecnik Christina Martina, Courty Diana, Muff Daniel, Spolenak Ralph, “Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis,” J. Mech. Behav. Biomed. Mater., vol. 47, pp. 1–11, 2015.spa
dc.relation.references[25] S. J. Bull, P. R. Chalker, C. F. Ayres, and D. S. Rickerby, “The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition,” Mater. Sci. Eng. A, vol. 139, pp. 71–78, 1991.spa
dc.relation.references[26] S. J. Bull, “Correlation of microstructure and properties of hard coatings,” Vacuum, vol. 43, no. 5–7, pp. 387–391, 1992.spa
dc.relation.references[27] H. O. Pierson, “Carbides of Group IV: Titanium, Zirconium, and Hafnium Carbides,” Handb. Refract. Carbides Nitrides, vol. 0, pp. 55–80, 1996.spa
dc.relation.references[28] R. C. Sushant Rawal K, Amit Kumar Chawla, Jayaganthan R, “Structural, Wettability and Optical Investigation of Titanium Oxynitride Coatings: Effect of Various Sputtering Parameters,” J. Mater. Sci. Technol., vol. 28, no. 6, pp. 512–523, 2012.spa
dc.relation.references[29] A. A. Voevodin, J. M. Schneider, C. Rebholz, A. Matthews, “Multilayer composite ceramic-metal-DLC coatings for sliding wear applications,” Tribol. Int., vol. 29, no. 7, pp. 559–570, 1996.spa
dc.relation.references[30] A. A. Voevodin, C. Rebholz, J. M. Schneider, P. Stevenson, A. Matthews, “Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering,” Surf. Coat. Technol., vol. 73, pp. 185–197, 1995.spa
dc.relation.references[31] S. Zhang and X. Zhang, “Toughness evaluation of hard coatings and thin films,” Thin Solid Films, vol. 520, pp. 2375–2389, 2012.spa
dc.relation.references[32] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughness measurement of thin films: a critical review,” Surf. Coatings Technol. 198, vol. 198, pp. 74–84, 2004.spa
dc.relation.references[33] A. A. Voevodin and J. S. Zabinski, “Nanocomposite and nanostructured tribological materials for space applications,” Compos. Sci. Technol., vol. 65, pp. 741–748, 2005.spa
dc.relation.references[34] J. Deng and Manuel Braun, “DLC multilayer coatings for wear protection,” Diam. Relat. Mater., vol. 4, pp. 936–943, 1995.spa
dc.relation.references[35] K. L. Choy and E. Felix, “Functionally graded diamond-like carbon coatings on metallic substrates,” Mater. Sci. Eng. A, vol. 278, no. 1–2, pp. 162–169, 2000.spa
dc.relation.references[36] C. A. Charitidis, “Nanomechanical and nanotribological properties of carbon-based thin films: A review,” Int. J. Refract. Met. Hard Mater., vol. 28, pp. 51–70, 2010.spa
dc.relation.references[37] Fan Hua Qi, Fernandes, Grácio J, “Diamond coating on steel with a titanium interlayer,” Diam. Relat. Mater., vol. 7, no. 2–5, pp. 603–606, 1998.spa
dc.relation.references[38] J. Spinnewyn, M. Nesládek, and C. Asinari, “Diamond nucleation on steel substrates,” Diam. Relat. Mater., vol. 2, no. 2–4, pp. 361–364, 1993.spa
dc.relation.references[39] Q. Hua Fan, A Fernandes, E. Pereira, J. Grácio, “Adhesion of diamond coatings on steel and copper with a titanium interlayer,” Diam. Relat. Mater., vol. 8, pp. 1549–1554, 1999.spa
dc.relation.references[40] E. P. Q. Hua Fan, J. Grácio, “Comparison of the adhesion of diamond coatings using indentation tests and micro-Raman spectr-oscopy,” J. Appl. Phys., vol. 86, no. 10, p. 5509, 1999.spa
dc.relation.references[41] Marek Poręba, Paulina Zawadzka, Maria Richert, Jan Sieniawski , Tomasz Strączek, Czesław Kapusta, “The Possibility of Deposition of Diamond and DLC Coatings by PACVD Method,” Key Eng. Mater., vol. 641, pp. 111–115, 2015.spa
dc.relation.references[42] D.-Y. Wang and M.-C. Chiu, “Characterization of Cr2O3/CrN duplex coatings for injection molding applications,” J. Magn. Magn. Mater., vol. 137, pp. 164–169, 2001.spa
dc.relation.references[43] S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CNyDLC coatings,” Surf. Coat. Technol., vol. 162, no. 1, pp. 42–48, 2002.spa
dc.relation.references[44] F. J. G. Silva, A. P. M.Baptista, E. Pereira,V. Teixeira, Q. H. Fan, A. J. S. Fernandes, F.M. Costa, “Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers,” Diam. Relat. Mater., vol. 11, no. 9, pp. 1617–1622, 2002.spa
dc.relation.references[45] Ye Xu, Liuhe Li, Xun Cai, Paul K. Chu, “Hard nanocomposite Ti-Si-N films prepared by DC reactive magnetron sputtering using Ti-Si mosaic target,” Surf. Coat. Technol., vol. 201, no. 15, pp. 6824–6827, 2007.spa
dc.relation.references[46] F. J. G Silva, R. P Martinho, A. P. M Baptista, “Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings,” Thin Solid Films, vol. 550, pp. 278–284, 2014.spa
dc.relation.references[47] L. Hongxi, J. Yehua, Z. Rong, and T. Baoyin, “Wear behaviour and rolling contact fatigue life of Ti/TiN/DLC multilayer films fabricated on bearing steel by PIIID,” Vacuum, vol. 86, no. 7, pp. 848–853, 2012.spa
dc.relation.references[48] Ma Feng, Li Gang, Li Heqing, Ma Hongtao, Cai Xun, “Diamond-like carbon gradient film prepared by unbalanced magnetron sputtering and plasma immersion ion implantation hybrid technique,” Mater. Lett., vol. 57, pp. 82–86, 2002.spa
dc.relation.references[49] X. H. Zheng, J. P. Tu, B. Gu, and S. B. Hu, “Preparation and tribological behavior of TiN/a-C composite films deposited by DC magnetron sputtering,” Wear, vol. 265, no. 1–2, pp. 261–265, 2008.spa
dc.relation.references[50] M. Madej, “The effect of TiN and CrN interlayers on the tribological behavior of DLC coatings,” Wear, vol. 317, no. 1–2, pp. 179–187, 2014.spa
dc.relation.references[51] C. Chang and D. Wang, “Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates,” Diam. Relat. Mater., vol. 10, pp. 1528–1534, 2001.spa
dc.relation.references[52] J. G. Buijnsters, P. Shankar, W. Fleischer, W. J. P. Van Enckevort, J. J. Schermer, and J. J. Ter Meulen, “CVD diamond deposition on steel using arc-plated chromium nitride interlayers,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 536–544, 2002.spa
dc.relation.references[53] H. X. Zhang, Y. B. Jiang, S. Z. Yang, Lin Zhangda, and K. A. Feng, “Diamond growth on steel substrates with Al-N interlayer produced by high power plasma streams,” Thin Solid Films, vol. 349, no. 1, pp. 162–164, 1999.spa
dc.relation.references[54]O. Glozman, G. Halperin, I. Etsion, A. Berner, D. Shectman, G.H. Lee, A. Hoffma, “Study of the wear behavior and adhesion of diamond films deposited on steel substrates by use of a Cr-N interlayer,” Diam. Relat. Mater., vol. 8, no. 2–5, pp. 859–864, 1999.spa
dc.relation.references[55] J. Gerth and U. Wiklund, “The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel,” Wear, vol. 264, no. 9–10, pp. 885–892, 2008.spa
dc.relation.references[56] B. Warcholinski, A. Gilewicz, Z. Kuklinski, and P. Myslinski, “Hard CrCN/CrN multilayer coatings for tribological applications,” Surf. Coat. Technol., vol. 204, no. 14, pp. 2289–2293, 2010.spa
dc.relation.references[57] J. Musil and H. Hrubý, “Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering,” Thin Solid Films, vol. 365, no. 1, pp. 104–109, 2000.spa
dc.relation.references[58] B.K. Tay, Y.H. Cheng, X.Z. Ding, S.P. Lau, X. Shi, G.F. You, D. Sheeja, “Hard carbon nanocomposite films with low stress,” Diam. Relat. Mater., vol. 10, no. 3–7, pp. 1082–1087, 2001.spa
dc.relation.references[59] S. Zhang, X. L. Bui, and Y. Fu, “Magnetron-sputtered nc-TiC/a-C(Al) tough nanocomposite coatings,” Thin Solid Films, vol. 467, no. 1–2, pp. 261–266, 2004.spa
dc.relation.references[60] J. Soldán, J. Musil, and P. Zeman, “Effect of Al addition on structure and properties of sputtered TiC films,” Plasma Process. Polym., vol. 4, pp. 6–10, 2007.spa
dc.relation.references[61] Ola Wilhelmsson, Mikael Råsander, Mattias Carlsson, Erik Lewin, Biplap Sanyal, Urban Wiklund, Olle Eriksson, Ulf Jansson, “Design of nanocomposite low-friction coatings,” Adv. Funct. Mater., vol. 17, no. 10, pp. 1611–1616, 2007.spa
dc.relation.references[62] X. Pang, L. Shi, P. Wang, G. Zhang, and W. Liu, “Influences of bias voltage on mechanical and tribological properties of Ti-Al-C films synthesized by magnetron sputtering,” Surf. Coatings Technol., vol. 203, no. 10–11, pp. 1537–1543, 2009.spa
dc.relation.references[63] V. J. Trava-Airoldi, L.F. Bonetti, G. Capote, J.A. Fernandes, E. Blando, R. Hübler, P.A. Radi, L.V. Santos, E.J. Corat, “DLC film properties obtained by a low cost and modified pulsed-DC discharge,” Thin Solid Films, vol. 516, pp. 272–276, Dec. 2007.spa
dc.relation.references[64] Trava-Airoldi Vladimir Jesus, Santos Lucia Viera, Bonetti Luis Francisco, Capote Gil, Radi Polyana Alves, Corat Evaldo Jose, “Tribological and mechanical properties of DLC film obtained on metal surface by an enhanced and low-cost pulsed-DC discharge,” Int. J. Surf. Sci. Eng., vol. 1, no. 4, pp. 417–428, 2007.spa
dc.relation.references[65] G. Capote, E. J. Corat, and V. J. Trava-Airoldi, “Deposition of amorphous hydrogenated carbon films on steel surfaces through the enhanced asymmetrical modified bipolar pulsed-DC PECVD method,” Surf. Coat. Technol., vol. 260, pp. 133–138, 2014.spa
dc.relation.references[66] G. Capote, J. J. Olaya, and V. J. Trava-airoldi, “Adherent amorphous hydrogenated carbon coatings on steel surfaces deposited by enhanced asymmetrical bipolar pulsed-DC PECVD method and hexane as precursor,” Surf. Coat. Technol., vol. 251, pp. 276–282, 2014.spa
dc.relation.references[67] Marco A. Ramírez, Patrícia C. Silva, Evaldo J Corat, Vladimir J. Trava-Airoldi, “An evaluation of the tribological characteristics of DLC films grown on Inconel Alloy 718 using the Active Screen Plasma technique in a Pulsed-DC PECVD system,” Surf. Coatings Technol., vol. 284, pp. 235–239, 2015.spa
dc.relation.references[68] P. C. Santana, M. A. Ramirez, E. J. Corat, V. J. Trava-Airoldi, “DLC films grown on steel using an innovator active screen system for PECVD technique,” Mater. Res., vol. 19, no. 4, pp. 882–888, 2016.spa
dc.relation.references[69] Trava-Airoldi Vladimir Jesus, Gil Capote, Luís Francisco Bonetti, Jesum Fernandes, R. P. A. Eduardo Blando, Roberto Hübler, and E. J. C. Santos Vieira Lúcia, “Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.,” J. Nanosci. Nanotechnol., vol. 9, no. 6, pp. 3891–7, 2009.spa
dc.relation.references[70] W. M. Silva, J. R. Carneiro, and V. J. Trava-Airoldi, “Effect of carbonitriding temperature process on the adhesion properties of diamond like-carbon coatings deposited by PECVD on austenitic stainless steel,” Diam. Relat. Mater., vol. 42, pp. 58–63, Feb. 2014.spa
dc.relation.references[71] M. J. Winter, “http://www.webelements.com/,” The University of Sheffield andWebElements Ltd, UK. .spa
dc.relation.references[72] Capote G, D.C. Lugo, J.M. Gutiérrez, G.C. Mastrapa, V.J. Trava-Airoldib, “Effect of amorphous silicon interlayer on the adherence of amorphous hydrogenated carbon coatings deposited on several metallic surfaces,” Surf. Coatings Technol., vol. 344, no. February, pp. 644–655, 2018.spa
dc.relation.references[73] G. Capote, G. C. Mastrapa, and V. J. Trava-Airoldi, “Influence of acetylene precursor diluted with argon on the microstructure and the mechanical and tribological properties of a-C:H films deposited via the modified pulsed-DC PECVD method,” Surf. Coat. Technol., vol. 284, pp. 145–152, 2015.spa
dc.relation.references[74] G. Capote, L. F. Bonetti, L. V Santos, E. J. Corat, and V. J. Trava-Airoldi, “Influência da intercamada de silício amorfo na tensão total e na aderência de filmes de DLC em substratos de Ti6Al4V,” Rev. Bras. Apl. Vácuo, vol. 25, no. 1, pp. 5–10, 2008.spa
dc.relation.references[75] G. Capote and F. L. Freire Jr, “Production and characterization of hydrogenated amorphous carbon thin films deposited in methane plasmas diluted by noble gases,” Mater. Sci. Eng. B, vol. 112, pp. 101–105, 2004.spa
dc.relation.references[76] G. Capote, L. F. Bonetti, L. V Santos, and E. J. Corat, “Deposition of Adherent DLC Films Using a Low-Cost Enhanced Pulsed-DC PECVD Method,” Rev. Bras. Apl. Vacuo, vol. 25, no. 4, pp. 209–213, 2006.spa
dc.relation.references[77] L. F. Bonetti, G. Capote, L. V. Santos, E. J. Corat, “Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer,” Thin Solid Films, vol. 515, pp. 375–379, 2006.spa
dc.relation.references[78] J. M. Albella, Láminas delgadas y recubrimientos preparación, propiedades y aplicaciones. Madrid: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS, 2003.spa
dc.relation.references[79] P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, 2000.spa
dc.relation.references[80] I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterisation parameters for unbalanced magnetron sputtering systems,” Vacuum, vol. 68, no. 4, pp. 283–290, 2002.spa
dc.relation.references[81] D. Depla and R. De Gryse, “Target poisoning during reactive magnetron sputtering: Part I: The influence of ion implantation,” Surf. Coatings Technol., vol. 183, no. 2–3, pp. 184–189, 2004.spa
dc.relation.references[82] W. Gissler and H. a Jehn, Advanced Techniques for Surface Engineering, vol. 1. The Netherlands, 1992.spa
dc.relation.references[83] D. M. Mattox, “Atomistic Film Growth and Some Growth-Related Film Properties,” in Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed., Elsevier, Ed. Oxford, 2010, pp. 333–398.spa
dc.relation.references[84] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., vol. 11, no. 4, p. 666, 1974.spa
dc.relation.references[85] J. a Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci., vol. 7, pp. 239–260, 1977.spa
dc.relation.references[86] J. Choi, M. Kawaguchi, T. Kato, and M. Ikeyama, “Deposition of Si-DLC film and its microstructural, tribological and corrosion properties,” Microsyst. Technol., vol. 13, no. 8–10, pp. 1353–1358, 2007.spa
dc.relation.references[87] N. Sharma et al., “Tribology International Scratch resistance and tribological properties of DLC coatings under dry and lubrication conditions,” Tribiology Int., vol. 56, pp. 129–140, 2012.spa
dc.relation.references[88] G. Capote, F. L. Freire, L. G. Jacobsohn, G. Mariotto, “Amorphous hydrogenated carbon films deposited by PECVD in methane atmospheres highly diluted in argon: Effect of the substrate temperature,” Diam. Relat. Mater., vol. 13, no. 4–8, pp. 1454–1458, Apr. 2004.spa
dc.relation.references[89] T. Michler, M. Grischke, I. Traus, K. Bewilogua, and H. Dimigen, “DLC Films deposited by bipolar pulsed DC PACVD,” Diam. Relat. Mater., vol. 7, no. bip DC, pp. 459–462, 1998.spa
dc.relation.references[90] G. Capote Rodríguez, D. M. Marulanda Cardona, and J. J. Olaya Flórez, Producción, caracterización y aplicaciones de recubrimientos producidos por plasma. Bogotá, 2015.spa
dc.relation.references[91] Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, “Subplantation model for film growth from hyperthermal species: Application to Diamond,” Phys. Rev. B, vol. 62, no. 15, pp. 1290–1293, 1989.spa
dc.relation.references[92] W. Möller, “Modeling of the sp3/sp2 ratio in ion beam and plasma deposited carbon films,” Appl. Phys. Lett., vol. 59, no. 19, pp. 2391–2393, 1991.spa
dc.relation.references[93] B.D. Cullity and S. R. Stock, Elements of X Ray diffraction, 3rd ed. EE.UU: Prentice Hall, 2001.spa
dc.relation.references[94] Joseph, Goldstein, E. Lyman Charles, E. Newbury Dale, Lifshin Eric, Echlin Patrick, C. Joy David, R. Michael Joseph, Scanning Electron Microscopy and X-Ray Microanalysis, Third edit. New York U.S, 2003.spa
dc.relation.references[95] I. G. SAS, “análisis micro elemental SEM-EDS por microscopía SEM,” 2019. [Online]. Available: http://intekgroup.com.co/servicio-de-analisis-micro-elemental-sem-eds/. [Accessed: 09-Jul-2019].spa
dc.relation.references[96] C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, “Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition,” J. Appl. Phys., vol. 95, no. 3, pp. 1460–1467, 2004.spa
dc.relation.references[97] P. S. Bagus, E. S. Ilton, and C. J. Nelin, “The interpretation of XPS spectra: Insights into materials properties,” Surf. Sci. Rep., vol. 68, no. 2, pp. 273–304, 2013.spa
dc.relation.references[98] John F. Moulder, William F.Stickle, Peter E. Sobol, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Minnesota, 1995.spa
dc.relation.references[99] A.S. Kamenetskih , A.I. Kukharenko, E.Z. Kurmaev, N.a. Skorikov, N.V. Gavrilov, S.O. Cholakh, A.V. Chukin, V.M. ainullina, M.a. Korotin, “Characterization of TiAlSiON coatings deposited by plasma enhanced magnetron sputtering: XRD, XPS, and DFT studies,” Surf. Coatings Technol., vol. 278, pp. 87–91, 2015.spa
dc.relation.references[100] M.-H. Chan and F.-H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coatings Technol., vol. 203, no. 5–7, pp. 614–618, 2008.spa
dc.relation.references[101] M. V. Kuznetsov, J. F. Zhuravlev, V. a. Zhilyaev, and V. a. Gubanov, “XPS study of the nitrides, oxides and oxynitrides of titanium,” J. Electron Spectros. Relat. Phenomena, vol. 58, no. 1–2, pp. 1–9, 1992.spa
dc.relation.references[102] K. S. Robinson and P. M. A. Sherwood, “X-Ray Photoelectron Spectroscopic Studies of the Surface of Sputter Ion Plated Films,” Surf. INTERFACE Anal., vol. 6, no. 6, pp. 261–266, 1984.spa
dc.relation.references[103] N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study,” J. Appl. Phys., vol. 72, no. 7, p. 3072, 1992.spa
dc.relation.references[104] J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. England, 2003.spa
dc.relation.references[105] P. Steiner and S. Hufner, “Thermochemical data of alloys from photoelectron spectroscopy,” Acta Metall., vol. 29, pp. 1885–1898, 1981.spa
dc.relation.references[106] P. Osiceanu, “An XPS study on ion beam induced oxidation of titanium silicide,” Appl. Surf. Sci., vol. 253, pp. 381–384, 2006.spa
dc.relation.references[107] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B, vol. 61, no. 20, pp. 95–107, 2000.spa
dc.relation.references[108] C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole, and J. Robertson, “Bonding in hydrogenated diamond-like carbon by Raman spectroscopy,” Diam. Relat. Mater., vol. 14, pp. 1098–1102, 2005.spa
dc.relation.references[109] S. J. Bull and E. G. Berasetegui, “An overview of the potential of quantitative coating adhesion measurement by scratch testing,” Tribol. Interface Eng. Ser., vol. 39, pp. 99–114, 2006.spa
dc.relation.references[110] DIN, “EN 1071-3 Methods of test for Ceramic Coatings Par 3 determination of adhesion and other mechanical failure modes by scratch test.” 2005.spa
dc.relation.references[111] ASTM, “C1624−05 Standard Test Method for Adhesion Strength and Mechanical Failure Modes of.” 2010.spa
dc.relation.references[112] N. Vidakis, A. Antoniadis, and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds,” J. Mater. Process. Technol., vol. 144, pp. 481–485, 2003.spa
dc.relation.references[113] Galindo Ramón Escobar, Gago Raul, Duday David, Carlos Palacio, “Towards nanometric resolution in multilayer depth profiling : a comparative study of RBS , SIMS , XPS and GDOES,” Anal Bioanal Chem, vol. 396, pp. 2725–2740, 2010.spa
dc.relation.references[114] N. H. Bings, A. Bogaerts, and A. C. Broekaert, “Atomic Spectroscopy : A Review,” Anal. Chem, vol. 82, no. 12, pp. 4653–4681, 2010.spa
dc.relation.references[115] M. R. Winchester and R. Payling, “Radio-frequency glow discharge spectrometry : A critical review,” Spectrochim. Acta Part B, vol. 59, pp. 607–666, 2004.spa
dc.relation.references[116] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 06. pp. 1564–1583, 2011.spa
dc.relation.references[117] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation : Advances in understanding and refinements to methodology,” J. Mater. Res, vol. 19, pp. 1–18, 2004.spa
dc.relation.references[118] F. Yang and J. C. M. Li, Micro and Nano Mechanical Testing of Materials and Devices, 1ra ed. Nex York, 2008.spa
dc.relation.references[119] E. Mccafferty, Introduction to Corrosion, Springer. New York, 2009.spa
dc.relation.references[120] C. Liu, Q. Bi, and a. Matthews, “EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution,” Corros. Sci., vol. 43, no. 10, pp. 1953–1961, 2001.spa
dc.relation.references[121] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer. New York, 2014.spa
dc.relation.references[122] C. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I,” Corros. Sci., vol. 45, no. 6, pp. 1257–1273, 2003.spa
dc.relation.references[123] C. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II,” Corros. Sci., vol. 45, no. 6, pp. 1243–1256, 2003.spa
dc.relation.references[124] P. Papakonstantinou, J. F. Zhao, P. Lemoine, E. T. McAdams, J. A. McLaughlin, “The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 1074–1080, 2002.spa
dc.relation.references[125] Ho-Gun Kim, Seung Ho Ahn, Jung Gu Kim, Se Jun Park, Kwang Ryeol Lee, “Corrosion performance of diamond-like carbon (DLC)-coated Ti alloy in the simulated body fluid environment,” Diam. Relat. Mater., vol. 14, no. 1, pp. 35–41, 2005.spa
dc.relation.references[126] D. Loveday, P. Peterson, and B. Rodgers, “Evaluation of organic oatings with electrochemical impedance spectroscopy. Part 2: Application of EIS to coatings,” JCT CoatingsTech, vol. 1, no. 10, pp. 88–93, 2004.spa
dc.relation.references[127] M. Azzi, P. Amirault, M. Paquette J. E. Klemberg-Sapieha, L. Martinu, “Corrosion performance and mechanical stability of 316L/DLC coating system: Role of interlayers,” Surf. Coatings Technol., vol. 204, pp. 3986–3994, 2010.spa
dc.relation.references[128] J. M. Oparowski, R. D. Sisson, and R. R. Biederman, “The effects of processing parameters on the microstructure and properties of sputter-deposited TiW thin film diffusion barriers,” Thin Solid Film, vol. 153, pp. 313–328, 1987.spa
dc.relation.references[129] P. Papakonstantinou, J. F. Zhao, A. Richardot, E. T. McAdams, J. A. McLaughlin, “Evaluation of corrosion performance of ultra-thin Si-DLC overcoats with electrochemical impedance spectroscopy,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 1124–1129, 2002.spa
dc.relation.references[130] V. Ezhil Selvi, V. K. William Grips, and H. C. Barshilia, “Electrochemical behavior of superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive DC unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 224, pp. 42–48, 2013.spa
dc.relation.references[131] D. Li, S. Guruvenket, S. Hassani, E. Bousser, M. Azzi, J. a. Szpunar, J. E. Klemberg-Sapieha, “Effect of Cr interlayer on the adhesion and corrosion enhancement of nanocomposite TiN-based coatings deposited on stainless steel 410,” Thin Solid Films, vol. 519, no. 10, pp. 3128–3134, 2011.spa
dc.relation.references[132] ASTM, “G3 -89 Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing,” Annu. B. ASTM Stand., vol. 89, no. Reapproved 2010, pp. 1–9, 2010.spa
dc.relation.references[133] G. Capote, G. C. Mastrapa, and J. J. Olaya, “Resistencia al desgaste y a la corrosión de recubrimientos de DLC depositados sobre aceros AISI 304 y AISI 1020,” Rev. Lat. Met. Mat., vol. 35, no. 1, pp. 134–141, 2015.spa
dc.relation.references[134] H. S. Wang, R. C. Wei, C. Y. Huang, and J. R. Yang, “Cross-sectional transmission electron microscopy of ultra-fine wires of AISI 316L stainless steel,” Philos. Mag., vol. 86, no. 11, pp. 237–251, 2006.spa
dc.relation.references[135] T. Shyr, J. Shie, S. Huang, S. Yang, and W. Hwang, “Phase transformation of 316L stainless steel from wire to fiber,” Mater. Chem. Phys., vol. 122, no. 1, pp. 273–277, 2010.spa
dc.relation.references[136] T. Shyr, S. Huang, and C. Wur, “Magnetic anisotropy of ultrafine 316L stainless steel fibers,” J. Magn. Magn. Mater., vol. 419, pp. 400–406, 2016.spa
dc.relation.references[137] S. D. Jacobsen, R. Hinrichs, I. J. R. Baumvol, G. Castellano, and M. A. Z. Vasconcellos, “Depth distribution of martensite in plasma nitrided AISI H13 steel and its correlation to hardness,” Surf. Coat. Technol., vol. 270, pp. 266–271, 2015.spa
dc.relation.references[138] M Ron, A Kidron, H Schechter, S. Niedzwiedz, “Structure of martensite,” J. Appl. Phys., vol. 38, no. 2, pp. 590–594, 1967.spa
dc.relation.references[139] Jacobsen, S D. Hinrichs, R. Aguzzoli, C. Figueroa, C A. Baumvol, I J R. Vasconcellos, M A Z., “In fluence of current density on phase formation and tribological behavior of plasma nitrided AISI H13 steel,” Surf. Coat. Technol., vol. 286, pp. 129–139, 2016.spa
dc.relation.references[140] S. Chang, K. Huang, and Y. Wang, “Effects of Thermal Erosion and Wear Resistance on AISI H13 Tool Steel by Various Surface Treatments,” Mater. Trans., vol. 53, no. 4, pp. 745–751, 2012.spa
dc.relation.references[141] J. B. Park and J. D. Bronzino, Biomaterials : principles and applications, 1st ed. Boca Raton, FL., 2000.spa
dc.relation.references[142] M. Lieblich, S. Barriuso, and M. Multigner, “Thermal oxidation of medical Ti6Al4V blasted with ceramic particles : Effects on the microstructure , residual stresses and mechanical properties,” J. Mech. Behav. Biomed. Mater., vol. 54, pp. 173–184, 2016.spa
dc.relation.references[143] A. Denoirjean, P. Lefort, and P. Fauchais, “Nitridation process and mechanism of Ti–6Al–4V particles by dc plasma spraying,” Phys. Chem. Chem. Phys., pp. 5133–5138, 2003.spa
dc.relation.references[144] I. Halevy, G. Zamir, M. Winterrose, G. Sanjit, R. C. Grandini, and A. Moreno-Gobbi, “Crystallographic structure of Ti-6Al-4V , Ti-HP and Ti-CP under,” J. Phys., vol. 215, pp. 2–11, 2010.spa
dc.relation.references[145] M. Jacobs, G. Terwagne, P. Roquiny, and F. Bodart, “Unbalanced magnetron sputtered Si–Al coatings: plasma conditions and film properties versus sample bias voltage,” Surf. Coatings Technol., vol. 116–119, pp. 735–741, 1999.spa
dc.relation.references[146] Donald M. Mattox, Handbook ASM 5 Surface Engineering, 10th ed., vol. 5. United States of America, 1998.spa
dc.relation.references[147] S. Rossnagel, “Sputtering and Sputter Deposition,” in Handbook of Thin Film Deposition Processes and Techniques Principles and teohnlogies, 2nd ed., Krisnha Seshan, Ed. California US, 2001, pp. 319–348.spa
dc.relation.references[148] D. M. Mattox, “Physical Sputtering and Sputter Deposition (Sputtering),” in Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed., Elsevier, Ed. Oxford, 2010, pp. 237–286.spa
dc.relation.references[149] J. Bhattarai, E. Akiyama, A. Kawashima, K. Asami, and K. Hashimoto, “The corrosion behavior of sputter-deposited amorphous W-Ti alloys in 6m HCl solution,” Corros. Sci., vol. 37, no. 12, pp. 2071–2086, 1995.spa
dc.relation.references[150] R. Beyers, R. Sinclair, and M. E. Thomas, “The Effect of Oxygen in Cosputtered (Titanium+ Silicon) Films,” Mater. Res. Soc. Symp., vol. 14, pp. 423–427, 1983.spa
dc.relation.references[151] B. R. Braeckman and D. Depla, “On the amorphous nature of sputtered thin film alloys,” Acta Mater., vol. 109, pp. 323–329, 2016.spa
dc.relation.references[152] Delin Zhao, Chunlin Chen, Kefu Yao, Xuetao Shi, Zhongchang Wang, Horst Hahn, Herbert Gleiter, Na Chen, “Designing biocompatible Ti-based amorphous thin films with no toxic element,” J. Alloys Compd., vol. 707, pp. 142–147, 2017.spa
dc.relation.references[153] M. ÖStling, C. S. Petersson, C. Chatfield, H. Norström, F. Runovc, R. Buchta, P. Wiklund, “Arsenic distribution in bilayers of TiSi2 on polycrystalline silicon during heat treatment,” Thin Solid Film, vol. 110, pp. 281–289, 1983.spa
dc.relation.references[154] L. Chen, M. Moser, Y. Du, and P. H. Mayrhofer, “Compositional and structural evolution of sputtered Ti-Al-N,” Thin Solid Films, vol. 517, no. 24, pp. 6635–6641, 2009.spa
dc.relation.references[155] W. Zhang, Y.Q. Yang, G.M. Zhao, B. Huang, M.H. Li, X. Luo, S. Ouyang, “Microstructure evolution of TiAl matrix in the process of magnetron sputtering and hot isostatic pressing for fabricating TiAl/SiCf composites,” Intermetallics, vol. 39, pp. 5–10, 2013.spa
dc.relation.references[156] C. Padmaprabu, P. Kuppusami, A.L.E. Terrance, E. Mohandas, V.S. Raghunathan, Sangam Banerjee, Milan K. Sanyal, “Microstructural characterization of TiAl thin films grown by DC magnetron co-sputtering technique,” Mater. Lett., vol. 43, no. 3, pp. 106–113, 2000.spa
dc.relation.references[157] S. Z. Wang, G. Shao, P. Tsakiropoulos, F. Wang, “Phase selection in magnetron sputter-deposited TiAl alloy,” Mater. Sci. Eng., vol. A329-331, pp. 141–146, 2002.spa
dc.relation.references[158] C.-F. Lo, H. Wang, and P. Gilman, “Influence of target structure on film stress in WTi sputtering,” Thin Film. Stress. Mech. Prop. VII. Symp., vol. 505, pp. 427–432, 1998.spa
dc.relation.references[159] L. J. Kecskes and I. W. Hall, “Microstructural effects in hot-explosively-consolidated W ± Ti alloys,” Mater. Process. Technol., vol. 94, pp. 247–260, 1999.spa
dc.relation.references[160] Q. X. Wang and S. H. Liang, “Investigation on preparation and diffusion barrier properties of W-Ti thin films,” Vaccum, vol. 85, no. 11, pp. 979–985, 2011.spa
dc.relation.references[161] S. Bhagat, H. Han, and T. L. Alford, “Tungsten – titanium diffusion barriers for silver metallization,” Thin Solid Films, vol. 515, pp. 1998–2002, 2006.spa
dc.relation.references[162] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Eden Praire, Minnesota: Perkin-Elmer Corporation, 1992.spa
dc.relation.references[163] Debashis Mondal, Soma Banik, C. Kamal, Mangla Nand, S.N. Jha, D.M. Phase, A.K. Sinha, Aparna Chakrabarti, A. Banerjee, Tapas Ganguli, “Electronic structure of FeAl alloy studied by resonant photoemission spectroscopy and Ab initio calculations,” J. Alloys Compd., vol. 688, pp. 187–194, 2016.spa
dc.relation.references[164] G. K. Alqurashi, A. Al-Shehri, and K. Narasimharao, “Effect of TiO2 morphology on the benzyl alcohol oxidation activity of Fe 2O3 –TiO2 nanomaterials,” RSC Adv., vol. 6, pp. 71076–71091, 2016.spa
dc.relation.references[165] J. P. Espinós, A. Fernández, and A. R. González-Elipe, “Oxidation and diffusion processes in nickel-titanium oxide systems,” Surf. Sci., vol. 295, no. 3, pp. 402–410, 1993.spa
dc.relation.references[166] T.-O. Do Pham Minh-Hao., Cao-Thang. Dinh, Gia-Thanh. Vuong, Ngoc-Don. Tab, “Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides,” Phys. Chem. Chem. Phys., vol. 16, pp. 5937–5941, 2014.spa
dc.relation.references[167] L. Pan, J. J. Zou, X. Zhang, and L. Wang, “Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2,” Ind. Eng. Chem. Res., vol. 49, no. 18, pp. 8526–8531, 2010.spa
dc.relation.references[168] Thermo Fisher Scientific Inc., “thermo scientific XPS,” https://xpssimplified.com/elements/silicon.php#appnotes, 2018. .spa
dc.relation.references[169] P. L. Tam, Y. Cao, and L. Nyborg, “XRD and XPS characterisation of transition metal silicide thin films,” Surf. Sci., vol. 606, no. 3–4, pp. 329–336, 2012.spa
dc.relation.references[170] G. Petö, E. Zsoldos, L. Guczi, and Z. Schay, “Investigation of density of states in TiSi and Tisi2 compounds,” Solid State Commun., vol. 57, no. 10, pp. 817–819, 1986.spa
dc.relation.references[171] F. Sirotti, D. M. Santis, and G. Rossi, “Synchrotron-radiation photoemission and x-ray absorption of Fe silicides,” Phys. Rev. B, vol. 48, no. 11, pp. 8299–8306, 1993.spa
dc.relation.references[172] F. Esaka, H. Yamamoto, N. Matsubayashi, Y. Yamada, M. Sasase, K. Yamaguchi, S. Shamoto, M. Magara, T. Kimura, “X-ray photoelectron and X-ray absorption spectroscopic study on β-FeSi2 thin films fabricated by ion beam sputter deposition,” Appl. Surf. Sci., vol. 256, no. 10, pp. 3155–3159, 2010.spa
dc.relation.references[173] F. Esaka, H. Yamamotoa, H. Udono, N. Matsubayashi, K. Yamaguchi, S. Shamoto, M. Magara, T. Kimura, “Spectroscopic characterization of β-FeSi2single crystals and homoepitaxial β-FeSi2 films by XPS and XAS,” Appl. Surf. Sci., vol. 257, no. 7, pp. 2950–2954, 2011.spa
dc.relation.references[174] H. Yamamoto, Y. Baba, and T. A. Sasaki, “Electronic structures of N2+ and O2+ Ion-implanted Si(100),” Surf. Interface Anal., vol. 23, no. 6, pp. 381–385, 1995.spa
dc.relation.references[175] Buzaneva E., T. Vdovenkova, S. Litvinenko, V. Makhnjuk, V. Strikha, V. Skryshevsky, P. Shevchuk, V. Nemoshkalenko, A. Senkevich, A. Shpak, “XPS and AES study of reactive Ti-Si interface,” J. Electron Spectros. Relat. Phenomena, vol. 68, pp. 707–711, 1994.spa
dc.relation.references[176] J. A. Taylor, G. M. Lancaster, A. Ignatiev, and J. W. Rabalais, “Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides,” J. Chem. Phys., vol. 68, no. 4, pp. 1776–1784, 1978.spa
dc.relation.references[177] T. Fabio Germán Borgogno, “Compendio de Propiedades Tabla de Entalpía de Formación, Energía Libre de Gibbs y Entropía de Formación de Compuestos Inorgánicos,” 2010.spa
dc.relation.references[178] T. Yamashita and P. Hayes, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials,” Appl. Surf. Sci., vol. 254, no. 8, pp. 2441–2449, 2008.spa
dc.relation.references[179] D. J. Ding Jie, Qin Zhong, Shule Zhang, “Simultaneous removal of NOX and SO2 with H2O2 over Fe based catalysts at low temperature,” RSC Adv., vol. 4, pp. 5394–5398, 2014.spa
dc.relation.references[180] I. N. Shabanova and V. A. Trapeznikov, “A study of the electronic structure of Fe3C, Fe3Al and Fe3Si by x-ray photoelectron spectroscopy,” J. Electron Spectros. Relat. Phenomena, vol. 6, pp. 297–307, 1975.spa
dc.relation.references[181] Anil B. Gambhire, Machhindra K. Lande, Sandip B. Rathod, Balasaheb R. Arbad, Kaluram N. Vidhate, Ramakrishna S. Gholap, Kashinath R. Patil, “Synthesis and characterization of FeTiO3 ceramics,” Arab. J. Chem., vol. 9, pp. S429–S432, 2016.spa
dc.relation.references[182] Qu Jianying, Shiping Kang , Du Xueping, Lou Tongfang, Qu Jianhang, “Synthesis, Characterization and Applications of a New Prussian Blue Type Material,” Electroanalysis, vol. 25, no. 7, pp. 1722–1726, 2013.spa
dc.relation.references[183] D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy, “XPS study of thin films of titanium oxysulfides,” Surf. Sci., vol. 254, pp. 81–89, 1991.spa
dc.relation.references[184] D. L. COCKE, T. R. HESS, T. MEBRAHTU, D. E. J. MENCER, and D. G. NAUGLE, “The surface reactivity of Ti-Cu and Ti-Al alloys and the ion chemistry of their oxide overlayers,” Solid State lonics, vol. 43, pp. 119–131, 1990.spa
dc.relation.references[185] M. Hashinokuchi, M. Tode, A. Yoshigoe, Y. Teraoka, and M. Okada, “Oxidation of TiAl surface with hyperthermal oxygen molecular beams,” Appl. Surf. Sci., vol. 276, pp. 276–283, 2013.spa
dc.relation.references[186] F. Arezzo, E. Severini, and N. Zacchetti, “An XPS study of diamond films grown on differently pretreated silicon substrates,” Surf. Interface Anal., vol. 22, no. 1–12, pp. 218–223, 1994.spa
dc.relation.references[187] A. E. Hughes, M. M. Hedges, and B. A. Sexton, “Reactions at the Al/SiO2/SiC layered interface,” J. Mater. Sci. 25, vol. 25, pp. 4856–4865, 1990.spa
dc.relation.references[188] M. Hannula, K. Lahtonen, H. Ali-löytty, A. A. Zakharov, T. Isotalo, J. Saari, M. Valden, “Fabrication of topographically microstructured titanium silicide interface for advanced photonic applications,” SMM, vol. 119, pp. 76–81, 2016.spa
dc.relation.references[189] Schmiedgen, M. Graat, P. C J. Baretzky, B. Mittemeijer, E. J., “The initial stages of oxidation of γ-TiAl: an X-ray photoelectron study,” Thin Solid Films, vol. 415, no. March, pp. 114–122, 2002.spa
dc.relation.references[190] Kovács, K. Perczel, I. V. Josepovits, V. K. Kiss, G. Réti, F. Deák, P., “In situ surface analytical investigation of the thermal oxidation of Ti-Al intermetallics up to 1000 °C,” Appl. Surf. Sci., vol. 200, no. 1–4, pp. 185–195, 2002.spa
dc.relation.references[191] D. E. Mencer Jr, T R Hess, T Mebrahtu, D L Cocke, D G Naugle., “Surface reactivity of titanium-aluminum alloys : Ti3Al, TiAl, and TiAl3,” J. Vac. Sci. Technol., vol. A9, pp. 1610–1615, 1991.spa
dc.relation.references[192] D. Leinen, G. Lassaletta, A. Fernández, A. Caballero, A. R. González-Elipe, J. M. Martín, B. Vacher, “Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 14, no. 5, pp. 2842–2848, 1996.spa
dc.relation.references[193] B. R. Strohmeier, “Surface characterization of aluminum foil annealed in the presence of ammonium fluoborate,” Appl. Surf. Sci., vol. 40, pp. 249–263, 1989.spa
dc.relation.references[194] V. Maurice, G. Despert, S. Zanna, P. Josso, M. P. Bacos, P. Marcus, “XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys,” Acta Mater., vol. 55, no. 10, pp. 3315–3325, 2007.spa
dc.relation.references[195] E. PAPARAZZO, “XPS and auger spectroscopy studies on mixtures on of the oxides SiO2, Al203, Fe2O3, and Cr2O3,” J. Electron Spectros. Relat. Phenomena, vol. 36, pp. 269–279, 1985.spa
dc.relation.references[196] B. R. Strohmeier, “Surface characterization of ammonium fluoborate,” Appl. Surf. Sci. 40, vol. 40, pp. 249–263, 1989.spa
dc.relation.references[197] B. R. Strohmeier, “The effects of O2 plasma treatments on the surface composition and wettability of coldrolled aluminum foil,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 7, no. 6, pp. 3238–3245, 1989.spa
dc.relation.references[198] D. L. Cocke, E. D. Johnson, and P. Robert, “Planar Models for Alumina- Based Catalysts,” Catal. Rev. Sci. Eng., vol. 26, pp. 163–231, 1984.spa
dc.relation.references[199] Oku Masaoki, Masahashi Naoya, Hanada Shuji, Kazuaki Wagatsuma, “X-ray photoelectron spectroscopic study of ordered stoichiometric FeAl fractured in situ,” J. Alloys Compd., vol. 413, no. 1–2, pp. 239–243, 2006.spa
dc.relation.references[200] B. R. Strohmeier, “The effects of O2 plasma treatments on the surface composition and wettability of coldrolled aluminum foil,” J. Vac. Sci. Technol., vol. 7, no. 6, pp. 3238–3245, 1989.spa
dc.relation.references[201] D. L. Cocke, E. D. Johnson, and P. Robert, “Planar Models for Alumina- Based Catalysts,” Catal. Rev. Sci. Eng., vol. 26, no. 2, pp. 163–231, 1984.spa
dc.relation.references[202] L. Z. M. L Trudeau,, L. Dignard-Bailey R. Schulz, P. Tessier and D. H. Ryan, J. O. Strom-Olsen, “The oxidation of nanocrystalline FeTi hydrogen storage compounds,” Nanostructured Mater., vol. 1, no. 6, pp. 457–464, 1992.spa
dc.relation.references[203] Georgiadou, I. Spanos, N. Papadopoulou, Ch. Matralis, H. Kordulis, Ch. Lycourghiotis, A., “Preparation and characterization of various titanias (anatase) used as supports for vanadia-supported catalysts,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 98, no. 1–2, pp. 155–155, 1995.spa
dc.relation.references[204] J. Zeng, Y. Zhao, and Z. Liang, “Synthesis and electrochemical properties of Li9V3−xTix (P2O7)3(PO4)2/C compounds via wet method for lithium-ion batteries,” J. Solid State Electrochem., vol. 14, no. 2, pp. 561–567, 2014.spa
dc.relation.references[205] J L Ong, L C Lucas, G N Raikar, J C Gregory, “Electrochemical corrosion analyses and characterization of surface-modified titanium,” Appl. Surf. Sci., vol. 72, pp. 7–13, 1993.spa
dc.relation.references[206] Y. Q. Xie, K. Peng, and X. B. Liu, “Influences of xTi/xAl on atomic states, lattice constants and potential-energy planes of ordered FCC TiAl-type alloys,” Phys. B Condens. Matter, vol. 344, no. 1–4, pp. 5–20, 2004.spa
dc.relation.references[207] Y. L. Liu, L. M. Liu, S. Q. Wang, and H. Q. Ye, “First-principles study of shear deformation in TiAl alloys,” J. Alloys Compd., vol. 440, no. 1–2, pp. 287–294, 2007.spa
dc.relation.references[208] Jinn P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, Cut Rullyani, “Thin film metallic glasses: Unique properties and potential applications,” Thin Solid Films, vol. 520, pp. 5097–5122, 2012.spa
dc.relation.references[209] G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 82, no. 553, pp. 172–175, 1909.spa
dc.relation.references[210] J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng., vol. 37, pp. 129–281, May 2002.spa
dc.relation.references[211] C. O. Varga, G. Capote, and J. M. Gutiérrez, “Deposición de películas de carbono amorfo hidrogenado usando la técnica DC-pulsada PACVD,” Sci. Tech., vol. 23, no. 02, pp. 293–299, 2018.spa
dc.relation.references[212] A. Prof and M. S. Farhan, “A review on adhesion strength of sin gle and multilayer coatings and the evaluation method,” Wasit J. Eng. Sci., vol. 4, pp. 1–27, 2016.spa
dc.relation.references[213] G. S. Barshilia C, Harish, A Ananth, Khan Jakeer, “Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates,” Vacuum, vol. 86, pp. 1165–1173, 2012.spa
dc.relation.references[214] V. P. Gupta, Principles and Applications of Quantum Chemistry, 1st ed. Oxford, 2016.spa
dc.relation.references[215] A. B. Martín-Rojo, M. González, and F. L.Tabarés, “Informes Técnicos Ciemat Glow Discharge Emission Spectrometry (GDOES): Introducción Teórica, Aspectos Generales y Aplicabilidad en el Marco del Programa Technofusion,” España, 2013.spa
dc.relation.references[216] A. Leyland and A. Matthews, “On the significance of the H / E ratio in wear control : a nanocomposite coating approach to optimised tribological behaviour,” WEAR, vol. 246, pp. 1–11, 2000.spa
dc.relation.references[217] Anyerson Cuervo, John Emerson Muñoz, John Sebastián Pantoja, Fabio Fernando Vallejo Bastidas, Jhon Jairo Olaya FlóreZ, “Recubrimientos de carburos de Nb-V-Cr depositados mediante el proceso de difusión termo-reactiva (TRD)”, Cienc. e Ing. Neogranadina, vol. 25–2, pp. 5–20, 2015.spa
dc.relation.references[218] E. Arslan, Y. Totik, and I. Efeoglu, “Progress in Organic Coatings The investigation of the tribocorrosion properties of DLC coatings deposited on Ti6Al4V alloys by CFUBMS,” Prog. Org. Coatings, vol. 74, no. 4, pp. 768–771, 2012spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDLCeng
dc.subject.proposalDLCspa
dc.subject.proposaladherenciaspa
dc.subject.proposalInterlayerseng
dc.subject.proposalsputteringspa
dc.subject.proposalAdherenceeng
dc.subject.proposalIntercapasspa
dc.subject.proposalSputteringeng
dc.subject.proposalSteeleng
dc.subject.proposalAcerospa
dc.subject.proposalMagnetrónspa
dc.titlePelículas de DLC producidas por pecvd utilizando intercapas de Tix-Siy, AlxTiy y WX-Tiy, sobre sustratos de aceros AISI 316-L, AISI H13 y aleaciones de Ti6Al4V, depositadas por sputtering con magnetrónspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis final Repositorio.pdf
Tamaño:
6.86 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: