Recubrimientos nanoestructurados de Ti-Zr-Si-N producidos por la técnica de co-sputtering reactivo

dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.advisorGarzón Ospina, Carlos Mario
dc.contributor.authorMejía Villagrán, Claudia Patricia
dc.contributor.researchgroupAnálisis de Falla Integridad de Superficies (AFIS)
dc.date.accessioned2025-11-18T19:42:20Z
dc.date.available2025-11-18T19:42:20Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografías, tablasspa
dc.description.abstractEl presente trabajo tuvo como objetivos principales sintetizar y caracterizar recubrimientos nanoestructurados de Ti-Zr-Si-N, obtenidos mediante la técnica de co-sputtering reactivo, con el fin de evaluar su desempeño estructural, mecánico, tribológico y de resistencia a la corrosión. Esta investigación se enmarca en la búsqueda de recubrimientos avanzados para aplicaciones industriales, donde se requieren propiedades superiores de dureza y resistencia a la corrosión. La metodología empleada consistió en la deposición de recubrimientos sobre sustratos de acero inoxidable, silicio y vidrio, utilizando configuraciones de co-sputtering DC/DC pulsada, RF/RF y DC/RF, variando las densidades de potencia y la composición de los blancos. Las muestras obtenidas fueron caracterizadas mediante técnicas como difracción de rayos X (XRD), espectroscopía de fotoelectrones (XPS), microscopía electrónica (SEM, TEM), nanoindentación, pruebas tribológicas y espectroscopía de impedancia electroquímica (EIS). Los resultados más destacados indican que la incorporación controlada de silicio promueve la formación de estructuras tipo nanocompuesto, formadas por granos cristalinos de nitruros metálicos rodeados por una matriz amorfa rica en Si₃N₄, lo que mejora significativamente la dureza (hasta 23.5 GPa) y la resistencia a la corrosión. La muestra óptima presentó una combinación balanceada entre fases amorfas y cristalinas, asociadas a una menor densidad de defectos. Se concluye que los recubrimientos multicomponente Ti-Zr-Si-N presentan un alto potencial para aplicaciones tecnológicas donde se requiere simultáneamente resistencia mecánica y protección superficial frente a medios agresivos (Texto tomado de la fuente).spa
dc.description.abstractThis research aimed to synthesize and characterize nanostructured Ti-Zr-Si-N coatings produced by reactive co-sputtering, in order to evaluate their structural, mechanical, tribological, and corrosión resistant performance. The study contributes to the development of advanced coatings for industrial applications requiring superior hardness and corrosion resistance. The methodology involved the deposition of coatings onto stainless steel, silicon, and glass substrates using DC/DC pulsed, RF/RF, and DC/RF co-sputtering configurations, with variations in power densities and target compositions. The resulting samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (SEM, TEM), nanoindentation, tribological tests, and electrochemical impedance spectroscopy (EIS). The most relevant results show that controlled incorporation of silicon promotes the formation of nanocomposite structures composed of crystalline metallic nitride grains embedded in an amorphous Si₃N₄ matrix, significantly enhancing both hardness (up to 23.5 GPa) and corrosion resistance. The optimal coating exhibited a balanced combination of amorphous and crystalline phases, associated with a lower density of defects. It is concluded that multicomponent Ti-Zr-Si-N coatings possess high potential for technological applications requiring both mechanical strength and surface protection in aggressive environments.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctora en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.methodsLa metodología empleada consistió en la deposición de recubrimientos sobre sustratos de acero inoxidable, silicio y vidrio, utilizando configuraciones de co-sputtering DC/DC pulsada, RF/RF y DC/RF, variando las densidades de potencia y la composición de los blancos. Las muestras obtenidas fueron caracterizadas mediante técnicas como difracción de rayos X (XRD), espectroscopía de fotoelectrones (XPS), microscopía electrónica (SEM, TEM), nanoindentación, pruebas tribológicas y espectroscopía de impedancia electroquímica (EIS).
dc.description.researchareaIngeIngeniería de Superficies y Corrosiónniería de Superficies y Corrosión
dc.format.extent98 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89133
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.relation.references[1] S. Niyomsoan, W. Grant, D. L. Olson, and B. Mishra, “Variation of color in titanium and zirconium nitride decorative thin films,” Thin Solid Films, vol. 415, no. 1–2, pp. 187–194, 2002, doi: 10.1016/S0040-6090(02)00530-8.
dc.relation.references[2] L. Jinlong, W. Rui, W. Yongxin, and W. Liping, “Anti-oxidant mechanism of TiAlN/SiN decorative films on borosilicate glass by magnetron sputtering,” International Journal of Advanced Manufacturing Technology, vol. 96, no. 5–8, pp. 1563–1569, May 2018, doi: 10.1007/s00170-017-0609-2.
dc.relation.references[3] W. Liu et al., “Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools,” Ceram Int, vol. 44, no. 2, pp. 2209–2215, 2018, doi: 10.1016/j.ceramint.2017.10.177.
dc.relation.references[4] F. Taylan, O. Çolak, and M. C. Kayacan, “Investigation of TiN Coated CBN and CBN cutting tool performance in hard milling application,” Strojniski Vestnik/Journal of Mechanical Engineering, vol. 57, no. 5, pp. 417–424, 2011, doi: 10.5545/sv-jme.2010.059.
dc.relation.references[5] Y. Zhou, W. Guo, and T. Li, “A review on transition metal nitrides as electrode materials for supercapacitors,” Ceram Int, vol. 45, no. 17, pp. 21062–21076, 2019, doi: 10.1016/j.ceramint.2019.07.151.
dc.relation.references[6] L. Rigutti, B. Bonef, J. Speck, F. Tang, and R. A. Oliver, “Atom probe tomography of nitride semiconductors,” Scr Mater, vol. 148, pp. 75–81, 2018, doi: 10.1016/j.scriptamat.2016.12.034.
dc.relation.references[7] N. C. Reger, V. K. Balla, M. Das, and A. K. Bhargava, “Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications,” Surf Coat Technol, vol. 334, no. June 2017, pp. 357–364, 2018, doi: 10.1016/j.surfcoat.2017.11.064.
dc.relation.references[8] J. Cardenas, J. Leon, and J. J. Olaya, “Synthesis and high-temperature corrosion resistance of Ti-Zr-Si-N coatings deposited by means of sputtering,” Corrosion Engineering Science and Technology, vol. 54, no. 3, pp. 233–240, Apr. 2019, doi: 10.1080/1478422X.2019.1573498.
dc.relation.references[9] A. Kameneva and V. Kichigin, “Corrosion, wear, and friction behavior of a number of multilayer two-, three- and multicomponent nitride coatings on different substrates, depending on the phase and elemental composition gradient,” Appl Surf Sci, vol. 489, pp. 165–174, Sep. 2019, doi: 10.1016/j.apsusc.2019.05.331.
dc.relation.references[10] Y. J. Lee and S. W. Kang, “Antioxidation properties of Ti0.83 Al0.17 N prepared using plasma-enhanced atomic layer deposition,” Appl Phys Lett, vol. 86, no. 7, pp. 1–3, 2005, doi: 10.1063/1.1861119.
dc.relation.references[11] W. J. Shen et al., “Superior oxidation resistance of (Al0.34Cr0.22Nb 0.11Si0.11Ti0.22)50N50 high-entropy nitride,” J Electrochem Soc, vol. 160, no. 11, p. C531, Sep. 2013, doi: 10.1149/2.028311jes.
dc.relation.references[12] A. J. Slate et al., “The effects of blood conditioning films on the antimicrobial and retention properties of zirconium-nitride silver surfaces,” Colloids Surf B Biointerfaces, vol. 173, no. March 2018, pp. 303–311, 2019, doi: 10.1016/j.colsurfb.2018.09.060.
dc.relation.references[13] M. B. Hajduga and R. Bobinski, “TiN, ZrN and DLC nanocoatings - a comparison of the effects on animals, in-vivo study,” Materials Science and Engineering C, vol. 104, no. March, p. 109949, 2019, doi: 10.1016/j.msec.2019.109949.
dc.relation.references[14] Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” physica status solidi (a), vol. 212, no. 5, pp. 960–973, May 2015, doi: 10.1002/pssa.201431745.
dc.relation.references[15] N. Takahashi, K. Terada, T. Takahashi, T. Nakamura, W. Inami, and Y. Kawata, “Optical response of tin nitride thin films prepared by halide chemical vapor deposition under atmospheric pressure,” J Electron Mater, vol. 32, no. 4, pp. 268–271, 2003, doi: 10.1007/s11664-003-0220-1.
dc.relation.references[16] K. M. Latt, Y. K. Lee, H. L. Seng, and T. Osipowicz, “Diffusion barrier properties of ionized metal plasma deposited tantalum nitride thin films between copper and silicon dioxide,” J Mater Sci, vol. 36, no. 24, pp. 5845–5851, 2001, doi: 10.1023/A:1013088624226.
dc.relation.references[17] S. Lee, I. Svadkovski, J. Kim, and D. Kim, “Properties of Ti-Si-N Hard Coatings Prepared by Filtered Vacuum Arc Source and Magnetron,” Mater. Res. Soc. Symp. Proc., vol. 1159, 2009.
dc.relation.references[18] G. Venkatesan et al., “Effect of titanium nitride coating for improvement of fire resistivity of polymer composites for aerospace application,” Proc Inst Mech Eng G J Aerosp Eng, vol. 232, no. 9, pp. 1692–1703, Jul. 2018, doi: 10.1177/0954410017703147.
dc.relation.references[19] V. V. Uglov et al., “Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation,” Nucl Instrum Methods Phys Res B, vol. 354, pp. 264–268, 2015, doi: 10.1016/j.nimb.2014.12.043.
dc.relation.references[20] P. Yi, L. Zhu, C. Dong, and K. Xiao, “Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell,” Surf Coat Technol, vol. 363, no. February, pp. 198–202, 2019, doi: 10.1016/j.surfcoat.2019.02.027.
dc.relation.references[21] L. Velasco, J. J. Olaya, and S. E. Rodil, “Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering,” Appl Phys A Mater Sci Process, vol. 122, no. 2, pp. 1–10, 2016, doi: 10.1007/s00339-016-9639-0.
dc.relation.references[22] A. Kameneva and V. Karmanov, “Physical and mechanical properties of the TixZr1-xN thin films,” J Alloys Compd, vol. 546, pp. 20–27, 2013, doi: 10.1016/j.jallcom.2012.08.021.
dc.relation.references[23] Y.-W. Lin, J.-H. Huang, and G.-P. Yu, “Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 28, no. 4, pp. 774–778, 2010, doi: 10.1116/1.3305963.
dc.relation.references[24] J. Gao et al., “Improving electrical conductivity and wear resistance of hafnium nitride films via tantalum incorporation,” Ceram Int, vol. 43, no. 11, pp. 8517–8524, 2017, doi: 10.1016/j.ceramint.2017.04.003.
dc.relation.references[25] D. A. R. Fernandez et al., “Effect of hafnium contaminant present in zirconium targets on sputter deposited ZrN thin films,” Nucl Instrum Methods Phys Res B, vol. 462, no. November 2019, pp. 90–94, 2020, doi: 10.1016/j.nimb.2019.11.005.
dc.relation.references[26] A. Baptista, F. J. G. Silva, J. Porteiro, J. L. Míguez, G. Pinto, and L. Fernandes, “On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications,” Procedia Manuf, vol. 17, pp. 746–757, 2018, doi: 10.1016/j.promfg.2018.10.125.
dc.relation.references[27] S. Swann, “Magnetron sputtering,” Physics in Technology, vol. 19, no. 2, pp. 67–75, 1988, doi: 10.1088/0305-4624/19/2/304.
dc.relation.references[28] Y. W. Lin, J. H. Huang, and G. P. Yu, “Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering,” Thin Solid Films, vol. 518, no. 24, pp. 7308–7311, 2010, doi: 10.1016/j.tsf.2010.04.099.
dc.relation.references[29] C. L. Chang and F. C. Yang, “Effect of target composition on the microstructural, mechanical, and corrosion properties of TiAlN thin films deposited by high-power impulse magnetron sputtering,” Surf Coat Technol, vol. 352, no. August, pp. 330–337, 2018, doi: 10.1016/j.surfcoat.2018.08.023.
dc.relation.references[30] F. Movassagh-Alanagh, A. Abdollah-zadeh, M. Aliofkhazraei, and M. Abedi, “Improving the wear and corrosion resistance of Ti–6Al–4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD,” Wear, vol. 390–391, no. July, pp. 93–103, 2017, doi: 10.1016/j.wear.2017.07.009.
dc.relation.references[31] F. Fernandes, A. Loureiro, T. Polcar, and A. Cavaleiro, “The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti-Si-V-N films deposited by DC reactive magnetron sputtering,” Appl Surf Sci, vol. 289, pp. 114–123, 2014, doi: 10.1016/j.apsusc.2013.10.117.
dc.relation.references[32] C. L. Chang, J. W. Lee, and M. D. Tseng, “Microstructure, corrosion and tribological behaviors of TiAlSiN coatings deposited by cathodic arc plasma deposition,” Thin Solid Films, vol. 517, no. 17, pp. 5231–5236, 2009, doi: 10.1016/j.tsf.2009.03.082.
dc.relation.references[33] I. A. Saladukhin et al., “Structure and hardness of quaternary TiZrSiN thin fi lms deposited by reactive magnetron co-sputtering,” Thin Solid Films, vol. 581, pp. 25–31, 2015, doi: 10.1016/j.tsf.2014.11.020.
dc.relation.references[34] H. Pengfei and J. Bailing, “Study on tribological property of CrCN coating based on magnetron sputtering plating technique,” Vacuum, vol. 85, no. 11, pp. 994–998, 2011, doi: 10.1016/j.vacuum.2011.02.007.
dc.relation.references[35] Z. Wang, X. Li, X. Wang, S. Cai, P. Ke, and A. Wang, “Hard yet tough V-Al-C-N nanocomposite coatings: Microstructure, mechanical and tribological properties,” Surf Coat Technol, vol. 304, pp. 553–559, 2016, doi: 10.1016/j.surfcoat.2016.07.061.
dc.relation.references[36] C. Tritremmel, R. Daniel, M. Lechthaler, P. Polcik, and C. Mitterer, “Influence of Al and Si content on structure and mechanical properties of arc evaporated Al – Cr – Si – N thin films,” Thin Solid Films, vol. 534, pp. 403–409, 2013, doi: 10.1016/j.tsf.2013.03.017.
dc.relation.references[37] H. A. Macías, L. Yate, L. E. Coy, W. Aperador, and J. J. Olaya, “Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films,” Ceram Int, vol. 45, no. 14, pp. 17363–17375, 2019, doi: 10.1016/j.ceramint.2019.05.295.
dc.relation.references[38] V. V. Uglov et al., “Ion-induced changes in the structure and phase composition of nanocrystalline TiZrSiN coatings formed via magnetron sputtering,” Journal of Surface Investigation, vol. 9, no. 5, pp. 995–1004, 2015, doi: 10.1134/S1027451015050420.
dc.relation.references[39] R. M. Fonseca, R. B. Soares, R. G. Carvalho, E. K. Tentardini, V. F. C. Lins, and M. M. R. Castro, “Corrosion behavior of magnetron sputtered NbN and Nb1-xAlxN coatings on AISI 316L stainless steel,” Surf Coat Technol, vol. 378, no. September, p. 124987, 2019, doi: 10.1016/j.surfcoat.2019.124987.
dc.relation.references[40] H. A. Jehn, “Improvement of the corrosion resistance of PVD hard coating-substrate systems,” Surf Coat Technol, vol. 125, no. 1–3, pp. 212–217, 2000, doi: 10.1016/S0257-8972(99)00551-4.
dc.relation.references[41] K. D. Ralston and N. Birbilis, “Effect of grain size on corrosion: A review,” Corrosion, vol. 66, no. 7, pp. 0750051–07500513, Mar. 2010, doi: 10.5006/1.3462912.
dc.relation.references[42] M. H. Nazir and Z. A. Khan, “A review of theoretical analysis techniques for cracking and corrosive degradation of film-substrate systems,” Eng Fail Anal, vol. 72, pp. 80–113, 2017, doi: 10.1016/j.engfailanal.2016.11.010.
dc.relation.references[43] E. Y. Yun, W. J. Lee, Q. M. Wang, and S. H. Kwon, “Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition,” J Mater Sci Technol, vol. 33, no. 3, pp. 295–299, 2017, doi: 10.1016/j.jmst.2016.11.027.
dc.relation.references[44] D. E. Tranca et al., “Structural and Mechanical Properties of CrN Thin Films Deposited on Si Substrate by Using Magnetron Techniques,” Coatings, vol. 13, no. 2, Feb. 2023, doi: 10.3390/coatings13020219.
dc.relation.references[45] R. Dhanaraj, S. B. Mohamed, M. Kamruddin, K. Kaviyarasu, and P. A. Manojkumar, “Structural properties of TiN thin films prepared by RF reactive magnetron sputtering,” in Materials Today: Proceedings, Elsevier Ltd, 2019, pp. 146–149. doi: 10.1016/j.matpr.2020.02.668.
dc.relation.references[46] S. Vepřek and A. S. Argon, “A concept for the design of novel superhard coatings,” 1995.
dc.relation.references[47] S. Veprek and A. S. Argon, “Towards the understanding of mechanical properties of super- and ultrahard nanocomposites,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 20, no. 2, pp. 650–664, Mar. 2002, doi: 10.1116/1.1459722.
dc.relation.references[48] S. Vepřek, “The search for novel, superhard materials,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, no. 5, pp. 2401–2420, Sep. 1999, doi: 10.1116/1.581977.
dc.relation.references[49] N. Jiang, Y. G. Shen, Y. W. Mai, T. Chan, and S. C. Tung, “Nanocomposite Ti-Si-N films deposited by reactive unbalanced magnetron sputtering at room temperature,” Materials Science and Engineering: B, vol. 106, no. 2, pp. 163–171, Jan. 2004, doi: 10.1016/j.mseb.2003.09.033.
dc.relation.references[50] F. Mei, N. Shao, X. Hu, G. Li, and M. Gu, “Microstructure and mechanical properties of reactively sputtered Ti-Si-N nanocomposite films,” Mater Lett, vol. 59, no. 19–20, pp. 2442–2445, Aug. 2005, doi: 10.1016/j.matlet.2005.03.019.
dc.relation.references[51] M. Diserens, J. Patscheider, and F. Lévy, “Mechanical properties and oxidation resistance of nanocomposite TiN-SiN x physical-vapor-deposited thin films,” Surf Coat Technol, vol. 120, pp. 158–165, 1999, doi: 10.1016/S0257-8972(99)00481-8.
dc.relation.references[52] V. Chawla, R. Jayaganthan, and R. Chandra, “Influence of Sputtering Pressure on the Structure and Mechanical Properties of Nanocomposite Ti-Si-N Thin Films,” J Mater Sci Technol, vol. 26, no. 8, pp. 673–678, 2010, doi: 10.1016/S1005-0302(10)60105-3.
dc.relation.references[53] T. An, H. W. Tian, M. Wen, and W. T. Zheng, “Structures and mechanical properties of TiN/SiNx multilayer films deposited by magnetron sputtering at different N2/Ar gas flow ratios,” Vacuum, vol. 82, no. 11, pp. 1187–1190, Jun. 2008, doi: 10.1016/j.vacuum.2008.02.004.
dc.relation.references[54] A. Singh et al., “Influence of nitrogen flow rate on microstructural and nanomechanical properties of Zr-N thin films prepared by pulsed DC magnetron sputtering,” Appl Surf Sci, vol. 280, pp. 117–123, Sep. 2013, doi: 10.1016/j.apsusc.2013.04.107.
dc.relation.references[55] P. J. Kelly et al., “Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings,” Surf Coat Technol, vol. 205, no. 5, pp. 1606–1610, Nov. 2010, doi: 10.1016/j.surfcoat.2010.07.029.
dc.relation.references[56] N. M. Aristova, S. V. Onufriev, and A. I. Savvatimskiy, “Thermodynamic properties of zirconium nitride in the condensed state,” Physics-Uspekhi, vol. 67, no. 10, pp. 1022–1033, Oct. 2024, doi: 10.3367/ufne.2024.02.039654.
dc.relation.references[57] J. L. Ruan, D. F. Lii, H. H. Lu, J. S. Chen, and J. L. Huang, “Microstructural and electrical characteristics of reactively sputtered ZrNx thin films,” J Alloys Compd, vol. 478, no. 1–2, pp. 671–675, Jun. 2009, doi: 10.1016/j.jallcom.2008.11.103.
dc.relation.references[58] A. L. Job, C. Li, C. M. Burst, J. Douglas Way, and C. A. Wolden, “Zirconium nitride intermetallic diffusion barriers enable stable hydrogen permeation in palladium–vanadium composite membranes,” J Memb Sci, vol. 685, Nov. 2023, doi: 10.1016/j.memsci.2023.121930.
dc.relation.references[59] Leidy Julieta Cárdenas Flechas, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS NANOESTRUCTURADOS DE Ti-Zr-Si-N.,” Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, 2018.
dc.relation.references[60] R. Lamni et al., “Optical and electronic properties of magnetron sputtered ZrN thin films,” Thin Solid Films, pp. 316–321, 2004, doi: 10.1016/S0040-6090(03)01109-X.
dc.relation.references[61] E. R. Parra, P. Jose, A. Arango, and S. Casanova Trujillo, “ALGUNOS CONCEPTOS SOBRE NITRURO DE TITANIO Y EL CARBURO DE TITANIO SOME CONCEPTS ABOUT TITANIUM NITRIDE AND TITANIUM CARBIDE,” Año, vol. 76, pp. 213–224, 2009.
dc.relation.references[62] M. G. Pérez-Artieda and J. Fernández-Carrasquilla, “Revisión sobre nitruraciones láser de aleaciones de titanio,” Revista de Metalurgia (Madrid), vol. 46, no. 6, pp. 530–541, Nov. 2010, doi: 10.3989/revmetalmadrid.1030.
dc.relation.references[63] J. C. Pivin, F. Pons, J. Takadoum, H. M. Pollock, and G. F. Es, “Study of the correlation between hardness and structure of nitrogen-implanted titanium surfaces,” 1987.
dc.relation.references[64] T. Ohji and J. Tatami, “Processing-structure-microscale properties of silicon nitride,” Ceram Int, vol. 50, no. 19, pp. 37282–37290, Oct. 2024, doi: 10.1016/j.ceramint.2024.04.238.
dc.relation.references[65] Z. Wu, Z. Zhang, J. Yun, J. Yan, and T. You, “Synthesis of a-Si3N4 crystallon by a solvothermal method at a low temperature of 180 °c,” Physica B Condens Matter, vol. 428, pp. 10–13, 2013, doi: 10.1016/j.physb.2013.07.001.
dc.relation.references[66] V. Bhatt and S. Chandra, “Silicon nitride films deposited by RF sputtering for microstructure fabrication in MEMS,” J Electron Mater, vol. 38, no. 9, pp. 1979–1989, Sep. 2009, doi: 10.1007/s11664-009-0846-8.
dc.relation.references[67] J. Yang et al., “Synergistic optimization of mechanical properties and coloration in silicon nitride ceramics via microstructural engineering,” J Eur Ceram Soc, vol. 45, no. 16, Dec. 2025, doi: 10.1016/j.jeurceramsoc.2025.117646.
dc.relation.references[68] P. Majerič, “Metallurgical and Materials Data 2, no. 1 (2024): 15-22 Metallurgical and Materials Data Nanostructured materials, structures and mechanical properties, processing and applications,” 2023, doi: 10.56801/MMD20.
dc.relation.references[69] Joachim. Bill, Fumihiro. Wakai, and F. Aldinger, Precursor-derived ceramics: synthesis, structures and high-temperature mechanical properties. Wiley-VCH, 1999.
dc.relation.references[70] A. Qadir, P. Pinke, and J. Dusza, “Silicon nitride-based composites with the addition of cnts—a review of recent progress, challenges, and future prospects,” Jun. 02, 2020, MDPI AG. doi: 10.3390/ma13122799.
dc.relation.references[71] S. C. Tjong and H. Chen, “Nanocrystalline materials and coatings,” Sep. 30, 2004, Elsevier Ltd. doi: 10.1016/j.mser.2004.07.001.
dc.relation.references[72] J. M. Albella Martín, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.
dc.relation.references[73] X. Cui, G. Jin, J. Hao, J. Li, and T. Guo, “The influences of Si content on biocompatibility and corrosion resistance of Zr-Si-N films,” Surf Coat Technol, vol. 228, no. SUPPL.1, Aug. 2013, doi: 10.1016/j.surfcoat.2012.04.060.
dc.relation.references[74] T. S. Cottis Robert, Electrochemical Impedance and Noise. Capítulo 2. Principles of Electrochemical Impedance Spectroscopy., NACE International. United States of America: Anace International, 1999.
dc.relation.references[75] J. J. Olaya Flórez, “Recubrimientos de nitruros metálicos depositados con la técnica de espurreo asistido con campos magnéticos variables,” Tesis, Universidad Nacional Autónoma de México, 2005.
dc.relation.references[76] J. Flores Mendoza, R. Durán Romero, and J. Genescá Llongueras, “ESPECTROSCOPÍA DE IMPEDANCIA ELECTROQUÍMICA EN CORROSIÓN- NOTAS.”
dc.relation.references[77] S. Calderon Velasco, “PRODUCTION AND CHARACTERIZATION OF ZrCN-Ag COATINGS DEPOSITED BY MGANETRON SPUTTERING.”
dc.relation.references[78] C. P. Mejía V., M. R. Chellali, C. M. Garzón, J. J. Olaya, H. Hahn, and L. Velasco, “Effect of discharge current on the corrosion resistance and microstructure of ZrTiSiN coatings deposited by magnetron co-sputtering,” Mater Today Commun, vol. 26, Mar. 2021, doi: 10.1016/j.mtcomm.2021.102151.
dc.relation.references[79] J. Ryu, J. Lee, H. Lee, S. Jeon, and H.-G. Shin, “Local atomic structures and degradation behaviors of Ti 1−x Zr x N coatings under laser thermal shock,” Mater Charact, vol. 131, no. July, pp. 374–379, 2017, doi: 10.1016/j.matchar.2017.07.003.
dc.relation.references[80] P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen.,” Göttinger Nachrichten Gesell., vol. 2, pp. 98–100, 1918.
dc.relation.references[81] H. S. Vanegas P, S. Calderon V, J. E. Alfonso O, J. J. Olaya F, P. J. Ferreira, and S. Carvalho, “Influence of silicon on the microstructure and the chemical properties of nanostructured ZrN-Si coatings deposited by means of pulsed-DC reactive magnetron sputtering,” Appl Surf Sci, vol. 481, pp. 1249–1259, Jul. 2019, doi: 10.1016/j.apsusc.2019.03.128.
dc.relation.references[82] V. V. Uglov et al., “Ion-induced changes in the structure and phase composition of nanocrystalline TiZrSiN coatings formed via magnetron sputtering,” Journal of Surface Investigation, vol. 9, no. 5, pp. 995–1004, 2015, doi: 10.1134/S1027451015050420.
dc.relation.references[83] P. J. Martin, A. Bendavid, J. M. Cairney, and M. Hoffman, “Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition,” Surf Coat Technol, vol. 200, no. 7, pp. 2228–2235, Dec. 2005, doi: 10.1016/j.surfcoat.2004.06.012.
dc.relation.references[84] I. Bertóti, “Characterization of nitride coatings by XPS,” Surf Coat Technol, vol. 151–152, pp. 194–203, Mar. 2002, doi: 10.1016/S0257-8972(01)01619-X.
dc.relation.references[85] D. Arias, A. Devia, and J. Velez, “Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique,” Surf Coat Technol, vol. 204, no. 18–19, pp. 2999–3003, Jun. 2010, doi: 10.1016/j.surfcoat.2010.03.033.
dc.relation.references[86] D. F. Arias, Y. C. Arango, and A. Devia, “Study of TiN and ZrN thin films grown by cathodic arc technique,” Appl Surf Sci, vol. 253, no. 4, pp. 1683–1690, Dec. 2006, doi: 10.1016/j.apsusc.2006.03.017.
dc.relation.references[87] T. Muneshwar and K. Cadien, “Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation,” Appl Surf Sci, vol. 435, pp. 367–376, Mar. 2018, doi: 10.1016/j.apsusc.2017.11.104.
dc.relation.references[88] N. C. Reger, V. K. Balla, M. Das, and A. K. Bhargava, “Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications,” Surf Coat Technol, vol. 334, no. June 2017, pp. 357–364, 2018, doi: 10.1016/j.surfcoat.2017.11.064.
dc.relation.references[89] C. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling,” Corros Sci, vol. 45, no. 6, pp. 1243–1256, Jun. 2003, doi: 10.1016/S0010-938X(02)00213-5.
dc.relation.references[90] F. Movassagh-Alanagh, A. Abdollah-zadeh, M. Aliofkhazraei, and M. Abedi, “Improving the wear and corrosion resistance of Ti–6Al–4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD,” Wear, vol. 390–391, no. July, pp. 93–103, 2017, doi: 10.1016/j.wear.2017.07.009.
dc.relation.references[91] M. Maarouf, M. B. Haider, Q. A. Drmosh, and M. B. Mekki, “X-ray photoelectron spectroscopy depth profiling of as-grown and annealed titanium nitride thin films,” Crystals (Basel), vol. 11, no. 3, pp. 1–11, 2021, doi: 10.3390/cryst11030239.
dc.relation.references[92] J. C. Hsu, Y. H. Lin, and P. W. Wang, “X-ray photoelectron spectroscopy analysis of nitrogen-doped TiO2 films prepared by reactive-ion-beam sputtering with various NH3/O2 gas mixture ratios,” Coatings, vol. 10, no. 1, 2020, doi: 10.3390/coatings10010047.
dc.relation.references[93] S. Eaimsumang, P. Prataksanon, S. Pongstabodee, and A. Luengnaruemitchai, “Effect of acid on the crystalline phase of TiO2 prepared by hydrothermal treatment and its application in the oxidative steam reforming of methanol,” Research on Chemical Intermediates, vol. 46, no. 2, pp. 1235–1254, 2020, doi: 10.1007/s11164-019-04031-8.
dc.relation.references[94] J. Rodriguez-Pereira, J. H. Quintero-Orozco, and R. Ospina, “TiZrN thin films under CO2 and thermal treatment characterized by x-ray photoelectron spectroscopy,” Surface Science Spectra, vol. 26, no. 2, p. 024013, 2019, doi: 10.1116/1.5127759.
dc.relation.references[95] S. Peng et al., “A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells,” Ceram Int, vol. 46, no. 3, pp. 2743–2757, 2020, doi: 10.1016/j.ceramint.2019.09.263.
dc.relation.references[96] J. Ding, C. Zou, Q. Wang, K. Zeng, and S. Feng, “Effect of bias voltage on the microstructure and hardness of Ti-Si-N films deposited by using high-power impulse magnetron sputtering Effect of Bias Voltage on the Microstructure and Hardness of Ti-Si-N Films Deposited by Using High-power Impulse Magnetro,” no. March, 2018, doi: 10.3938/jkps.68.351.
dc.relation.references[97] J. E. A. and J. J. O. Henry S. Vanegas, “Effect of Silicon Content in Functional Properties of Thin Films,” in IntechOpen, 2019. doi: 10.5772/intechopen.85435.
dc.relation.references[98] M. A. Signore, A. Rizzo, L. Mirenghi, M. A. Tagliente, and A. Cappello, “Characterization of zirconium oxynitride films obtained by radio frequency magnetron reactive sputtering,” Thin Solid Films, vol. 515, no. 17, pp. 6798–6804, Jun. 2007, doi: 10.1016/j.tsf.2007.02.033.
dc.relation.references[99] A. Rizzo, M. A. Signore, L. Mirenghi, E. Piscopiello, and L. Tapfer, “Physical properties evolution of sputtered zirconium oxynitride films: Effects of the growth temperature,” J Phys D Appl Phys, vol. 42, no. 23, 2009, doi: 10.1088/0022-3727/42/23/235401.
dc.relation.references[100] B. Subramanian, C. V. Muraleedharan, R. Ananthakumar, and M. Jayachandran, “A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants,” Surf Coat Technol, vol. 205, no. 21–22, pp. 5014–5020, 2011, doi: 10.1016/j.surfcoat.2011.05.004.
dc.relation.references[101] G. I. Cubillos, E. Romero, and A. Umaña-Perez, “ZrN-ZrOxNy vs ZrO2-ZrOxNy coatings deposited via unbalanced DC magnetron sputtering,” Sci Rep, vol. 11, no. 1, pp. 1–19, 2021, doi: 10.1038/s41598-021-98052-2.
dc.relation.references[102] G. I. Cubillos, M. E. Mendoza, J. E. Alfonso, G. Blanco, and M. Bethencourt, “Chemical composition and microstructure of zirconium oxynitride thin layers from the surface to the substrate-coating interface,” Mater Charact, vol. 131, no. February, pp. 450–458, 2017, doi: 10.1016/j.matchar.2017.07.035.
dc.relation.references[103] Z. Rao and E. Chason, “Measurements and modeling of residual stress in sputtered TiN and ZrN: Dependence on growth rate and pressure,” Surf Coat Technol, vol. 404, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126462.
dc.relation.references[104] Q. Luo et al., “Unfolding dielectric breakdown effects on energy storage performances of modified (Sr 0.98 Ca 0.02 )(Ti 1-x Zr x )O 3 Ceramics”, doi: 10.1111/jac.12847.
dc.relation.references[105] Q. Zhu, C. Zhu, Y. Kang, S. Kong, Z. Zhao, and Y. Zuo, “Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium,” International Journal of Materials Research, vol. 109, no. 11, pp. 1027–1034, Nov. 2018, doi: 10.3139/146.111702.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc530 - Física::539 - Física moderna
dc.subject.lembMATERIALES DE NANOESTRUCTURASspa
dc.subject.lembNanostructure materialseng
dc.subject.lembNANOTECNOLOGIAspa
dc.subject.lembNanotechnologyeng
dc.subject.lembNANOESTRUCTURASspa
dc.subject.lembNanostructureseng
dc.subject.lembPULVERIZACION CATODICA (METALIZACION)spa
dc.subject.lembCathode sputtering (plating process)eng
dc.subject.lembPULVERIZACION CATODICA (FISICA)spa
dc.subject.lembSputtering (Physics)eng
dc.subject.lembCORROSION DEL ACEROspa
dc.subject.lembSteel - Corrosioneng
dc.subject.proposalTi-Zr-Si-Nspa
dc.subject.proposalRecubrimientos nanoestructuradosspa
dc.subject.proposalCorrosiónspa
dc.subject.proposalDesgastespa
dc.subject.proposalTribologíaspa
dc.subject.proposalNanostructured coatingseng
dc.subject.proposalCorrosioneng
dc.subject.proposalWeareng
dc.subject.proposalTribologyeng
dc.titleRecubrimientos nanoestructurados de Ti-Zr-Si-N producidos por la técnica de co-sputtering reactivospa
dc.title.translatedNanostructured Ti-Zr-Si-N coatings produced by reactive cosputtering techniqueeng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52726815.2025.pdf
Tamaño:
4.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: