Diseño, síntesis y evaluación preliminar de la actividad antigénica de péptidos ramificados MAPs derivados de un antígeno de la proteína Spike del virus SARS-CoV-2
| dc.contributor.advisor | Torres Rodríguez, Ángela Graciela | |
| dc.contributor.advisor | Rosas Pérez, Jaiver Eduardo | |
| dc.contributor.author | Torres Lemus, John Alexander | |
| dc.contributor.projectleader | Lozano Moreno, Jose Manuel | |
| dc.contributor.researchgroup | Mimetismo Molecular de Los Agentes Infecciosos | |
| dc.date.accessioned | 2025-09-02T15:28:52Z | |
| dc.date.available | 2025-09-02T15:28:52Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones, diagramas | spa |
| dc.description.abstract | El coronavirus SARS-CoV-2 utiliza la proteína Spike para el ingreso a su hospedero, por lo que esta proteína es un blanco importante para diferentes alternativas de diagnóstico y prevención. Por esto, en el grupo de investigación mimetismo molecular de los agentes infecciosos, se han evaluado un número considerable de secuencias peptídicas derivadas de la proteína Spike y su perfil antigénico. Con base en los resultados de esos estudios, en este trabajo se busca evaluar si es posible obtener mediante síntesis en fase sólida formas poliméricas ramificadas tipo MAPs (Péptidos antigénicos múltiples) diméricas y tetraméricas de secuencias peptídicas seleccionadas de la proteína Spike y evaluar de manera preliminar su actividad antigénica. Para esto, primero se seleccionaron péptidos cortos con una secuencia derivada de un motivo viral único de Spike denominado SVM-13, de acuerdo con sus perfiles antigénicos frente a sueros murinos. De esta manera se seleccionaron 3 secuencias provenientes del carboxilo terminal, del amino terminal y de la región central de SVM-13 y su forma polimérica PHE-14, nombrados respectivamente SVM-117, SVM-125 y SVM-127, los cuales presentaron el mejor reconocimiento antigénico. Posteriormente, se realizó la síntesis en fase sólida de los polímeros lineales y los MAPs diméricos y tetraméricos de las secuencias seleccionadas, obteniendo exitosamente los péptidos poliméricos mediante la estrategia Fmoc/tBu, obteniendo rendimientos en el proceso superiores al 50%. Todas las moléculas sintetizadas fueron caracterizadas utilizando cromatografía RP-HPLC y espectrometría de masas MALDI-TOF, evidenciando purezas para los MAPs superiores al 85%. La actividad antigénica de los péptidos sintéticos obtenidos se evaluó de manera preliminar por su inoculación en modelo murino BALB/c y el posterior análisis de los anticuerpos séricos mediante inmunoensayos ELISA, observándose el reconocimiento antigénico de varios péptidos poliméricos especialmente los derivados de SVM-117. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The SARS-CoV-2 coronavirus uses the Spike protein for entry to its host, so this protein is an important target for different diagnostic and prevention alternatives. Therefore, in the research group on molecular mimicry of infectious agents, a considerable number of peptide sequences derived from the Spike protein and its antigenic profile have been evaluated. Based on the results of these studies, this work aims to assess whether it is possible to obtain by solid phase synthesis branched polymeric forms such as MAPs (multiple antigenic peptides) dimeric and tetrameric sequences of selected peptide sequences from the Spike protein and perform a preliminary evaluation of their antigenic activity. For this, short peptides were first selected with a sequence derived from a unique viral Spike motif called SVM-13 and its polymeric form PHE-14, according to their antigenic profiles against murine sera. Three sequences from the carboxyl terminal, amino terminal, and central region of SVM-13 were selected, named SVM-117, SVM-125, and SVM-127, which presented the best antigenic recognition. Subsequently, solid phase synthesis of linear polymers and dimeric and tetrameric MAPs was performed from the selected sequences, successfully obtaining the polymeric peptides using the Fmoc/tBu strategy, obtaining process yields of more than 50%. All synthesized molecules were characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry, evidencing purities for MAPs greater than 85%. The antigenic activity of the obtained synthetic peptides was evaluated in a preliminary way by their inoculation in murine model BALB/c and the subsequent analysis of their serum antibodies by immunoassays ELISA, antigenic recognition of several polymeric peptides especially SVM-117 derivatives. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias – Farmacología | |
| dc.description.researcharea | Biotecnología en salud | |
| dc.format.extent | xii, 78 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88534 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Farmacología | |
| dc.relation.references | Albericio, F. (Ed.). (2000). Solid-Phase Synthesis. CRC Press. https://doi.org/10.1201/9781482270303 | |
| dc.relation.references | Almazán, C., Šimo, L., Fourniol, L., Rakotobe, S., Borneres, J., Cote, M., Peltier, S., Mayé, J., Versillé, N., Richardson, J., & Bonnet, S. I. (2020). Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation. Pathogens (Basel, Switzerland), 9(11). https://doi.org/10.3390/pathogens9110900 | |
| dc.relation.references | Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15. https://doi.org/10.1016/J.PEPTIDES.2015.04.012 | |
| dc.relation.references | Bakhiet, M., & Taurin, S. (2021). SARS-CoV-2: Targeted managements and vaccine development. Cytokine & Growth Factor Reviews, 58, 16–29. https://doi.org/10.1016/j.cytogfr.2020.11.001 | |
| dc.relation.references | Barlos, K., & Adermann, K. (2011). Strategy in Solid-Phase Peptide Synthesis. Amino Acids, Peptides and Proteins in Organic Chemistry, 3, 371–406. https://doi.org/10.1002/9783527631803.CH11 | |
| dc.relation.references | Behrendt, R., White, P., & Offer, J. (2016). Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science : An Official Publication of the European Peptide Society, 22(1), 4–27. https://doi.org/10.1002/psc.2836 | |
| dc.relation.references | Bermúdez, A., Reyes, C., Guzmán, F., Vanegas, M., Rosas, J., Amador, R., Rodríguez, R., Patarroyo, M. A., & Patarroyo, M. E. (2007). Synthetic vaccine update: applying lessons learned from recent SPf66 malarial vaccine physicochemical, structural and immunological characterization. Vaccine, 25(22), 4487–4501. https://doi.org/10.1016/j.vaccine.2007.03.016 | |
| dc.relation.references | Briand, J. P., Barin, C., Van Regenmortel, M. H., & Muller, S. (1992). Application and limitations of the multiple antigen peptide (MAP) system in the production and evaluation of anti-peptide and anti-protein antibodies. Journal of Immunological Methods, 156(2), 255–265. https://doi.org/10.1016/0022-1759(92)90033-p | |
| dc.relation.references | Broeckhoven, K., & Desmet, G. (2022). Theory of separation performance and peak width in gradient elution liquid chromatography: A tutorial. Analytica Chimica Acta, 1218, 339962. https://doi.org/10.1016/j.aca.2022.339962 | |
| dc.relation.references | Bunin, B. A. (1998). ANALYTICAL METHODS FOR SOLID-PHASE SYNTHESIS. The Combinatorial Index, 213–235. https://doi.org/10.1016/B978-012141340-8/50006-3 | |
| dc.relation.references | Calabrese, B. (2019). Experimental Platforms for Extracting Biological Data: Mass Spectrometry, Microarray, Next Generation Sequencing. In Encyclopedia of Bioinformatics and Computational Biology (pp. 126–129). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20412-3 | |
| dc.relation.references | Caprioli, R. M., Farmer, T. B., & Gile, J. (1997). Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry, 69(23), 4751–4760. https://doi.org/10.1021/ac970888i | |
| dc.relation.references | Castagnoli, R., Votto, M., Licari, A., Brambilla, I., Bruno, R., Perlini, S., Rovida, F., Baldanti, F., & Marseglia, G. L. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatrics, 174(9), 882–889. https://doi.org/10.1001/jamapediatrics.2020.1467 | |
| dc.relation.references | Chawla, G., & Kr. Chaudhary, K. (2019). A review of HPLC technique covering its pharmaceutical, environmental, forensic, clinical and other applications. International Journal of Pharmaceutical Chemistry and Analysis, 6(2), 27–39. https://doi.org/10.18231/j.ijpca.2019.006 | |
| dc.relation.references | Chen, F., Tian, Y., Zhang, L., & Shi, Y. (2022). The role of children in household transmission of COVID-19: a systematic review and meta-analysis. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 122, 266–275. https://doi.org/10.1016/j.ijid.2022.05.016 | |
| dc.relation.references | Cherkupally, P., Ramesh, S., de la Torre, B. G., Govender, T., Kruger, H. G., & Albericio, F. (2014). Immobilized coupling reagents: synthesis of amides/peptides. ACS Combinatorial Science, 16(11), 579–601. https://doi.org/10.1021/co500126y | |
| dc.relation.references | Chou, R., Dana, T., Buckley, D. I., Selph, S., Fu, R., & Totten, A. M. (2022). Update Alert 11: Epidemiology of and Risk Factors for Coronavirus Infection in Health Care Workers. Annals of Internal Medicine, 175(8), W83–W84. https://doi.org/10.7326/L22-0235 | |
| dc.relation.references | Chowdhury, S., Toth, I., & Stephenson, R. J. (2022). Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials, 280, 121303. https://doi.org/10.1016/j.biomaterials.2021.121303 | |
| dc.relation.references | Cieslewicz, B., Makrinos, D., Burke, H., Bree, D., Haridas, R., Tonkiss, I., Bartsch, Y., Alter, G., Malley, R., & Besin, G. (2022). Preclinical Immunogenicity and Efficacy of a Multiple Antigen-Presenting System (MAPSTM) SARS-CoV-2 Vaccine. Vaccines, 10(7). https://doi.org/10.3390/vaccines10071069 | |
| dc.relation.references | COVID-19 epidemiological update – 15 July 2024. (n.d.). Retrieved July 18, 2024, from https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-169 | |
| dc.relation.references | COVID-19 epidemiological update – 22 December 2023. (n.d.). Retrieved July 16, 2024, from https://www.who.int/publications/m/item/covid-19-epidemiological-update---22-december-2023 | |
| dc.relation.references | Dave, K. A., Headlam, M. J., Wallis, T. P., & Gorman, J. J. (2011). Preparation and analysis of proteins and peptides using MALDI TOF/TOF mass spectrometry. Current Protocols in Protein Science, Chapter 16, 16.13.1-16.13.21. https://doi.org/10.1002/0471140864.ps1613s63 | |
| dc.relation.references | Erak, M., Bellmann-Sickert, K., Els-Heindl, S., & Beck-Sickinger, A. G. (2018). Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics. Bioorganic & Medicinal Chemistry, 26(10), 2759–2765. https://doi.org/10.1016/J.BMC.2018.01.012 | |
| dc.relation.references | Fernandes, Q., Inchakalody, V. P., Merhi, M., Mestiri, S., Taib, N., Moustafa Abo El-Ella, D., Bedhiafi, T., Raza, A., Al-Zaidan, L., Mohsen, M. O., Yousuf Al-Nesf, M. A., Hssain, A. A., Yassine, H. M., Bachmann, M. F., Uddin, S., & Dermime, S. (2022). Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Annals of Medicine, 54(1), 524–540. https://doi.org/10.1080/07853890.2022.2031274 | |
| dc.relation.references | Fox, T., Geppert, J., Dinnes, J., Scandrett, K., Bigio, J., Sulis, G., Hettiarachchi, D., Mathangasinghe, Y., Weeratunga, P., Wickramasinghe, D., Bergman, H., Buckley, B. S., Probyn, K., Sguassero, Y., Davenport, C., Cunningham, J., Dittrich, S., Emperador, D., Hooft, L., … Cochrane COVID-19 Diagnostic Test Accuracy Group. (2022). Antibody tests for identification of current and past infection with SARS-CoV-2. The Cochrane Database of Systematic Reviews, 11(11), CD013652. https://doi.org/10.1002/14651858.CD013652.pub2 | |
| dc.relation.references | Garg, E., & Zubair, M. (2024). Mass Spectrometer (StatPearls, Ed.). StatPearls Publishing LLC. | |
| dc.relation.references | Graña, C., Ghosn, L., Evrenoglou, T., Jarde, A., Minozzi, S., Bergman, H., Buckley, B. S., Probyn, K., Villanueva, G., Henschke, N., Bonnet, H., Assi, R., Menon, S., Marti, M., Devane, D., Mallon, P., Lelievre, J.-D., Askie, L. M., Kredo, T., … Boutron, I. (2022). Efficacy and safety of COVID-19 vaccines. The Cochrane Database of Systematic Reviews, 12(12), CD015477. https://doi.org/10.1002/14651858.CD015477 | |
| dc.relation.references | Guzmán, F., Aróstica, M., Román, T., Beltrán, D., Gauna, A., Albericio, F., & Cárdenas, C. (2023). Peptides, solid-phase synthesis and characterization: Tailor-made methodologies. Electronic Journal of Biotechnology, 64, 27–33. https://doi.org/10.1016/j.ejbt.2023.01.005 | |
| dc.relation.references | Guzmán, F., Gauna, A., Roman, T., Luna, O., Álvarez, C., Pareja-Barrueto, C., Mercado, L., Albericio, F., & Cárdenas, C. (2021). Tea Bags for Fmoc Solid-Phase Peptide Synthesis: An Example of Circular Economy. Molecules (Basel, Switzerland), 26(16). https://doi.org/10.3390/molecules26165035 | |
| dc.relation.references | Hansen, P. R., & Oddo, A. (2015). Fmoc Solid-Phase Peptide Synthesis. Methods in Molecular Biology (Clifton, N.J.), 1348, 33–50. https://doi.org/10.1007/978-1-4939-2999-3_5 | |
| dc.relation.references | Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., COVID-19 Genomics UK (COG-UK) Consortium, Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews. Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0 | |
| dc.relation.references | He, P., Zou, Y., & Hu, Z. (2015). Advances in aluminum hydroxide-based adjuvant research and its mechanism. Human Vaccines & Immunotherapeutics, 11(2), 477–488. https://doi.org/10.1080/21645515.2014.1004026 | |
| dc.relation.references | Hernández Marín, M., Rodríguez-Tanty, C., Higginson-Clarke, D., Márquez Bocalandro, Y., Díaz Navarro, J., & Javier González López, L. (2007). Síntesis química en fase sólida de dos péptidos de la glicoproteína de la transmembrana (gp21) del HTLV-I. Revista CENIC Ciencias Químicas, 38(2). | |
| dc.relation.references | Heyduk, E., Hickey, R., Pozzi, N., & Heyduk, T. (2018). Peptide ligand-based ELISA reagents for antibody detection. Analytical Biochemistry, 559, 55–61. https://doi.org/10.1016/j.ab.2018.08.012 | |
| dc.relation.references | Hinrichsen, L. I., & Di Masso, R. J. (2010). Empleo de un modelo murino original de Argentina en la caracterización de fenotipos complejos. BAG. Journal of Basic and Applied Genetics, 21(2), 0–0. https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-62332010000200007&lng=es&nrm=iso&tlng=es | |
| dc.relation.references | Hodges, R. S., Lorne Burke, T. W., & Mant, C. T. (1988). Preparative purification of peptides by reversed-phase chromatography : Sample displacement mode versus gradient elution mode. Journal of Chromatography A, 444(C), 349–362. https://doi.org/10.1016/S0021-9673(01)94036-1 | |
| dc.relation.references | Insuasty Cepeda, D. S., Pineda Castañeda, H. M., Rodríguez Mayor, A. V., García Castañeda, J. E., Maldonado Villamil, M., Fierro Medina, R., & Rivera Monroy, Z. J. (2019). Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules (Basel, Switzerland), 24(7). https://doi.org/10.3390/molecules24071215 | |
| dc.relation.references | Joshi, V. G., Dighe, V. D., Thakuria, D., Malik, Y. S., & Kumar, S. (2013). Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian Journal of Virology : An Official Organ of Indian Virological Society, 24(3), 312–320. https://doi.org/10.1007/s13337-013-0162-z | |
| dc.relation.references | Kai-Wang To, K., Sridhar, S., Hei-Yeung Chiu, K., Ling-Lung Hung, D., Li, X., Fan-Ngai Hung, I., Raymond Tam, A., Wai-Hin Chung, T., Fuk-Woo Chan, J., Jian-Xia Zhang, A., Chi-Chung Cheng, V., & Yuen, K.-Y. (2021). Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. https://doi.org/10.1080/22221751.2021.1898291 | |
| dc.relation.references | Kaur, S. P., & Gupta, V. (2020). COVID-19 Vaccine: A comprehensive status report. Virus Research, 288, 198114. https://doi.org/10.1016/j.virusres.2020.198114 | |
| dc.relation.references | Keah, H. H., Kecorius, E., & Hearn, M. T. (1998). Direct synthesis and characterisation of multi-dendritic peptides for use as immunogens. The Journal of Peptide Research : Official Journal of the American Peptide Society, 51(1), 2–8. https://doi.org/10.1111/j.1399-3011.1998.tb00410.x | |
| dc.relation.references | Koch-Weser, J., Greenblatt, D. J., & Koch-Weser, J. (1976). Intramuscular Injection of Drugs. New England Journal of Medicine, 295(10), 542–546. https://doi.org/10.1056/NEJM197609022951006 | |
| dc.relation.references | Kordalivand, N., Tondini, E., Lau, C. Y. J., Vermonden, T., Mastrobattista, E., Hennink, W. E., Ossendorp, F., & Nostrum, C. F. van. (2019). Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. Journal of Controlled Release : Official Journal of the Controlled Release Society, 315, 114–125. https://doi.org/10.1016/j.jconrel.2019.10.048 | |
| dc.relation.references | Kyosei, Y., Namba, M., Yamura, S., Takeuchi, R., Aoki, N., Nakaishi, K., Watabe, S., & Ito, E. (2020). Proposal of De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike Proteins of SARS-CoV-2. Diagnostics (Basel, Switzerland), 10(8). https://doi.org/10.3390/diagnostics10080594 | |
| dc.relation.references | Li, M., Wang, H., Tian, L., Pang, Z., Yang, Q., Huang, T., Fan, J., Song, L., Tong, Y., & Fan, H. (2022). COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/S41392-022-00996-Y | |
| dc.relation.references | Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide Vaccine: Progress and Challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515 | |
| dc.relation.references | Lozano, J. M., Salazar, L. M., Torres, Á., Arévalo-Jamaica, A., Franco-Muñoz, C., Mercado-Reyes, M., & Aristizabal, F. A. (2020). COVID-19 Infection Detection and Prevention by SARS-CoV-2 Active Antigens: A Synthetic Vaccine Approach. Vaccines, 8(4), 1–14. https://doi.org/10.3390/VACCINES8040692 | |
| dc.relation.references | Mahrosh, H. S., & Mustafa, G. (2021). The COVID-19 puzzle: a global nightmare. Environment, Development and Sustainability, 23(9), 12710–12737. https://doi.org/10.1007/S10668-021-01224-3/TABLES/7 | |
| dc.relation.references | Mant, C. T., Chen, Y., Yan, Z., Popa, T. V, Kovacs, J. M., Mills, J. B., Tripet, B. P., & Hodges, R. S. (2007). HPLC analysis and purification of peptides. Methods in Molecular Biology (Clifton, N.J.), 386, 3–55. https://doi.org/10.1007/978-1-59745-430-8_1 | |
| dc.relation.references | McLean, G. W., Owsianka, A. M., Subak-Sharpe, J. H., & Marsden, H. S. (1991). Generation of anti-peptide and anti-protein sera effect of peptide presentation on immunogenicity. Journal of Immunological Methods, 137(2), 149–157. https://doi.org/10.1016/0022-1759(91)90019-C | |
| dc.relation.references | Newman, M. R., Russell, S. G., Schmitt, C. S., Marozas, I. A., Sheu, T.-J., Puzas, J. E., & Benoit, D. S. W. (2018). Multivalent Presentation of Peptide Targeting Groups Alters Polymer Biodistribution to Target Tissues. Biomacromolecules, 19(1), 71–84. https://doi.org/10.1021/acs.biomac.7b01193 | |
| dc.relation.references | Niederhafner, P., Šebestík, J., & Ježek, J. (2005). Peptide dendrimers. Journal of Peptide Science, 11(12), 757–788. https://doi.org/10.1002/psc.721 | |
| dc.relation.references | Patarroyo, M. E., Amador, R., Clavijo, P., Moreno, A., Guzman, F., Romero, P., Tascon, R., Franco, A., Murillo, L. A., & Ponton, G. (1988). A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature, 332(6160), 158–161. https://doi.org/10.1038/332158a0 | |
| dc.relation.references | Pijls, B. G., Jolani, S., Atherley, A., Derckx, R. T., Dijkstra, J. I. R., Franssen, G. H. L., Hendriks, S., Richters, A., Venemans-Jellema, A., Zalpuri, S., & Zeegers, M. P. (2021). Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open, 11, 44640. https://doi.org/10.1136/bmjopen-2020-044640 | |
| dc.relation.references | Potter, M. (Ed.). (1985). The BALB/c Mouse. 122. https://doi.org/10.1007/978-3-642-70740-7 | |
| dc.relation.references | Roy, D., Brancaccio, D., Webba, M., Silva, D., Wiedemann, C., Wiedemann@, C., Ohlenschläger, O., Kumar, A., & Lang, A. (2020). Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Frontiers in Chemistry | Www.Frontiersin.Org, 1, 280. https://doi.org/10.3389/fchem.2020.00280 | |
| dc.relation.references | Sadler, K., & Tam, J. P. (2002). Peptide dendrimers: applications and synthesis. Reviews in Molecular Biotechnology, 90(3), 195–229. https://doi.org/https://doi.org/10.1016/S1389-0352(01)00061-7 | |
| dc.relation.references | Sahngun Nahm, F., Bok Lee, P., Young Park, S., Chul Kim, Y., Chul Lee, S., Yong Shin, H., & Joong Lee, C. (2012). Pain from intramuscular vaccine injection in adults. Revista Médica de Chile, 140(2), 192–197. https://doi.org/10.4067/S0034-98872012000200007 | |
| dc.relation.references | Sandoval, T. A., Urueña, C. P., Llano, M., Gómez-Cadena, A., Hernández, J. F., Sequeda, L. G., Loaiza, A. E., Barreto, A., Li, S., & Fiorentino, S. (2016). Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. The American Journal of Chinese Medicine, 44(08), 1693–1717. https://doi.org/10.1142/S0192415X16500956 | |
| dc.relation.references | Santos-López, G., Cortés-Hernández, P., Vallejo-Ruiz, V., & Reyes-Leyva, J. (2021). SARS-CoV-2: basic concepts, origin and treatment advances. Gaceta Medica de Mexico, 157(1), 84–89. https://doi.org/10.24875/GMM.M21000524 | |
| dc.relation.references | Sharma, A., Ahmad Farouk, I., & Lal, S. K. (2021). COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses, 13(2). https://doi.org/10.3390/v13020202 | |
| dc.relation.references | Skwarczynski, M., & Toth, I. (2014). Recent Advances in Peptide-Based Subunit Nanovaccines. Nanomedicine, 9(17), 2657–2669. https://doi.org/10.2217/NNM.14.187 | |
| dc.relation.references | Skwarczynski, M., & Toth, I. (2016). Peptide-based synthetic vaccines. Chemical Science, 7(2), 842–854. https://doi.org/10.1039/c5sc03892h | |
| dc.relation.references | Tabatabaei, M. S., & Ahmed, M. (2022). Enzyme-Linked Immunosorbent Assay (ELISA). Methods in Molecular Biology, 2508, 115–134. https://doi.org/10.1007/978-1-0716-2376-3_10 | |
| dc.relation.references | Tabatabaei Mirakabad, F. S., Khoramgah, M. S., Keshavarz F., K., Tabarzad, M., & Ranjbari, J. (2019). Peptide dendrimers as valuable biomaterials in medical sciences. Life Sciences, 233, 116754. https://doi.org/10.1016/j.lfs.2019.116754 | |
| dc.relation.references | Tam, J. P., & Spetzler, J. C. (1997a). [28] Multiple antigen peptide system. In Solid-Phase Peptide Synthesis (Vol. 289, pp. 612–637). Academic Press. https://doi.org/https://doi.org/10.1016/S0076-6879(97)89067-2 | |
| dc.relation.references | Tam, J. P., & Spetzler, J. C. (1997b). Multiple antigen peptide system. Methods in Enzymology, 289, 612–637. https://doi.org/10.1016/s0076-6879(97)89067-2 | |
| dc.relation.references | Tam, J. P., & Zavala, F. (1989). Multiple antigen peptide. Journal of Immunological Methods, 124(1), 53–61. https://doi.org/10.1016/0022-1759(89)90185-3 | |
| dc.relation.references | V. Rajput, N., V. Rajput, M., V. Patil, V., S. Patil, P., & R. Pawar, A. (2023). Short Review on Comparative Study of Chromatography. Asian Journal of Pharmaceutical Analysis, 53–58. https://doi.org/10.52711/2231-5675.2023.00009 | |
| dc.relation.references | Van den Broeck, W., Derore, A., & Simoens, P. (2006). Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. Journal of Immunological Methods, 312(1–2), 12–19. https://doi.org/10.1016/J.JIM.2006.01.022 | |
| dc.relation.references | Varnava, K. G., & Sarojini, V. (2019). Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature. Chemistry, an Asian Journal, 14(8), 1088–1097. https://doi.org/10.1002/asia.201801807 | |
| dc.relation.references | Viner, R. M., Mytton, O. T., Bonell, C., Melendez-Torres, G. J., Ward, J., Hudson, L., Waddington, C., Thomas, J., Russell, S., Van Der Klis, F., Koirala, A., Ladhani, S., Panovska-Griffiths, J., Davies, N. G., Booy, R., & Eggo, R. M. (2021). Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared With Adults: A Systematic Review and Meta-analysis. JAMA Pediatrics, 175(2), 143–156. https://doi.org/10.1001/JAMAPEDIATRICS.2020.4573 | |
| dc.relation.references | World Health Organization. (2025, January 17). COVID-19 Epidemiological Update. COVID-19 Epidemiological Update Edition 175 Published 17 January 2025. | |
| dc.relation.references | Yüce, M., Filiztekin, E., & Özkaya, K. G. (2021). COVID-19 diagnosis -A review of current methods. Biosensors & Bioelectronics, 172, 112752. https://doi.org/10.1016/j.bios.2020.112752 | |
| dc.relation.references | Zhang, N. N., Li, X. F., Deng, Y. Q., Zhao, H., Huang, Y. J., Yang, G., Huang, W. J., Gao, P., Zhou, C., Zhang, R. R., Guo, Y., Sun, S. H., Fan, H., Zu, S. L., Chen, Q., He, Q., Cao, T. S., Huang, X. Y., Qiu, H. Y., … Qin, C. F. (2020). A Thermostable mRNA Vaccine against COVID-19. Cell, 182(5), 1271. https://doi.org/10.1016/J.CELL.2020.07.024 | |
| dc.relation.references | Zheng, K., Ren, J., Liu, Y., & Ling, S. (2020). Synergetic integration of computer-aided design, experimental synthesis, and self-assembly for the rational design of peptide/protein nanofibrils. Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications, 219–239. https://doi.org/10.1016/B978-0-08-102850-6.00010-3 | |
| dc.relation.references | Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7 | |
| dc.relation.references | Zhou, Z., Zhu, Y., & Chu, M. (2022). Role of COVID-19 Vaccines in SARS-CoV-2 Variants. Frontiers in Immunology, 13, 898192. https://doi.org/10.3389/fimmu.2022.898192 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.decs | Farmacología | spa |
| dc.subject.decs | Pharmacology | eng |
| dc.subject.decs | Bioquímica | spa |
| dc.subject.decs | Biochemistry | eng |
| dc.subject.decs | Coronavirus | spa |
| dc.subject.decs | Coronavirus | eng |
| dc.subject.proposal | Péptidos antigénicos Múltiples MAPs | spa |
| dc.subject.proposal | Spike | spa |
| dc.subject.proposal | SARS- CoV-2 | spa |
| dc.subject.proposal | Péptidos poliméricos sintéticos | spa |
| dc.subject.proposal | Multiple Antigen peptides MAPs | eng |
| dc.subject.proposal | Spike | eng |
| dc.subject.proposal | SARS- CoV-2 | eng |
| dc.subject.proposal | Synthetic polymeric peptides | eng |
| dc.title | Diseño, síntesis y evaluación preliminar de la actividad antigénica de péptidos ramificados MAPs derivados de un antígeno de la proteína Spike del virus SARS-CoV-2 | spa |
| dc.title.translated | Design, synthesis, and preliminary evaluation of the antigenic activity of branched peptides MAPs derived from a SARS-CoV-2 virus spike protein antigen | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

