Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021

dc.contributor.advisorUrdinola, B. Piedadspa
dc.contributor.advisorRojas, Néstor Yesidspa
dc.contributor.authorGonzález Gutiérrez, David Alejandrospa
dc.coverage.cityBogotá
dc.coverage.temporal2008-2021
dc.date.accessioned2024-01-30T16:16:33Z
dc.date.available2024-01-30T16:16:33Z
dc.date.issued2023
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractLa exposición prolongada a material particulado fino, de tamaño inferior a 2,5 micras (MP2,5), representa uno de los siete factores de mayor riesgo de muertes prematuras en todo el mundo. Con esta motivación, en el presente trabajo se estimó el número de muertes prematuras asociadas a la exposición prolongada de MP2,5 en la ciudad de Bogotá, por localidad y para el período comprendido entre los años 2008 y 2021. Para lograrlo, se realizaron modelos de los niveles de concentración de MP2,5 anualmente y se promediaron, utilizando dos enfoques: un modelo bosque aleatorio (RF) y un modelo refuerzo de gradiente extremo (XGBoost). Además, se calculó el cociente de riesgo para las muertes cardio metabólicas mediante un modelo proporcional de Cox, tomando como población de referencia la que estuvo expuesta a niveles iguales o menores a 15,15µg/m3 . Los resultados revelaron que un incremento en los niveles de MP2,5 está asociado con un aumento en la cantidad de muertes cardio metabólicas, y se identificó que las localidades más afectadas son Kennedy, Bosa y Ciudad Bolívar. Estos hallazgos son coherentes con otros resultados presentados en la literatura. En conclusión, este documento contribuye al análisis del impacto de la contaminación en la salud pública de la ciudad de Bogotá. (Texto tomado de la fuente)spa
dc.description.abstractLong-term exposure to fine particulate matter, which is less than 2.5 microns in size (PM2.5), is considered one of the seven major risk factors for premature deaths worldwide. As a result, it becomes crucial to investigate its local effects and implement public health policies aimed at reducing premature mortality. This study focuses on estimating the number of premature deaths linked to PM2.5 material exposure in Bogota, analyzing data by locality for the years 2008 to 2021. To achieve this, the concentration levels of PM2.5 were modeled and averaged annually, using two approaches: a random forest model and an XGBoost model. In addition, the hazard ratio for cardio-metabolic deaths was calculated using a Cox proportional model, taking as the reference population those exposed to levels equal to or less than 15.15g/m3 . The findings demonstrate a direct correlation between elevated PM2.5 levels and an increase in cardio-metabolic deaths, with Kennedy, Bosa, and Ciudad Bolivar emerging as the most affected localities. These outcomes align with previous research in the field. Consequently, this document contributes to the broader analysis of pollution’s impact on public health in Bogota.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias – Estadísticaspa
dc.format.extentxii, 45 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85522
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesApte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2. 5. Environmental science & technology, 49 (13), 8057-8066.spa
dc.relation.referencesArregocés, H. A., Rojano, R., & Restrepo, G. (2023). Health risk assessment for particulate matter: application of AirQ+ model in the northern Caribbean region of Colombia. Air Quality, Atmosphere & Health, 1-16.spa
dc.relation.referencesBlanco-Becerra, L. C., Miranda-Soberanis, V., Hernández-Cadena, L., Barraza-Villarreal, A., Junger, W., Hurtado-Dıaz, M., & Romieu, I. (2014). Effect of particulate matter less than 10µm (PM10) on mortality in Bogota, Colombia: a time-series analysis, 1998-2006. salud pública de méxico, 56, 363-370.spa
dc.relation.referencesBonilla, J. A., Morales-Betancourt, R., & Aravena, C. (2021). Análisis de desigualdades múltiples y políticas de reducción de la contaminación.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine learning, 45 (1), 5-32.spa
dc.relation.referencesBureau, P. R. (2007). Population: A Lively Introduction (Vol. 62).spa
dc.relation.referencesBurnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope III, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115 (38), 9592-9597.spa
dc.relation.referencesBurnett, R. T., Pope III, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental health perspectives, 122 (4), 397-403.spa
dc.relation.referencesCasallas, A., Celis, N., Ferro, C., López Barrera, E., Peña, C., Corredor, J., & Ballen Segura, M. (2020). Validation of PM10 and PM2. 5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research, 27 (29), 35930-35940.spa
dc.relation.referencesCasallas, A., Ferro, C., Celis, N., Guevara-Luna, M. A., Mogollón-Sotelo, C., Guevara-Luna, F. A., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and pm2. 5 local variables in bogotá, colombia. Modeling Earth Systems and Environment, 1-14.spa
dc.relation.referencesCheng, Q., Qu, C., Wang, Y., Wang, X., He, R., Cao, H., Liu, B., Zhang, H., Zhang, N., Lai, Z., et al. (2023). Global burden and its association with socioeconomic development status of meningitis caused by specific pathogens over the past 30 years: a population-based study. Neuroepidemiology, 1-1.spa
dc.relation.referencesChowdhury, S., Dey, S., & Smith, K. R. (2018). Ambient PM2. 5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nature communications, 9 (1), 318.spa
dc.relation.referencesCox, D. R. (1997). Some remarks on the analysis of survival data. Proceedings of the First Seattle Symposium in Biostatistics, 1-9.spa
dc.relation.referencesDavid, C. R., et al. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, 34 (2), 187-220.spa
dc.relation.referencesde Ambiente, S. D. (2022). Informe anual de calidad del aire de Bogotá Año 2021.spa
dc.relation.referencesDockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr, B. G., & Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine, 329 (24), 1753-1759.spa
dc.relation.referencesFarrow, A., Anhäuser, A., Chen, Y. J., & Cespedes, T. (2022). La carga de la contaminación del aire en Bogotá, Colombia 2021.spa
dc.relation.referencesGakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., AbdAllah, F., Abdulle, A. M., Abera, S. F., Aboyans, V., et al. (2017). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390 (10100), 1345-1422.spa
dc.relation.referencesGrisales-Romero, H., Piñeros-Jiménez, J. G., Nieto, E., Porras-Cataño, S., Montealegre, N., González, D., & Ospina, D. (2021). Local attributable burden disease to PM 2.5 ambient air pollution in Medellın, Colombia, 2010–2016. F1000Research, 10.spa
dc.relation.referencesHan, C., Kim, S., Lim, Y.-H., Bae, H.-J., & Hong, Y.-C. (2018). Spatial and temporal trends of number of deaths attributable to ambient PM2. 5 in the Korea. Journal of Korean medical science, 33 (30).spa
dc.relation.referencesInstituto Nacional de Salud, O. N. d. S. (2018). Carga de enfermedad ambiental en Colombia. Décimo informe técnico especial.spa
dc.relation.referencesJohnston, F. H., Borchers-Arriagada, N., Morgan, G. G., Jalaludin, B., Palmer, A. J., Williamson, G. J., & Bowman, D. M. (2021). Unprecedented health costs of smoke-related PM2. 5 from the 2019–20 Australian megafires. Nature Sustainability, 4 (1), 42-47.spa
dc.relation.referencesKlein, J. P., Moeschberger, M. L., et al. (2003). Survival analysis: techniques for censored and truncated data (Vol. 1230). Springer.spa
dc.relation.referencesLiang, F., Xiao, Q., Huang, K., Yang, X., Liu, F., Li, J., Lu, X., Liu, Y., & Gu, D. (2020). The 17-y spatiotemporal trend of PM2. 5 and its mortality burden in China. Proceedings of the National Academy of Sciences, 117 (41), 25601-25608.spa
dc.relation.referencesLozano, N. (2004). Air pollution in Bogota, Colombia: A concentration-response approach. Revista Desarrollo y Sociedad, (54), 133-177.spa
dc.relation.referencesMudu, P., Gapp, C., & Dunbar, M. (2018). AirQ+: example of calculations (inf. téc.). World Health Organization. Regional Office for Europe.spa
dc.relation.referencesMurray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396 (10258), 1223-1249.spa
dc.relation.referencesOrtiz-Durán, E. Y., & Rojas-Roa, N. Y. (2013). Estimating air quality change-associated health benefits by reducing PM10 in Bogotá. Revista de Salud Pública, 15 (1), 90-102.spa
dc.relation.referencesPope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56 (6), 709-742.spa
dc.relation.referencesReis, I., Baron, D., & Shahaf, S. (2018). Probabilistic random forest: A machine learning algorithm for noisy data sets. The Astronomical Journal, 157 (1), 16.spa
dc.relation.referencesRodriguez-Villamizar, L. A., Belalcazar-Ceron, L. C., Castillo, M. P., Sanchez, E. R., Herrera, V., & Agudelo-Castañeda, D. M. (2022). Avoidable mortality due to long-term exposure to PM2. 5 in Colombia 2014–2019. Environmental Health, 21 (1), 137.spa
dc.relation.referencesSampson, P. D., Richards, M., Szpiro, A. A., Bergen, S., Sheppard, L., Larson, T. V., & Kaufman, J. D. (2013). A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2. 5 concentrations in epidemiology. Atmospheric environment, 75, 383-392.spa
dc.relation.referencesSchapire, R. E., & Freund, Y. (2013). Boosting: Foundations and algorithms. Kybernetes.spa
dc.relation.referencesSchoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69 (1), 239-241.spa
dc.relation.referencesSoutherland, V. A., Brauer, M., Mohegh, A., Hammer, M. S., Van Donkelaar, A., Martin, R. V., Apte, J. S., & Anenberg, S. C. (2022). Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets. The Lancet Planetary Health, 6 (2), e139-e146.spa
dc.relation.referencesSram, R. J., BeneS, I., Binková, B., Dejmek, J., Horstman, D., Kotsovec, F., Otto, D., Perreault, S. D., Rubes, J., Selevan, S. G., et al. (1996). Teplice program–the impact of air pollution on human health. Environmental health perspectives, 104 (suppl 4), 699-714.spa
dc.relation.referencesStare, J., & Maucort-Boulch, D. (2016). Odds ratio, hazard ratio and relative risk. Advances in Methodology and Statistics, 13 (1), 59-67.spa
dc.relation.referencesUrbinato, D. (1994). London’s historic”pea-soupers.”(smog in London, England). EPA journal, 20 (1-2), 44-45.spa
dc.relation.referencesWachter, K. W. (2014). Essential demographic methods. Harvard University Press.spa
dc.relation.referencesWinnett, A., & Sasieni, P. (2001). Miscellanea. A note on scaled Schoenfeld residuals for the proportional hazards model. Biometrika, 88 (2), 565-571.spa
dc.relation.referencesYang, X., Liang, F., Li, J., Chen, J., Liu, F., Huang, K., Cao, J., Chen, S., Xiao, Q., Liu, X., et al. (2020). Associations of long-term exposure to ambient PM2. 5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environment international, 138, 105589.spa
dc.relation.referencesZafra-Mejía, C. A., Rodríguez-Miranda, J. P., & Rondón-Quintana, H. A. (2020). The relationship between atmospheric condition and human mortality associated with coarse material particulate in Bogotá (Colombia). Revista Logos Ciencia & Tecnología, 12 (3), 57-68.spa
dc.relation.referencesZhang, G., Rui, X., & Fan, Y. (2018). Critical review of methods to estimate PM2. 5 concentrations within specified research region. ISPRS International Journal of GeoInformation, 7 (9), 368.spa
dc.relation.referencesZhang, H., Wang, Z., & Zhang, W. (2016). Exploring spatiotemporal patterns of PM2. 5 in China based on ground-level observations for 190 cities. Environmental Pollution, 216, 559-567.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc300 - Ciencias sociales::304 - Factores que afectan el comportamiento socialspa
dc.subject.decsExposición a riesgos ambientalesspa
dc.subject.decsEnvironmental exposureeng
dc.subject.lccMaterial particuladospa
dc.subject.lccParticulate mattereng
dc.subject.lembAir-pollution - Measurementeng
dc.subject.lembContaminación del aire - Medicionesspa
dc.subject.lembEstadística vitalspa
dc.subject.lembVital statisticseng
dc.subject.lembMortalidad - Estadísticasspa
dc.subject.lembMortality - Statisticseng
dc.subject.lembEvaluación de impacto ambiental - Métodos estadísticosspa
dc.subject.lembEnvironmental impact analysis - Statistical methodseng
dc.subject.proposalCarga de mortalidadspa
dc.subject.proposalCociente de riesgospa
dc.subject.proposalPoluciónspa
dc.subject.proposalMP2,5spa
dc.subject.proposalMortalidadspa
dc.subject.proposalExposición de largo plazospa
dc.subject.proposalCurva concentración - Respuestaspa
dc.subject.proposalMortality burdeneng
dc.subject.proposalHazard ratioeng
dc.subject.proposalPollutioneng
dc.subject.proposalPM2.5eng
dc.subject.proposalMortalityeng
dc.subject.proposalLong-term exposureeng
dc.subject.proposalConcentration-response curveeng
dc.titleTendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021spa
dc.title.translatedSpatiotemporal trend of PM2.5 and its mortality burden in Bogota between 2008 and 2021eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012425307.2023.pdf
Tamaño:
1.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: