Análisis de relaciones biológicas en el modelo hemoparásito-quelonios en Colombia

dc.contributor.advisorVargas Ramírez, Mario Alfonso
dc.contributor.advisorMatta Camacho, Nubia Estela
dc.contributor.authorGutiérrez Liberato, Germán Alfredo
dc.contributor.researchgroupCaracterización Genética e Inmunologíaspa
dc.coverage.countryColombia
dc.date.accessioned2022-04-01T14:32:08Z
dc.date.available2022-04-01T14:32:08Z
dc.date.issued2021-10-01
dc.descriptionilustraciones, fotografías, gráficas, mapas, tablasspa
dc.description.abstractAlgunos géneros de parásitos del suborden Adeleorina infectan usualmente hospederos intermediarios como las tortugas. Sin embargo, el conocimiento que se tiene acerca de las especies de parásitos que infectan estos hospederos es escasa. En la literatura, para la identificación de parásitos de este suborden se usan herramientas morfológicas, morfométricas y técnicas moleculares; principalmente información del gen 18S rDNA. Sin embargo, el uso de este gen tiene varias deficiencias. Para incrementar el conocimiento de los parásitos que infectan quelonios, así como en las técnicas moleculares para investigación en diversidad, este estudio tuvo como objetivos: 1) identificar la diversidad genética de linajes de parásitos aislados mediante amplificación distintos genes, 2) Integrar líneas de evidencia tanto morfológica como molecular para la identificación de unidades linajes evolutivos desconocidos y 3) diseñar herramientas alternativas para el diagnóstico e identificación de estos parásitos mediante la implementación de nuevos marcadores moleculares que han sido poco explorados en organismos de este suborden. Para alcanzar estos objetivos se obtuvieron y analizaron muestras sanguíneas de 457 individuos pertenecientes a 16 de las 29 especies de tortugas continentales presentes en Colombia. Todas las muestras fueron analizadas por métodos moleculares y 203 de estas muestras también fueron analizadas por microscopia. Como resultado de los analisis se pudo describir una nueva especie de Hepatozoon (Hepatozoon simidi sp. nov) en Rhinoclemmys melanosterna (Geoemyidide) basados en información acerca de la morfología de los estadios sanguíneos y secuencias de un fragmento del gen 18S. También se diseñaron nuevos sets de primers para los genes mitocondriales citocromo oxidasa I (coxI), citocromo oxidasa III (coxIII) y citocromo b (cytb) basados en la secuenciación genómica del parásito obtenido de una muestra tomada de Podocnemis vogli (Podocnmeididae). Se aislaron por lo menos 30 linajes diferentes de cada gen analizado, demostrando una alta diversidad genética de parásitos en estos hospederos. Sin embargo, los índices de diversidad evaluados demuestran que aún se desconoce la diversidad real de linajes parasitarios en estos hospederos. Adicionalmente, los resultados también evidenciaron varios procesos como heteroplasmía y/o especiación críptica, están afectando la identificación y caracterización de la diversidad de parásitos. Este estudio constituye el comienzo de una interesante e importante área de investigación. (Texto tomado de la fuente)spa
dc.description.abstractSome genera of parasites of the suborder Adeleorina usually infect intermediate hosts such as turtles. However, little is known about the diversity of parasites that infect these hosts. In the literature, for the identification of parasites of this suborder, morphological and morphometric tools as well as molecular techniques are used; mainly information from the 18S rDNA gene. However, the use of this gene has several shortfalls. To increase the knowledge on parasites infecting chelonians and the knowledge on different molecular markers that can offer more inflrmation for diversity reseach, this study had the following goals: 1) to identify the genetic diversity of isolated parasite lineages using the amplification of different genes, 2) to integrate morphological and molecular evidence for the identification of unknown evolutionary lineages, and 3) to design alternative tools for the diagnosis and identification of these parasites through the implementation of new molecular markers that have been little explored in organisms of this suborder and that are infecting turtles in Colombia. To reach those goals, a total of 457 blood smples of individuals belonging to 16 of the 29 species of continental turtles in Colombia were obtained and analyzed. All samples were analyzed by molecular methods and 203 of these samples were also analyzed by microscopy. As results of the performed analyses, a new species of Hepatozoon (Hepatozoon simidi sp. nov) was described infecting Rhinoclemmys melanosterna (Geoemydidae) based on the integration of morphological information of the blood stages and the sequences of a fragment of the 18S gene. New sets of primers for the mitochondrial genes cytochrome oxidase I (coxI), cytochrome oxidase III (coxIII) and cytochrome b (cytb) were designed based on the genomic sequencing of a sample from a parasite that had infected a Podocnemis vogli (Podocnemididae) individual. At least 30 different lineages were isolated from each gene analyzed, evidencing a high genetic diversity of parasites in these hosts. However, diversity indexes evaluated showed that the real diversity of parasitic lineages in these hosts is still unknown. Aditionally, the results also evidenced several phenomena such as heteroplasmy and /or criptic speciation, which are affecting the identification and characterization of the diversity of parasites. This study represents the beggining of an interesting and important field of research.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Infecciones y salud en el Trópicospa
dc.description.researchareaParasitología y Biología molecular en reptilesspa
dc.format.extentxviii, 201 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81429
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Salud Públicaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.programBogotá - Medicina - Maestría en Infecciones y Salud en el Trópicospa
dc.relation.referencesAdl, S.M., Bass, D., Lane, C.E., Lukeš, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., (2019). Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology 66, 4–119. doi.org/10.1111/jeu.12691spa
dc.relation.referencesAdl, S.M., Simpson, A.G.B., Lane, C.E., et al (2012). The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514.spa
dc.relation.referencesAjioka, J. W., J. M. Fitzpatrick, C. P. Reitter. (2001). Toxoplasma gondii genomics: shedding light on pathogenesis and chemotherapy. Expert Reviews in Molecular Medicine (01)00220-4a: 1–19.spa
dc.relation.referencesAlibardi, L. (2003). Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. J Exp Zool Part B Mol Dev Evol 298:12–41.spa
dc.relation.referencesAmo, L., López, P., Martín, J. (2005). Prevalence and intensity of haemogregarine blood parasites and their mite vectors in the common wall lizard, Podarcis muralis. Parasitol Res 96:378–381.spa
dc.relation.referencesArchibald, J.M., Simpson, A.G.B., Slamovits, C.H., et al (2017). Handbook of the Protists. Springer.spa
dc.relation.referencesArizza, V., Sacco, F., Russo, D., Scardino, R., Arculeo, M., Vamberger, M., Marrone, F., (2016). The good, the bad and the ugly: Emys trinacris, Placobdella costata and Haemogregarina stepanowi in Sicily (Testudines, Annelida and Apicomplexa). Folia parasitologica 63, 1. doi: 10.14411/fp.2016.029spa
dc.relation.referencesAyala, S.C. (1975). Malaria and hemogregarines from lizards of the Western Caribbean Islands of San Andrés and Providencia. Rev Inst Med Trop Sao Paulo 17:218–224spa
dc.relation.referencesAyala, S.C. (1978). Checklist, host index, and annotated bibliography of Plasmodium from reptiles. J Protozool 25:87–100spa
dc.relation.referencesAyala, S.C., D’Alessandro, A., Mackenzie, R., Angel D. (1973). Hemoparasite infections in 830 wild animals from the eastern Llanos of Colombia. J Parasitol 52–59.spa
dc.relation.referencesBall, G. H. (1967). Some blood sporozoans from East African reptiles. The Journal of protozoology 14, 198–210.spa
dc.relation.referencesBall, G. H., Chao, J., and Telford Jr, S. R. (1967). The life history of Hepatozoon rarefaciens (Sambon and Seligmann, 1907) from Drymarchon corais (Colubridae), and its experimental transfer to Constrictor constrictor (Boidae). The Journal of parasitology 897–909. ¬¬¬spa
dc.relation.referencesBaneth G (2011) Perspectives on canine and feline hepatozoonosis. Vet Parasitol 181:3–11.spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology 19, 455–477. doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBarta JR, Boulard Y, Desser SS (1987) Ultrastructural observations on secondary merogony and gametogony of Dactylosoma ranarum Labbe, 1894 (Eucoccidiida; Apicomplexa). J Parasitol 1019–1029.spa
dc.relation.referencesBarta, J. R. (1989). Phylogenetic analysis of the class Sporozoea (phylum Apicomplexa Levine, 1970): evidence for the independent evolution of heteroxenous life cycles. The Journal of parasitology, 195-206.spa
dc.relation.referencesBarta JR (1991) The Dactylosomatidae. Adv Parasitol Vol 30:1–33. doi: 10.1016/S0065-308X(08)60305-X.spa
dc.relation.referencesBarta, J. R. (2000). Suborder Adeleorina Leger, 1911. In An illustrated guide to the protozoa. J. J. Lee, G. F. Leedale, and P. C. Bradbury (eds.). Society of Protozoologists, Lawrence, Kansas, p. 305-318.spa
dc.relation.referencesBarta, J.R. (2012). Phylogenetic Analysis of the Class Sporozoea (Phylum Apicomplexa Levine , 1970): Evidence for the Independent Evolution of Heteroxenous Life Cycles. 75:195–206.spa
dc.relation.referencesBarta, J. R., Ogedengbe, J. D., Martin, D. S. and Smith, T. G. (2012). Phylogenetic position of the adeleorinid coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) inferred using 18S rDNA sequences. Journal of Eukaryotic Microbiology 59, 171–180. doi: 10.1111/j.1550-7408.2011.00607.xspa
dc.relation.referencesBelo, N. O., Pinheiro, R. T., Reis, E. S., Ricklefs, R. E., & Braga, E. M. (2011). Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS One, 6(3), e17654.spa
dc.relation.referencesBensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H. and Pinheiro, R. T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences 267, 1583–1589. doi: 10.1098/rspb.2000.1181.spa
dc.relation.referencesBensch, S., Péarez-Tris, J., Waldenströum, J., Hellgren, O., (2004). Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution 58, 1617–1621. doi.org/10.1111/j.0014-3820.2004.tb01742.xspa
dc.relation.referencesBenton, M.J. (2003). When life nearly died: the greatest mass extinction of all time. Thames & Hudson.spa
dc.relation.referencesBenton, M. (2014). Vertebrate palaeontology. John Wiley & Sons.spa
dc.relation.referencesBjorndal, K.A., Jackson, J.B. (2002). 10 Roles of sea turtles in marine ecosystems: reconstructing the past. Biol sea turtles 2:259.spa
dc.relation.referencesBöhme, U., Otto, T.D., Cotton, J.A., Steinbiss, S., Sanders, M., Oyola, S.O., Nicot, A., Gandon, S., Patra, K.P., Herd, C., (2018). Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome research 28, 547–560. doi:10.1101/gr.218123.116spa
dc.relation.referencesBolger, A.M., Lohse, M., Usadel, B., (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBonilla, M. A., Luque, N., Cuervo, M. A., Barreto, L. C., Zuluaga, C., & Vásquez, E. A. (2012). Tortugas terrestres y de agua dulce de Colombia y manejo de los decomisos. Universidad Nacional de Colombia, 100.spa
dc.relation.referencesBorges-Nojosa, D. M., Borges-Leite, M. J., Maia, J. P., Zanchi-Silva, D., da Rocha Braga, R. and Harris, D. J. (2017). A new species of Hepatozoon Miller, 1908 (Apicomplexa: Adelerina) from the snake Philodryas nattereri Steindachner (Squamata: Dipsadidae) in northeastern Brazil. Systematic parasitology 94, 65–72. doi: 10.1007/s11230-016-9676-2spa
dc.relation.referencesBörner, C. (1901). Untersuchungen über Hämosporidien. I. Ein Beitrag zur Kenntnis des genus Haemogregarina Danilewsky. Z Wiss Zool Abt A 69, 398–416.spa
dc.relation.referencesBorner, J., Pick, C., Thiede, J., Kolawole, O. M., Kingsley, M. T., Schulze, J., Cottontail, V. M., Wellinghausen, N., Schmidt-Chanasit, J. and Bruchhaus, I. (2016). Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Molecular Phylogenetics and Evolution 94, 221–231. doi: 10.1016/j.ympev.2015.09.003spa
dc.relation.referencesBoulard, Y., Paperna, I., Petit, G., Landau, I. (2001). Ultrastructure of developmental stages of Hemolivia stellata (Apicomplexa: Haemogregarinidae) in the cane toad Bufo marinus and in its vector tick Amblyomma rotondatum. Parasitol Res. doi: 10.1007/s004360100414.spa
dc.relation.referencesBrodie III, E.D., Brodie Jr, E.D. (1999). Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience 49:557–568spa
dc.relation.referencesBrooks, D.R. (1979). Testing the context and extent of host-parasite coevolution. Syst Biol 28:299–307spa
dc.relation.referencesBrown, J., Pirrung, M., McCue, L.A., (2017). FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33, 3137–3139. doi.org/10.1093/bioinformatics/btx373spa
dc.relation.referencesCarini, A. (1909). Sur une hémogrégarine du Caiman latirostris Daud. Bulletin de la Société de Pathologie Exotique 2, 471–472.spa
dc.relation.referencesCalil, P. R., Gonzalez, I. H. L., Salgado, P. A. B., Cruz, J. D., Ramos, P. L., & Chagas, C. R. F. (2017). Hemogregarine parasites in wild captive animals, a broad study in São Paulo Zoo. J. Entomol. Zool. Stud, 5, 1378-1387.spa
dc.relation.referencesCannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D'Souza, L. M., Du, Y., ... & Gutell, R. R. (2002). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC bioinformatics, 3(1), 1-31.spa
dc.relation.referencesChang, C., Wu, P., Baker, R. E., Maini, P. K., Alibardi, L., & Chuong, C. M. (2009). Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. The International journal of developmental biology, 53(5-6), 813.spa
dc.relation.referencesChapa-Vargas, L., Matta, N. E., & Merino, S. (2020). Effects of Ecological Gradients on Tropical Avian Hemoparasites. In Avian Malaria and Related Parasites in the Tropics (pp. 349-377). Springer, Cham.spa
dc.relation.referencesCharleston, M.A., Perkins, S.L. (2006). Traversing the tangle: algorithms and applications for cophylogenetic studies. J Biomed Inform 39:62–71.spa
dc.relation.referencesClark, G. M. (1958). Hepatozoon griseisciuri n. sp.; a new species of Hepatozoon from the grey squirrel (Sciurus carolinensis Gmelin, 1788), with studies on the life cycle. The Journal of parasitology 44, 52–63. doi: 10.2307/3274829spa
dc.relation.referencesClark, M.A., Moran, N.A., Baumann, P., Wernegreen, J.J. (2000). Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution (N Y) 54:517–525spa
dc.relation.referencesClayton, D.H., Al-Tamimi, S., Johnson, K.P. (2003). The ecological basis of coevolutionary history. Tangl trees Phylogeny, cospeciation Coevol 310–341.spa
dc.relation.referencesColwell, D. D., Dantas-Torres, F., & Otranto, D. (2011). Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Veterinary parasitology, 182(1), 14-21.spa
dc.relation.referencesColwell, R. K., Mao, C. X., & Chang, J. (2004). Interpolating, extrapolating, and comparing incidence‐based species accumulation curves. Ecology, 85(10), 2717-2727.spa
dc.relation.referencesCombes, C. (2001). Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press.spa
dc.relation.referencesCook, C. A., Smit, N. J. and Davies, A. J. (2009). A redescription of Haemogregarina fitzsimonsi Dias, 1953 and some comments on Haemogregarina parvula Dias, 1953 (Adeleorina: Haemogregarinidae) from southern African tortoises (Cryptodira: Testudinidae), with new host data and distribution records. Folia Parasitologica 56, 173–179. doi: 10.14411/fp.2009.021spa
dc.relation.referencesCook, C. A., Lawton, S. P., Davies, A. J. and Smit, N. J. (2014). Reassignment of the land tortoise haemogregarine Haemogregarina fitzsimonsi Dias 1953 (Adeleorina: Haemogregarinidae) to the genus Hepatozoon Miller 1908 (Adeleorina: Hepatozoidae) based on parasite morphology, life cycle and phylogenetic analysis of 18S rDNA sequence fragments. Parasitology. doi: 10.1017/S003118201400081Xspa
dc.relation.referencesCook, C. A., Netherlands, E. C. and Smit, N. J. (2015). First Hemolivia from southern Africa: reassigning chelonian Haemogregarina parvula Dias, 1953 (Adeleorina: Haemogregarinidae) to Hemolivia (Adeleorina: Karyolysidae). African Zoology 50, 165–173. doi: 10.1080/15627020.2015.1044467spa
dc.relation.referencesCook, C. A., Netherlands, E. C. and Smit, N. J. (2016). Redescription, molecular characterisation and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae). Parasites & Vectors 9, 347. doi: 10.1186/s13071-016-1600-8spa
dc.relation.referencesCornillot, E., K. Hadj-Kaddour, A. Dassouli, B. Noel, V. Ranwez, B. Vacherie, Y. Augagneur, V. Brès, A. Duclos, S. Randazzo, B. Carcy, F. Debierre-Grockiego et al. (2012). Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Research 40: 9102–9114.spa
dc.relation.referencesCotes-Perdomo, A., Santodomingo, A., Castro, L.R. (2018). Hemogregarine and Rickettsial infection in ticks of toads from northeastern Colombia. Int J Parasitol Parasites Wildl. doi: 10.1016/j.ijppaw.2018.06.003spa
dc.relation.referencesCortés-Gomez, A. M., Ruiz-Agudelo, C., Valencia-Aguilar, A., & Ladle, R. J. (2015). Funciones ecologicas de los anfibios y reptiles neotropicales: una revision. Revista Universitas Scientarum, 229-255.spa
dc.relation.referencesCosta, S. C. G. da, Pessoa, S. B., Pereira, N. de M. and Colombo, T. (1973). The life history of Hepatozoon leptodactyli (Lesage, 1908) Pessoa, 1970: a parasite of the common laboratory animal: the frog of the genus Leptodactylus. Memórias do Instituto Oswaldo Cruz 71, 1-8. doi: 10.1590/S0074-02761973000100001.spa
dc.relation.referencesCrawford, N. G., Faircloth, B. C., McCormack, J. E., Brumfield, R. T., Winker, K., & Glenn, T. C. (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology letters, 8(5), 783-786.spa
dc.relation.referencesCrawford, N. G., Parham, J. F., Sellas, A. B., Faircloth, B. C., Glenn, T. C., Papenfuss, T. J., ... & Simison, W. B. (2015). A phylogenomic analysis of turtles. Molecular phylogenetics and evolution, 83, 250-257.spa
dc.relation.referencesda Costa, Maia J.P. (2015). Diversity, infection patterns and host-parasite associations of apicomplexan parasites in reptiles. Ph D Thesis Univ do Porto, Porto, Port 370.spa
dc.relation.referencesDarriba, D., Taboada, G.L., Doallo, R., Posada, D., (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772. doi.org/10.1038/nmeth.2109spa
dc.relation.referencesDaszak, P., Berger, L., Cunningham, A. A., Hyatt, A. D., Green, D. E., & Speare, R. (1999). Emerging infectious diseases and amphibian population declines. Emerging infectious diseases, 5(6), 735.spa
dc.relation.referencesDaszak, P., Cunningham, A. A., & Hyatt, A. D. (2003). Infectious disease and amphibian population declines. Diversity and Distributions, 9(2), 141-150.spa
dc.relation.referencesDavies, A. and Johnston, M. (2000). The biology of some intraerythrocytic parasites of fishes, amphibia and reptiles. Advances in Parasitology 45, 1-107. doi: 10.1016/S0065-308X(00)45003-7spa
dc.relation.referencesDavis, A., Sterrett, S., (2011). Prevalence of haemogregarine parasites in three freshwater turtle species in a population in northeast Georgia, USA. International journal of zoological Research 7, 156. doi.org/10.3923/ijzr.2011.156.163spa
dc.relation.referencesDel Campo, J., Kolisko, M., Boscaro, V., Santoferrara, L. F., Nenarokov, S., Massana, R., ... & Wegener Parfrey, L. (2018). EukRef: phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS biology, 16(9), e2005849.spa
dc.relation.referencesDemastes, J.W., Hafner, M.S. (1993). Cospeciation of pocket gophers (Geomys) and their chewing lice (Geomydoecus). J Mammal 74:521–530.spa
dc.relation.referencesDesser, S. S. (1990). Tissue" cysts" of Hepatozoon griseisciuri in the grey squirrel, Sciurus carolinensis: The significance of these cysts in species of Hepatozoon. The Journal of parasitology 257–259. doi: 10.2307/3283027spa
dc.relation.referencesDesser, S. S. (1997). Blood parasites of the iguanid lizard, Ctenosaura similis from Costa Rica, with a description of Hepatozoon gamezi n. sp. Journal of Eukaryotic Microbiology 44, 162–167. doi: 10.1111/j.1550-7408.1997.tb05954.xspa
dc.relation.referencesDunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P., & Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and mutualists?. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3037-3045.spa
dc.relation.referencesDvořáková, N., Kvičerová, J., Papoušek, I., Javanbakht, H., Tiar, G., Kami, H., & Široký, P. (2014). Haemogregarines from western Palaearctic freshwater turtles (genera Emys, Mauremys) are conspecific with Haemogregarina stepanowi Danilewsky, 1885. Parasitology, 141(4), 522-530.spa
dc.relation.referencesDvořáková, N., Kvičerová, J., Hostovský, M. and Široký, P. (2015). Haemogregarines of freshwater turtles from Southeast Asia with a description of Haemogregarina sacaliae sp. n. and a redescription of Haemogregarina pellegrini Laveran and Pettit, 1910. Parasitology 142, 816–826. doi: 10.1017/S0031182014001930spa
dc.relation.referencesEldridge, B. F. (2004). The epidemiology of arthropod borne diseases. In Eldridge BF and Edman JD (eds), Medical Entomology: A Textbook on Public Health. and Veterinary Problems Caused by Arthropods New York, USA: Springer, pp. 165–185. doi:10.1007/978-94-007-1009-2spa
dc.relation.referencesEl Hili, R.A., Achouri, M.S., Verneau, O., (2021). Cytochrome c oxydase I phylogenetic analysis of Haemogregarina parasites (Apicomplexa, Coccidia, Eucoccidiorida, Haemogregarinidae) confirms the presence of three distinct species within the freshwater turtles of Tunisia. Parasitology International 82, 102306. doi.org/10.1016/j.parint.2021.102306spa
dc.relation.referencesEl Hili, R. A., Achouri, M. S., & Verneau, O. (2020). The genetic diversity of blood parasites within the freshwater turtles Mauremys leprosa and Emys orbicularis in Tunisia reveals coinfection with Haemogregarina spp. Parasitology Research, 119(10), 3315-3326.spa
dc.relation.referencesEscalante, A. A., Freeland, D. E., Collins, W. E. and Lal, A. A. (1998). The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proceedings of the National Academy of Sciences 95, 8124–8129. doi: 10.1073/pnas.95.14.8124.spa
dc.relation.referencesEslami, H., & Jalili, M. (2020). The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). Amb Express, 10(1), 1-8.spa
dc.relation.referencesFarkas, R., Solymosi, N., Takács, N., Hornyák, Á., Hornok, S., Nachum-Biala, Y., & Baneth, G. (2014). First molecular evidence of Hepatozoon canis infection in red foxes and golden jackals from Hungary. Parasites & vectors, 7(1), 1-7.spa
dc.relation.referencesFecchio A, Bell JA, Collins MD, Farias IP, Trisos CH et al., (2018). Diversification by host switching and dispersal shaped the diversity and distribution of avian malaria parasites in Amazonia. Oikos 127: 1233–1242.spa
dc.relation.referencesFischer, K., & Walton, S. (2014). Parasitic mites of medical and veterinary importance–is there a common research agenda?. International journal for parasitology, 44(12), 955-967.spa
dc.relation.referencesGabrielli, S., Kumlien, S., Calderini, P., Brozzi, A., Iori, A., & Cancrini, G. (2010). The first report of Hepatozoon canis identified in Vulpes vulpes and ticks from Italy. Vector-borne and Zoonotic Diseases, 10(9), 855-859.spa
dc.relation.referencesGalen, S.C. and Witt, C.C. (2014). Diverse avian malaria and other haemosporidian parasites in Andean house wrens: evidence for regional co-diversification by host-switching. J Avian Biol 45: 374–386.spa
dc.relation.referencesGalen, S.C., Nunes, R., Sweet, P.R., Perkins, S.L., (2018). Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC evolutionary biology 18, 128. doi.org/10.1186/s12862-018-1242-xspa
dc.relation.referencesGaramszegi, L.Z. (2006). The evolution of virulence and host specialization in malaria parasites of primates. Ecol Lett 9:933–940.spa
dc.relation.referencesGaramszegi, L.Z. (2009). Patterns of co-speciation and host switching in primate malaria parasites. Malar J 8:110spa
dc.relation.referencesGarcia-Longoria, L., Muriel, J., Magallanes, S., Villa-Galarce, Z. H., Ricopa, L., Inga-Díaz, W. G., ... & Marzal, A. (2021). Diversity and host assemblage of avian haemosporidians in different terrestrial ecoregions of Peru. Current Zoology.spa
dc.relation.referencesGeorges, A., Birrell, J., Saint, K. M., McCord, W. P., & Donnellan, S. C. (1999). A phylogeny for side-necked turtles (Chelonia: Pleurodira) based on mitochondrial and nuclear gene sequence variation. Biological Journal of the Linnean Society, 67(2), 213-246.spa
dc.relation.referencesGodfrey, S.S., Bull, C.M., Murray, K., Gardner, M.G. (2006). Transmission mode and distribution of parasites among groups of the social lizard Egernia stokesii. Parasitol Res 99:223–230spa
dc.relation.referencesGonzález, L.P., Matta, N.E., Vargas-Ramírez, M. (2019). Identificación De Hemoparásitos Presentes En La Herpetofauna De Diferentes Departamentos De Colombia. Universidad Nacional de Colombiaspa
dc.relation.referencesGonzález, L. P., Pacheco, M. A., Escalante, A. A., Maldonado, A. D. J., Cepeda, A. S., Rodríguez-Fandiño, O. A., Vargas‐Ramírez, M. and Matta, N. E. (2019). Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis vogli from the Orinoquia. International Journal for Parasitology: Parasites and Wildlife 10, 299–309. doi: 10.1016/j.ijppaw.2019.10.003spa
dc.relation.referencesGuindon, S., Delsuc, F., Dufayard, J.-F. and Gascuel, O. (2009). Estimating maximum likelihood phylogenies with PhyML. In Posada D. (eds). Bioinformatics for DNA sequence analysis. Methods in Molecular Biology (Methods and Protocols). New Jersey, USA: Humana Press, pp. 113–137. doi: 10.1007/978-1-59745-251-9_6.spa
dc.relation.referencesGutiérrez-Liberato, G.A., Vargas-Ramírez, M., Matta, N.E. (2016). Parásitos Sanguíneos En Algunos Reptiles De La Localidad De Yondó, Antioquia, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesGutierrez-Liberato, G.A., Lotta-Arévalo, I.A., Rodríguez-Almonacid, C.C., Vargas-Ramírez, M., Matta, N.E., (2021). Molecular and morphological description of the first Hepatozoon (Apicomplexa: Hepatozoidae) species infecting a neotropical turtle, with an approach to its phylogenetic relationships. Parasitology 1–42. doi.org/10.1017/S0031182021000184spa
dc.relation.referencesHafner, M.S. and Nadler, S.A. (1988). Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332:258.spa
dc.relation.referencesHamilton, P.B., Gibson, W.C., Stevens, J.R. (2007). Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol Phylogenet Evol 44:15–25.spa
dc.relation.referencesHammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.spa
dc.relation.referencesHan, H., Wu, Y., Dong, H., Zhu, S., Li, L., Zhao, Q., Wu, D., Pei, E., Wang, Y. and Huang, B. (2015). First report of Hepatozoon (Apicomplexa: Adeleorina) from king ratsnakes (Elaphe carinata) in Shanghai, with description of a new species. Acta Parasitologica 60, 266–274. doi: 10.1515/ap-2015-0038.spa
dc.relation.referencesHayes, P. M. and Smit, N. J. (2019). Molecular insights into the identification and phylogenetics of the cosmopolitan marine fish blood parasite, Haemogregarina bigemina (Adeleorina: Haemogregarinidae). International Journal for Parasitology: Parasites and Wildlife 8, 216–220. doi: 10.1016/j.ijppaw.2019.01.006spa
dc.relation.referencesHeck KL, van Belle G, Simberloff D, (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56: 1459–1461.spa
dc.relation.referencesHellgren, O., Pérez-Tris, J., Bensch, S. (2009). A jack‐of‐all‐trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90:2840–2849spa
dc.relation.referencesHendricks, S.A., Flannery, M.E., Spicer, G.S. (2013). Cophylogeny of quill mites from the genus Syringophilopsis (Acari: Syringophilidae) and their North American passerine hosts. J Parasitol 99:827–835spa
dc.relation.referencesHikosaka, K., Watanabe, Y., Tsuji, N., Kita, K., Kishine, H., Arisue, N., Palacpac, N.M.Q., Kawazu, S., Sawai, H., Horii, T., (2010). Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Molecular biology and evolution 27, 1107–1116. doi.org/10.1093/molbev/msp320spa
dc.relation.referencesHoare, C. A. (1924). Hepatozoon adiei, n. sp. A blood parasite of an Indian eagle. Transactions of the Royal Society of Tropical Medicine and Hygiene 18, 63–66. doi;10.1016/S0035-9203(24)90739-5spa
dc.relation.referencesHuyse, T., Poulin, R., Theron, A. (2005). Speciation in parasites: a population genetics approach. Trends Parasitol 21:469–475.spa
dc.relation.referencesHwang, U.-W. and Kim, W. (1999). General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. The Korean journal of parasitology 37, 215-228. doi: 10.3347/kjp.1999.37.4.215spa
dc.relation.referencesInstituto Alexander von Humboldt. (2017). Estos son los reptiles más amenazados de Colombia. http://www.humboldt.org.co/es/boletines-y-comunicados/item/1088-reptiles-amenazados-colombia. Accessed 15 Nov 2018spa
dc.relation.referencesJavanbakht, H., Široký, P., Mikulíček, P. and Sharifi, M. (2015). Distribution and abundance of Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium in tortoises of Iran. Biologia 70, 229-234. doi: 10.1515/biolog-2015-0024.spa
dc.relation.referencesJenkins, T., and Owens, I.P.F. (2011). Biogeography of avian blood parasites (Leucocytozoon spp.) in two resident hosts across Europe: phylogeographic structuring or the abundance–occupancy relationship? Mol Ecol 20:3910–3920spa
dc.relation.referencesKaradjian, G., Chavatte, J.-M. and Landau, I. (2015). Systematic revision of the adeleid haemogregarines, with creation of Bartazoon n. g., reassignment of Hepatozoon argantis Garnham, 1954 to Hemolivia, and molecular data on Hemolivia stellata. Parasite (Paris, France). doi: 10.1051/parasite/2015031.spa
dc.relation.referencesKatoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic acids research 30, 3059–3066. doi: 10.1093/nar/gkf436spa
dc.relation.referencesKauffman, K. L., Sparkman, A., Bronikowski, A. M. and Palacios, M. G. (2017). Vertical transmission of Hepatozoon in the garter snake Thamnophis elegans. Journal of wildlife diseases 53, 121–125. doi: 10.7589/2016-03-056spa
dc.relation.referencesKawecki, T. J. (1998). Red queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles. The American Naturalist, 152(4), 635-651.spa
dc.relation.referencesKharayat, B. S., & Singh, Y. (2017). The Process of Coevolution of Plants and Their Pathogens. In The Phytopathogen (pp. 21-40). Apple Academic Press.spa
dc.relation.referencesKing, K. C., Stelkens, R. B., Webster, J. P., Smith, D. F., & Brockhurst, M. A. (2015). Hybridization in parasites: consequences for adaptive evolution, pathogenesis, and public health in a changing world. PLoS pathogens, 11(9), e1005098.spa
dc.relation.referencesKondratyeva, A., Grandcolas, P., Pavoine, S., (2019). Reconciling the concepts and measures of diversity, rarity and originality in ecology and evolution. Biol Rev 94: 1317–1337.spa
dc.relation.referencesKumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33, 1870–1874. doi: 10.1093/molbev/msw054spa
dc.relation.referencesKrasnov, B.R., Poulin, R. (2010). Ecological properties of a parasite: species-specific stability and geographical variation. Biogeogr host–parasite Interact S Morand BR Krasn (eds) Oxford Univ Press Oxford, UK 99–113.spa
dc.relation.referencesKvičerová, J., Pakandl, M., Hypša, V. (2008). Phylogenetic relationships among Eimeria spp. (Apicomplexa, Eimeriidae) infecting rabbits: Evolutionary significance of biological and morphological features. Parasitology 135:443–452. doi: 10.1017/S0031182007004106.spa
dc.relation.referencesKvičerová, J., Hypša, V., Dvořáková, N., Mikulíček, P., Jandzik, D., Gardner, M. G., Javanbakht, H., Tiar, G. and Široký, P. (2014). Hemolivia and Hepatozoon: haemogregarines with tangled evolutionary relationships. Protist 165, 688–700. doi: 10.1016/j.protis.2014.06.001spa
dc.relation.referencesLafferty, K. D. (1997). Environmental parasitology: what can parasites tell us about human impacts on the environment?. Parasitology today, 13(7), 251-255.spa
dc.relation.referencesLainson, R. (1995). Progarnia archosauriae nov. gen., nov. sp.(Haemosporina: Garniidae), a blood parasite of Caiman crocodilus crocodilus (Archosauria: Crocodilia), and comments on the evolution of reptilian and avian haemosporines. Parasitology, 110(5), 513-519.spa
dc.relation.referencesLainson, R., De Souza, M. C., & Franco, C. M. (2003). Haematozoan parasites of the lizard Ameiva ameiva (Teiidae) from Amazonian Brazil: a preliminary note. Memórias do Instituto Oswaldo Cruz, 98, 1067-1070.spa
dc.relation.referencesLainson, R., Paperna, I., Naiff, R.D. (2003). Development of Hepatozoon caimani (Carini , 1909) Pessôa , De Biasi & De Souza , 1972 in the Caiman Caiman c . crocodilus, the Frog Rana catesbeiana and the Mosquito Culex fatigans. 98:103–113.spa
dc.relation.referencesLainson, R. (2012). Atlas of protozoan parasites of the amazonian fauna of Brazil Volume 1 . Haemosporida of reptiles.spa
dc.relation.referencesLandau, I., Michel, J., Chabaud, A. and Brygoo, E. (1972). Cycle biologique d’Hepatozoon domerguei; discussion sur les caractères fondamentaux d’un cycle de Coccidie. Zeitschrift für Parasitenkunde 38, 250–270. doi: 10.1007/BF00329601spa
dc.relation.referencesLauron, E. J., Loiseau, C., Bowie, R. C., Spicer, G. S., Smith, T. B., Melo, M., & Sehgal, R. N. (2015). Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitology, 142(5), 635-647.spa
dc.relation.referencesLéveillé, A.N., Ogedengbe, M.E., Hafeez, M.A., Tu, H.-H.A., Barta, J.R., (2014). The complete mitochondrial genome sequence of Hepatozoon catesbianae (Apicomplexa: Coccidia: Adeleorina), a blood parasite of the green frog, Lithobates (formerly Rana) clamitans. Journal of Parasitology 100, 651–657. doi.org/10.1645/13-449.1spa
dc.relation.referencesLéveillé, A.N., (2019). Scratching the surface: Diversity among the first sequenced extrachromosomal genomes of parasites in the suborder Adeleorina (Apicomplexa) with a focus on Hepatozoon species. (PhD Thesis). The University of Guelph, Ontario, Canadá.spa
dc.relation.referencesLéveillé, A.N., Baneth, G., Barta, J.R., (2019a). Next generation sequencing from Hepatozoon canis (Apicomplexa: Coccidia: Adeleorina): complete apicoplast genome and multiple mitochondrion-associated sequences. International journal for parasitology 49, 375–387. doi.org/10.1016/j.ijpara.2018.12.001spa
dc.relation.referencesLéveillé, A.N., Bland, S.K., Carlton, K., Larouche, C.B., Kenney, D.G., Brouwer, E.R., Lillie, B.N., Barta, J.R., (2019b). Klossiella equi Infecting Kidneys of Ontario Horses: Life Cycle Features and Multilocus Sequence-Based Genotyping Confirm the Genus Klossiella Belongs in the Adeleorina (Apicomplexa: Coccidia). Journal of Parasitology 105, 29–40. doi.org/10.1645/18-80spa
dc.relation.referencesLéveillé, A. N., El Skhawy, N. and Barta, J. R. (2020). Multilocus sequencing of Hepatozoon cf. griseisciuri infections in Ontario eastern gray squirrels (Sciurus carolinensis) uncovers two genotypically distinct sympatric parasite species. Parasitology Research 119, 713–724. doi: 10.1007/s00436-019-06583-5.spa
dc.relation.referencesLi, C., Fraser, N.C., Rieppel, O., Wu, X.C. (2018). A Triassic stem turtle with an edentulous beak. Nature 560:476.spa
dc.relation.referencesLi, H., Durbin, R., (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595. doi.org/10.1093/bioinformatics/btp698spa
dc.relation.referencesLotta, I.A., Pacheco, M.A., Escalante, A.A., González, A.D., Mantilla, J.S., Moncada, L.I., Adler, P.H., Matta, N.E., (2016). Leucocytozoon diversity and possible vectors in the Neotropical highlands of Colombia. Protist 167, 185–204. doi.org/10.1016/j.protis.2016.02.002spa
dc.relation.referencesLotta, I. A., Valkiūnas, G., Pacheco, M. A., Escalante, A. A., Hernández, S. R. and Matta, N. E. (2019). Disentangling Leucocytozoon parasite diversity in the neotropics: Descriptions of two new species and shortcomings of molecular diagnostics for leucocytozoids. International Journal for Parasitology: Parasites and Wildlife 9, 159–173. doi: 10.1016/j.ijppaw.2019.05.002spa
dc.relation.referencesMackerras, M. J. (1962). The life of a Hepatozoon (Sporozoa: Adeleidea) of varanid Lizards in Australia. Australian Journal of Zoology 10, 35–44. doi:10.1071/zo9620035spa
dc.relation.referencesMaia, J. P., Carranza, S. and Harris, D. J. (2016). Comments on the systematic revision of adeleid haemogregarines: Are more data needed? Journal of Parasitology 102, 549–552. doi: 10.1645/15-930spa
dc.relation.referencesMaia, J.P., Harris, D.J., Carranza, S., (2016). Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman. Parasitology international 65, 5–11. doi.org/10.1016/j.parint.2015.09.003spa
dc.relation.referencesMaizels, R. M. (2020). Regulation of immunity and allergy by helminth parasites. Allergy, 75(3), 524-534.spa
dc.relation.referencesMartinsen, E. S., Perkins, S. L. and Schall, J. J. (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Molecular phylogenetics and evolution 47, 261–273. doi: 10.1016/j.ympev.2007.11.012spa
dc.relation.referencesMartínez‐de la puente, J., Martinez, J., Rivero‐de Aguilar, J., Herrero, J., & Merino, S. (2011). On the specificity of avian blood parasites: revealing specific and generalist relationships between haemosporidians and biting midges. Molecular ecology, 20(15), 3275-3287.spa
dc.relation.referencesMathew, J. S., Van Den Bussche, R. A., Ewing, S. A., Malayer, J. R., Latha, B. R., & Panciera, R. J. (2000). Phylogenetic relationships of Hepatozoon (Apicomplexa: Adeleorina) based on molecular, morphologic, and life-cycle characters. Journal of Parasitology, 86(2), 366-372.spa
dc.relation.referencesMatta, N. E., González, L. P., Pacheco, M. A., Escalante, A. A., Moreno, A. M., González, A. D. and Calderón-Espinosa, M. L. (2018). Plasmodium parasites in reptiles from the Colombia Orinoco-Amazon basin: a re-description of Plasmodium kentropyxi Lainson R, Landau I, Paperna I, 2001 and Plasmodium carmelinoi Lainson R, Franco CM, da Matta R, 2010. Parasitology research 117, 1357–1370. doi: 10.1007/s00436-018-5815-9spa
dc.relation.referencesMcCoy, K. D., Boulinier, T., Chardine, J. W., Danchin, E., & Michalakis, Y. (1999). Dispersal and distribution of the tick Ixodes uriae within and among seabird host populations: the need for a population genetic approach. The Journal of parasitology, 196-202.spa
dc.relation.referencesMcCutchan, T. F., Li, J., McConkey, G. A., Rogers, M. J., & Waters, A. P. (1995). The cytoplasmic ribosomal RNAs of Plasmodium spp. Parasitology Today, 11(4), 134-138.spa
dc.relation.referencesMcCutchan, T. F., Vidal, F., Lal, A. A., Gunderson, J. H., Elwood, H. J., & Sogin, M. L. (1988). Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Molecular and biochemical parasitology, 28(1), 63-68.spa
dc.relation.referencesMcWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R., (2013). Analysis tool web services from the EMBL-EBI. Nucleic acids research 41, W597–W600. doi.org/10.1093/nar/gkt376spa
dc.relation.referencesMendoza-Roldan, J. A., Mendoza-Roldan, M. A., & Otranto, D. (2021). Reptile vector-borne diseases of zoonotic concern. International Journal for Parasitology: Parasites and Wildlife.spa
dc.relation.referencesMegía-Palma, R., Martínez, J., Cuervo, J. J., Belliure, J., Jiménez-Robles, O., Gomes, V., ... & Merino, S. (2018). Molecular evidence for host–parasite co-speciation between lizards and Schellackia parasites. International journal for parasitology, 48(9-10), 709-718.spa
dc.relation.referencesMerino, S., Martínez, J., Masello, J. F., Bedolla, Y. and Quillfeldt, P. (2014). First molecular characterization of a Hepatozoon species (Apicomplexa: Hepatozoidae) infecting birds and description of a new species infecting storm petrels (Aves: Hydrobatidae). The Journal of parasitology 100, 338–343. doi: 10.1645/13-325.1spa
dc.relation.referencesMessenger, L.A., Llewellyn, M.S., Bhattacharyya, T., Franzén, O., Lewis, M.D., Ramírez, J.D., Carrasco, H.J., Andersson, B., Miles, M.A., (2012). Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis 6, e1584. doi.org/10.1371/journal.pntd.0001584spa
dc.relation.referencesMiller, M. A., Pfeiffer, W. and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Creating the CIPRES Science Gateway for inference of large phylogenetic trees.pp. 1–8. doi: 10.1109/GCE.2010.5676129.spa
dc.relation.referencesMorales-Betancourt, M.A., Lasso, C.A., Páez, V.P., Bock, B.C. (2015). Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldtspa
dc.relation.referencesMorant, O.M. and Gordo, F.P. (2018). Prevalencia de parásitos intestinalesen tortugas terrestres en cautividad y análisis de factores de riesgo. Clínica Vet pequeños Anim Rev Of AVEPA, Asoc Vet Española Espec en Pequeños Anim 38:79–90spa
dc.relation.referencesMorelli, M. and Spicer, G.S. (2007). Cospeciation between the nasal mite Ptilonyssus sairae (Acari: Rhinonyssidae) and its bird hosts. Syst Appl Acarol 12:179–188spa
dc.relation.referencesMorrison, D.A. (2009). Evolution of the Apicomplexa: where are we now? Trends Parasitol 25:375–382. doi: 10.1016/j.pt.2009.05.010.spa
dc.relation.referencesMorrison, D. A., Bornstein, S., Thebo, P., Wernery, U., Kinne, J., & Mattsson, J. G. (2004). The current status of the small subunit rRNA phylogeny of the coccidia (Sporozoa). International Journal for Parasitology, 34(4), 501-514.spa
dc.relation.referencesNadler, S.A., De León, G.P. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709.spa
dc.relation.referencesNetherlands, E. C., Cook, C. A., Du Preez, L. H., Vanhove, M. P., Brendonck, L. and Smit, N. J. (2018). Monophyly of the species of Hepatozoon (Adeleorina: Hepatozoidae) parasitizing (African) anurans, with the description of three new species from hyperoliid frogs in South Africa. Parasitology 145, 1039–1050. doi: https://doi.org/10.1017/S003118201700213Xspa
dc.relation.referencesOgedengbe, J. D., Hanner, R. H. and Barta, J. R. (2011). DNA barcoding identifies Eimeria species and contributes to the phylogenetics of coccidian parasites (Eimeriorina, Apicomplexa, Alveolata). International journal for parasitology 41, 843–850. doi: 10.1016/j.ijpara.2011.03.007spa
dc.relation.referencesOgedengbe, M.E., El-Sherry, S., Ogedengbe, J. D., Chapman, H. D., y Barta, J. R. (2018). Phylogenies based on combined mitochondrial and nuclear sequences conflict with morphologically defined genera in the eimeriid coccidia (Apicomplexa). International journal for parasitology, 48, 59-69. doi.org/10.1016/S1055-7903(02)00326-3spa
dc.relation.referencesO’Donoghue, P. (2017). Haemoprotozoa: making biological sense of molecular phylogenies. Int J Parasitol Parasites Wildl 6:241–256.spa
dc.relation.referencesO'Dwyer, L. H., Moço, T. C., dos Santos Paduan, K., Spenassatto, C., da Silva, R. J. and Ribolla, P. E. M. (2013). Description of three new species of Hepatozoon (Apicomplexa, Hepatozoidae) from Rattlesnakes (Crotalus durissus terrificus) based on molecular, morphometric and morphologic characters. Experimental parasitology 135, 200–207. doi: 10.1016/j.exppara.2013.06.019spa
dc.relation.referencesPacheco, M. A., Matta, N. E., Valkiūnas, G., Parker, P. G., Mello, B., Stanley Jr, C. E., Lentino, M., Garcia-Amado, M. A., Cranfield, M. and Kosakovsky Pond, S. L. (2017). Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Molecular biology and evolution 35, 383–403. doi: 10.1093/molbev/msx285spa
dc.relation.referencesPacheco, M.A., Cepeda, A.S., Bernotienė, R., Lotta, I.A., Matta, N.E., Valkiūnas, G., Escalante, A.A., (2018a). Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. International journal for parasitology 48, 657–670. doi.org/10.1016/j.ijpara.2018.02.003spa
dc.relation.referencesPacheco, M.A., Matta, N.E., Valkiūnas, G., Parker, P.G., Mello, B., Stanley Jr, C.E., Lentino, M., Garcia-Amado, M.A., Cranfield, M., Kosakovsky Pond, S.L., (2018b). Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Molecular biology and evolution 35, 383–403. doi.org/10.1093/molbev/msx285spa
dc.relation.referencesPaperna, I., Kremer-Mecabell, T., Finkelman, S. (2002). Hepatozoon kisrae n. sp. infecting the lizard Agama stellio is transmitted by the tick Hyalomma cf. aegyptium. Parasite 9:17–27.spa
dc.relation.referencesParanjpe, D. A., Medina, D., Nielsen, E., Cooper, R. D., Paranjpe, S. A., & Sinervo, B. (2014). Does thermal ecology influence dynamics of side-blotched lizards and their micro-parasites?. American Zoologist, 54(2), 108-117.spa
dc.relation.referencesPaterson, W.B., Desser, S.S., (1976). Observations on Haemogregarina balli sp. n. from the common snapping turtle, Chelydra serpentina. The Journal of protozoology 23, 294–301. doi.org/10.1111/j.1550-7408.1976.tb03775.xspa
dc.relation.referencesPatz, J. A., Graczyk, T. K., Geller, N., & Vittor, A. Y. (2000). Effects of environmental change on emerging parasitic diseases. International journal for parasitology, 30(12-13), 1395-1405.spa
dc.relation.referencesPerkins, S. L. (2008). Molecular systematics of the three mitochondrial protein-coding genes of malaria parasites: corroborative and new evidence for the origins of human malaria. DNA Sequence 19, 471–478. doi: 10.1080/19401730802570926spa
dc.relation.referencesPerkins, S.L. (2014). Malaria’s Many Mates: Past, Present, and Future of the Systematics of the Order Haemosporida. J Parasitol 100:11–25. doi: 10.1645/13-362.1spa
dc.relation.referencesPerrigo, A., Hoorn, C., Antonelli, A. (2020). Why mountains matter for biodiversity. J Biogeogr 47: 315–325.spa
dc.relation.referencesPessoa, S. (1967). Notas sobre hemogregarinas de serpentes brasileiras. III: novas observações sobre hemogregarinas de serpentes das famílias Colubridae e Crotalidae. Rev. Bras. Biol 27, 159–164.spa
dc.relation.referencesPicelli, A. M., Carvalho, A. V. D., Viana, L. A., & Malvasio, A. (2015). Prevalence and parasitemia of Haemogregarina sp. in Podocnemis expansa (Testudines: Podocnemididae) from the Brazilian Amazon. Revista Brasileira de Parasitologia Veterinária, 24(2), 191-197.spa
dc.relation.referencesPicelli, A. M., Ramires, A. C., Masseli, G. S., Pessoa, F. A., Viana, L. A., & Kaefer, I. L. (2020). Under the light: high prevalence of haemoparasites in lizards (Reptilia: Squamata) from Central Amazonia revealed by microscopy. Anais da Academia Brasileira de Ciências, 92.spa
dc.relation.referencesPineda-Catalan, O., Perkins, S. L., Peirce, M. A., Engstrand, R., Garcia-Davila, C., Pinedo-Vasquez, M. and Aguirre, A. A. (2013). Revision of hemoproteid genera and description and redescription of two species of chelonian hemoproteid parasites. The Journal of parasitology 99, 1089–1098. doi: 10.1645/13-296.1spa
dc.relation.referencesPoulin, R. and Morand, S. (2000). The diversity of parasites. Q Rev Biol 75:277–293.spa
dc.relation.referencesPoulin, R. (2005). Relative infection levels and taxonomic distances among the host species used by a parasite: insights into parasite specialization. Parasitology 130:109–115.spa
dc.relation.referencesPoulin, R. (2011). The many roads to parasitism: a tale of convergence. In: Advances in parasitology. Elsevier, pp 1–40.spa
dc.relation.referencesPrice, P. W., Westoby, M., Rice, B., Atsatt, P. R., Fritz, R. S., Thompson, J. N., & Mobley, K. (1986). Parasite mediation in ecological interactions. Annual review of ecology and systematics, 17(1), 487-505.spa
dc.relation.referencesRambaut, A., Suchard, M., Xie, D. and Drummond, A. (2013). Tracer 1.6. Edinburgh, UK: University of Edinburgh.spa
dc.relation.referencesRambaut, A., (2016). FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. Computer Program Distributed by the Author. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 16 October 2016) Institute of evolutionary Biology, University of Edinburgh.spa
dc.relation.referencesRhodin, A.G., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., Van Dijk, P.P., (2017). Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonomy, Distribution, and Conservation Status. doi.org/10.3854/crm.7.checklist.atlas.v8.2017spa
dc.relation.referencesRicklefs, R.E., Fallon SM (2002). Diversification and host switching in avian malaria parasites. Proc R Soc London B Biol Sci 269:885–892spa
dc.relation.referencesRicklefs, R.E., Outlaw, D.C., Svensson-Coelho, M., Medeiros, M.C., Ellis, V.A., Latta, S., (2014). Species formation by host shifting in avian malaria parasites. Proceedings of the National Academy of Sciences 111, 14816–14821. doi.org/10.1073/pnas.1416356111spa
dc.relation.referencesRodríguez, O. A. and Matta, N. E. (2001). Blood parasites in some birds from eastern plains of Colombia. Memorias do Instituto Oswaldo Cruz 96, 1173–1176. doi: 10.1590/S0074-02762001000800026spa
dc.relation.referencesRonquist, F., Huelsenbeck, J.P., (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi.org/10.1093/bioinformatics/btg180spa
dc.relation.referencesRonquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61, 539–542. doi: 10.1093/sysbio/sys029spa
dc.relation.referencesRossow, J.A., Hernandez, S.M., Sumner, S.M., Altman, B.R., Crider, C.G., Gammage, M.B., Segal, K.M., Yabsley, M.J., (2013). Haemogregarine infections of three species of aquatic freshwater turtles from two sites in Costa Rica. International Journal for Parasitology: Parasites and Wildlife 2, 131–135. doi.org/10.1016/j.ijppaw.2013.02.003spa
dc.relation.referencesRueda-Almonacid, J. V., Carr, J. L., Mittermeier, R. A., Rodríguez-Mahecha, J. V., Mast, R. B., Vogt, R. C., Rhodin, A. G., de la Ossa-Velásquez, J., Rueda, J. N. and Mittermeier, C. G. (2007). Las tortugas y los cocodrilianos de los países andinos del trópico. Serie de guías tropicales de campo 6, 412–423.spa
dc.relation.referencesSambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning: a laboratory manual. Cold spring harbor laboratory press.spa
dc.relation.referencesSanders, H.L. (1968). Marine benthic diversity: a comparative study. Am Nat 102: 243–282.spa
dc.relation.referencesSantodomingo, A., Cotes-Perdomo, A., Foley, J., Castro, L.R. (2018). Rickettsial infection in ticks (Acari: Ixodidae) from reptiles in the Colombian Caribbean. Ticks Tick Borne Dis 9:623–628. doi: 10.1016/j.ttbdis.2018.02.003spa
dc.relation.referencesSantos, S.R., Taylor, D.J., Kinzie III, R.A., Sakaj, K., Coffroth, M.A., (2002). Evolution of length variation and heteroplasmy in the chloroplast rDNA of symbiotic dinoflagellates (Symbiodinium, Dinophyta) and a novel insertion in the universal core region of the large subunit rDNA. Phycologia 41, 311–318. doi.org/10.2216/i0031-8884-41-4-311.1spa
dc.relation.referencesSchacher, J. F. (1973). Laboratory models in filariasis: a review of filarial life-cycle patterns. Southeast Asian Journal of Tropical Medicine and Public Health, 4(3), 336-49.spa
dc.relation.referencesSchmedes, S.E., Patel, D., Kelley, J., Udhayakumar, V., Talundzic, E., (2019). Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the US. PloS one 14, e0215754. doi.org/10.1371/journal.pone.0215754spa
dc.relation.referencesSchmid-Hempel, P. (2011). Evolutionary parasitologythe integrated study of infections, immunology, ecology, and genetics.spa
dc.relation.referencesSchoch, R.R., Sues, H.D. (2016). The diapsid origin of turtles. Zoology 119:159–161.spa
dc.relation.referencesSchrenzel, M.D., Maalouf, G.A., Gaffney, P.M., et al (2005). Molecular characterization of isosporoid coccidia (Isospora and Atoxoplasma spp.) in passerine birds. J Parasitol 91:635–648.spa
dc.relation.referencesSidall, M.E., Desser, S.S. (1990). Gametogenesis and sporogonic development of Haemogregarina balli (Apicomplexa: Adeleina: Haemogregarinidae) in the leech Placobdella ornata. J Protozool 37:511–520.spa
dc.relation.referencesSiddall, M.E., Desser, S.S., (1992). Prevalence and intensity of Haemogregarina balli (Apicomplexa: Adeleina: Haemogregarinidae) in three turtle species from Ontario, with observations on intraerythrocytic development. Canadian Journal of Zoology 70, 123–128. doi.org/10.1139/z92-018spa
dc.relation.referencesSmallridge, C.J., Bull, C.M. (2001). Prevalence of infection by the protozoan Hemolivia mariae in ticks. Parasitol Res. doi: 10.1007/PL00008571.spa
dc.relation.referencesSmith, T. G. (1996). The genus Hepatozoon (apicomplexa: adeleina). The Journal of parasitology 565–585. doi: 10.2307/3283781spa
dc.relation.referencesSmith, T., Desser, S. and Martin, D. (1994). The development of Hepatozoon sipedon sp. nov. (Apicomplexa: Adeleina: Hepatozoidae) in its natural host, the Northern water snake (Nerodia sipedon sipedon), in the culicine vectors Culex pipiens and C. territans, and in an intermediate host, the Northern leopard frog (Rana pipiens). Parasitology Research 80, 559–568. doi: 10.1007/BF00933003spa
dc.relation.referencesSmith, K.F., Sax, D.F., Lafferty, K.D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357.spa
dc.relation.referencesSoares, P., Borghesan, T. C., Tavares, L. E. R., Ferreira, V. L., Teixeira, M. M. G. and Paiva, F. (2017). Hepatozoon caimani Carini, 1909 (Adeleina: Hepatozoidae) in wild population of Caiman yacare Daudin, 1801 (Crocodylia: Alligatoridae), Pantanal, Brazil. Parasitology Research 116, 1907–1916. doi: 10.1007/s00436-017-5467-1spa
dc.relation.referencesSloboda, M., Kamler, M., Bulantová, J., Votýpka, J., Modrý, D., (2007). A new species of Hepatozoon (Apicomplexa: Adeleorina) from Python regius (Serpentes: Pythonidae) and its experimental transmission by a mosquito vector. Journal of Parasitology 93, 1189–1198. doi.org/10.1645/GE-1200R.1spa
dc.relation.referencesSoares, P., de Brito, E.S., Paiva, F., Pavan, D., Viana, L.A., (2014). Haemogregarina spp. in a wild population from Podocnemis unifilis Troschel, 1848 in the Brazilian Amazonia. Parasitology research 113, 4499–4503. doi.org/10.1007/s00436-014-4139-7spa
dc.relation.referencesTaylor, J., J. Wagner, D. Kusewitt, and P. Mann. (1979). Klossiella parasites of animals: A literature review. Veterinary Parasitology 5: 137–144.spa
dc.relation.referencesTaylor, M. J., Voronin, D., Johnston, K. L., & Ford, L. (2013). W olbachia filarial interactions. Cellular microbiology, 15(4), 520-526.spa
dc.relation.referencesTelford, S.R. (1988). A contribution to the systematics of the reptilian malaria parasites, family Plasmodiidae (Apicomplexa: Haemospororina)spa
dc.relation.referencesThomas, F., Renaud, F., Rousset, F., Cézilly, F., & Meeuûs, T. D. (1995). Differential mortality of two closely related host species induced by one parasite. Proceedings of the Royal Society of London. Series B: Biological Sciences, 260(1359), 349-352.spa
dc.relation.referencesThompson, R. C., Kutz, S. J., & Smith, A. (2009). Parasite zoonoses and wildlife: emerging issues. International journal of environmental research and public health, 6(2), 678-693.spa
dc.relation.referencesTompkins, D. M., Dunn, A. M., Smith, M. J., & Telfer, S. (2011). Wildlife diseases: from individuals to ecosystems. Journal of Animal Ecology, 80(1), 19-38.spa
dc.relation.referencesTong, W. H., Pavey, C., O’Handley, R., & Vyas, A. (2021). Behavioral biology of Toxoplasma gondii infection. Parasites & Vectors, 14(1), 1-6.spa
dc.relation.referencesUetz, P. and Hošek, J. (2016). The reptile database http://www.reptile-database.org, accessed [october 24th, 2020]spa
dc.relation.referencesÚngari, L.P., Santos, A.L.Q., O’Dwyer, L.H., da Silva, M.R.L., de Melo Fava, N.N., Paiva, G.C.M., Pinto, R. de M.C., Cury, M.C., (2018). Haemogregarina podocnemis sp. nov.: description of a new species of Haemogregarina Danilewsky 1885 (Adeleina: Haemogregarinaidae) in free-living and captive yellow-spotted river turtles Podocnemis unifilis (Testudines: Podocnemididae) from Brazil. Parasitology research 117, 1535–1548. doi.org/10.1007/s00436-018-5817-7spa
dc.relation.referencesUjvari, B., Madsen, T. and Olsson, M. (2004). High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. Journal of parasitology 90, 670–672. doi: 0.1645/GE-204Rspa
dc.relation.referencesValkiūnas, G., (2005). Avian malaria parasites and other haemosporidia. CRC press, Boca Ratón, Florida.spa
dc.relation.referencesValkiūnas, G., Iezhova, T.A., Loiseau, C., Sehgal, R.N. (2009). Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. J Parasitol 95:1512–1515.spa
dc.relation.referencesValkiūnas, G. (2011). Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Mol Ecol 20:3084–3086.spa
dc.relation.referencesValkiūnas, G., Mobley, K. and Iezhova, T. A. (2016). Hepatozoon ellisgreineri n. sp. (Hepatozoidae): description of the first avian apicomplexan blood parasite inhabiting granulocytes. Parasitology research 115, 609–613. doi: 10.1007/s00436-015-4777-4spa
dc.relation.referencesValkiūnas, G., Ilgūnas, M., Bukauskaitė, D., Chagas, C.R.F., Bernotienė, R., Himmel, T., Harl, J., Weissenböck, H., Iezhova, T.A., (2019). Molecular characterization of six widespread avian haemoproteids, with description of three new Haemoproteus species. Acta tropica 197, 105051. doi.org/10.1016/j.actatropica.2019.105051spa
dc.relation.referencesVanhove, M.P., Huyse, T. (2015). 22 Host specificity and species jumps in fish–parasite systems. Parasite Divers Diversif Evol Ecol meets phylogenetics 401.spa
dc.relation.referencesVargas-Ramírez, M., Castaño-Mora, O. V., Fritz, U. (2008). Molecular phylogeny and divergence times of ancient South American and Malagasy river turtles (Testudines: Pleurodira: Podocnemididae). Org Divers Evol 8:388–398.spa
dc.relation.referencesVargas-Ramirez, M., Carr, J. L. and Fritz, U. (2013). Complex phylogeography in Rhinoclemmys melanosterna: conflicting mitochondrial and nuclear evidence suggests past hybridization (Testudines: Geoemydidae). Zootaxa 3670, 238–254. doi: 10.11646/zootaxa.3670.2.8spa
dc.relation.referencesVerneau, O., Du-Preez, L., Badets, M. (2009). Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts. C R Biol 332:149–158.spa
dc.relation.referencesVilcins, I.M., Ujvari, B., Old, J.M., Deane, E. (2009). Molecular and morphological description of a Hepatozoon species in reptiles and their ticks in the Northern Territory, Australia. J Parasitol 95:434–442.spa
dc.relation.referencesVotýpka, J., Modrý, D., Oborník, M., et al (2017). Apicomplexa BT - Handbook of the Protists. In: Archibald JM, Simpson AGB, Slamovits CH, et al. (eds). Springer International Publishing, Cham, pp 1–58.spa
dc.relation.referencesVrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299.Wenyon CM (1926) Protozoology. A manual for medical men, veterinarians and zoologists, vol. 2. Protozool A Man Med Men, Vet Zool Vol 2.spa
dc.relation.referencesWaller, R.F., Jackson, C.J., (2009). Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31, 237–245. doi.org/10.1002/bies.200800164spa
dc.relation.referencesWang, Q., Jiang, Z. F., Wang, N. X., Niu, L. M., Li, Z., & Huang, D. W. (2013). Host sex‐specific parasites in a functionally dioecious fig: a preference way of adaptation to their hosts. Ecology and evolution, 3(9), 2976-2984.spa
dc.relation.referencesWenyon, C. M. (1926). Protozoology. A Manual for Medical Men, Veterinarians and Zoologists, Vol. 2. London, UK: Tindall & Cox.spa
dc.relation.referencesWitsenburg, F., Salamin, N. and Christe, P. (2012). The evolutionary host switches of Polychromophilus: a multi-gene phylogeny of the bat malaria genus suggests a second invasion of mammals by a haemosporidian parasite. Malaria journal 11, 53.spa
dc.relation.referencesXia, X., Xie, Z., Salemi, M., Chen, L., Wang, Y., (2003). An index of substitution saturation and its application. Molecular phylogenetics and evolution 26, 1–7. doi.org/10.1016/S1055-7903(02)00326-3spa
dc.relation.referencesXia, X., (2017). DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. Journal of Heredity 108, 431–437. doi.org/10.1093/jhered/esx033spa
dc.relation.referencesZhao, X., Duszynski, D.W., Loker, E.S. (2001). Phylogenetic position of Eimeria antrozoi, a bat coccidium (Apicomplexa: Eimeriidae) and its relationship to morphologically similar Eimeria spp. from bats and rodents based on nuclear 18S and plastid 23S rDNA sequences. J Parasitol 87:1120–1123spa
dc.relation.referencesZuluaga, N.Z., Monroy, M.R. (2007). Presencia de Hepatozoon spp. en serpientes del Centro de Atención y Valoración de Fauna Silvestre (CAV) del Área Metropolitana del Valle de Aburra, Barbosa-Antioquia. Rev CES Med Vet y Zootec 2:33–36spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.decsAnálisis parasitológicospa
dc.subject.lembFilogeniaspa
dc.subject.lembPhylogenyeng
dc.subject.lembParasitological analysiseng
dc.subject.proposalAdeleorinaspa
dc.subject.proposalTortugasspa
dc.subject.proposalGenomaspa
dc.subject.proposal18Sspa
dc.subject.proposalGenes mitocondrialesspa
dc.subject.proposalDiagnósticospa
dc.subject.proposalHipótesis filogenéticaspa
dc.subject.proposalTurtleseng
dc.subject.proposalGenomeeng
dc.subject.proposalMitochondrial geneseng
dc.subject.proposalDiagnoseeng
dc.subject.proposalLineage diversityeng
dc.subject.proposalAdeleorinaeng
dc.subject.proposal18Seng
dc.titleAnálisis de relaciones biológicas en el modelo hemoparásito-quelonios en Colombiaspa
dc.title.translatedAnalysis of biological relationships in the hemoparasitechelonian model in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049629916.2021.pdf
Tamaño:
3.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Infecciones y salud en el Trópico

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: