Modelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombia

dc.contributor.advisorVargas Jimenez, Carlos Alberto
dc.contributor.advisorNeumann, Florian
dc.contributor.authorBuitrago Segura, Harold Steven
dc.contributor.cvlacBuitrago Segura, Harold Stevenspa
dc.contributor.orcidBuitrago, Harold [0000-0002-0592-0370]spa
dc.contributor.researchgroupCenitspa
dc.contributor.subjectmatterexpertContreras, Juan
dc.coverage.countryColombia
dc.date.accessioned2023-06-28T20:34:40Z
dc.date.available2023-06-28T20:34:40Z
dc.date.issued2022
dc.descriptionilustraciones, mapasspa
dc.description.abstractEn esta tesis se discretizó la ecuación de conducción-advección por el método de diferencias finitas conservativas y se escribió un código en Matlab que resuelve el campo de temperatura de la litosfera en 2D. Este código se validó comparando sus resultados con soluciones analíticas de algunos escenarios tectónicos sencillos en 1D y 2D reportadas en la literatura. La soluciones numéricas obtenidas concuerdan con las analíticas mostrando que se alcanzan diferencias menores a 1°C siempre que la discretización sea densa (>5000 nodos verticales). Los mejores resultados se obtienen en los casos en que no existen fuentes o sumideros de calor en el espacio modelado. Posteriormente, el código se empleó para resolver el campo térmico litosférico en la Cordillera Oriental de Colombia. Para constreñir las soluciones numéricas se utilizó la base de datos de gradiente geotérmico LogDB y algunas estimaciones de flujo de calor realizadas en la cuenca de Llanos Orientales. Los valores de parámetros materiales como la conductividad térmica, calor especifico, producción de calor radiogénico, etc., fueron tomados de la literatura para las rocas que afloran en el área e inferidos para la corteza y manto superior. Las condiciones de frontera que ajustan mejor a los datos en superficie sugieren la ocurrencia de un basamento enriquecido en elementos radiactivos que sería una fuente importante de calor (1.6 – 3 μWm-3) al este del sistema de fallas de Guaicaramo en donde se han documentado sistemas geotérmicos activos. El flujo de calor astenosferico modelado oscila entre 15-25 mWm-2 excepto sobre la Cordillera Oriental al norte del desgarre de Caldas en donde el flujo necesario para elevar el límite litosfera-astenosfera hasta 70-80 km requiere de un flujo astenosferico adicional de 15-20 mWm-2 (30-45 mWm-2 total). El flujo de calor adicional podría deberse a advección por flujo mantélico no contemplado en la simulación o a la ocurrencia de procesos como el calentamiento viscoso causado por cizalla (viscous heating). (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, the conduction-advection equation was discretized by the conservative finite difference method, and a code was written in MATLAB that solves the temperature field of the lithosphere in 2D. This code was validated by comparing its results with analytical solutions of some simple 1D and 2D tectonic scenarios reported in the literature. The numerical solutions obtained agree with the analytical ones, showing that differences of less than 1°C are reached as long as the discretization is dense (>5000 vertical nodes). The best results are obtained in cases where there are no heat sources or sinks in the modeled space. Subsequently, the code was used to solve the lithospheric thermal field in the Eastern Cordillera of Colombia. To constrain the numerical solutions, the LogDB geothermal gradient database and some heat flow estimates made in the Llanos Orientales basin were used. The values of material parameters such as thermal conductivity, specific heat, radiogenic heat production, etc., were taken from the literature for the rocks that outcrop in the area and inferred for the crust and upper mantle. The boundary conditions that best fit the surface data suggest the occurrence of a basement enriched in radioactive elements that would be an important source of heat (1.6 – 3 μWm-3) to the east of the Guaicaramo fault system where active geothermal systems have been documented. The modeled asthenospheric heat flow ranges in 15-25 mWm-2 except over the Eastern Cordillera north of the Caldas tear, where heat flow needed to raise the lithosphere-asthenosphere boundary to 70-80 km requires higher values (30-45mW). The additional heat flow could be due to advection by mantle flow not considered in the simulation or to the occurrence of processes such as viscous heating.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Geofisicaspa
dc.description.methodsSe relizo un modelado numerico bidimensional del campo termico conductivo en la litosfera y se calibro con datos de gradiente geotermico y flujo de calor de Colombia.spa
dc.description.researchareaCampo termico litosfericospa
dc.description.researchareaflujo de calorspa
dc.format.extentxiv, 92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84096
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesAlfaro, C., Alvarado, I., & Manrique, A. (2015). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia. Proceedings World Geothermal Congress 2015, 34, 19–25.spa
dc.relation.referencesAlfaro, C., Alvarado, I., Quintero, W., Vargas, C., & Briceño, L. (2009). Mapa preliminar de gradiente geotémico de Colombiaspa
dc.relation.referencesAlfaro, C., Rueda-Gutierrez, Matiz-Leon, Beltran-Luque, Rodriguez-Rodriguez, Rodriguez-Ospina, Gonzalez-Idarraga, & Malo-Lazaro. (2020). Paipa Geothermal System, Boyacá: Review of Exploration Studies and Conceptual Model. The Geology of Colombia,spa
dc.relation.referencesAlfè, D., Gillan, M. J., & Price, G. D. (2007). Temperature and composition of the Earth’s core. Contemporary Physics, 48(2), 63–80. https://doi.org/10.1080/00107510701529653spa
dc.relation.referencesAllen, J. R., & Allen, P. a. (2005). The physical state of the lithosphere. In Basin analysis Principles and applications (second, Vol. 2, pp. 35–40). Blackwell Publishing Ltd. http://books.google.com/books?hl=en&lr=&id=T87dL36tcYEC&oi=fnd&pg=PR7&dq=basin+analysis&ots=QU67bAETen&sig=c8bj8CrktOqXeHqUdbWfCaNQ76Aspa
dc.relation.referencesÁvila, P., & Dávila, F. M. (2018). Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America. Tectonophysics, #pagerange#. https://doi.org/10.1016/j.tecto.2018.10.006spa
dc.relation.referencesBachu, S., Ramon, J. C., Villegas, M. E., & Underschultz, J. R. (1995). Llanos Geotermal Regimin 1994. AAPG Bulletin, 79(1), 116–129. https://doi.org/10.1306/8D2B14D0-171E-11D7-8645000102C1865Dspa
dc.relation.referencesBalling, N. (2013). The lithosphere beneath Northern Europe : structure and evolution over three billion years : contributions from geophysical studies.spa
dc.relation.referencesBjørnerud, M. G., Austrheim, H., & Lund, M. G. (2002). Processes leading to eclogitization (densification) of subducted and tectonically buried crust. Journal of Geophysical Research: Solid Earth, 107(B10), ETG 14-1-ETG 14-18. https://doi.org/10.1029/2001jb000527spa
dc.relation.referencesBlackwell, D. D. (1971). The Thermal Structure of the Continental Crust. 169–184. https://doi.org/10.1029/gm014p0169spa
dc.relation.referencesBlackwell, D. D. (1983). HEAT FLOW IN THE NORTHERN BASIN AND RANGE PROVINCE David D . Blackwell Department of Geological Sciences Southern Methodist University. Geothermal Resources Council, 13, 81–93.spa
dc.relation.referencesBlanco, J. F., Vargas, C. A., & Monsalve, G. (2017). Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophysics, Geosystems, 18, 1376–1387. https://doi.org/10.1002/2016GC006785.Receivedspa
dc.relation.referencesBonilla, A., Frantz, J. C., Charao-Marques, J., Cramer, T., Franco-Victoria, J. A., Mulocher, E., & Amaya-Perea, Z. (2013). Geocronología Del Granito De Parguaza. Boletín de Geología, 35(2), 83–104.spa
dc.relation.referencesBurg, J. P., & Gerya, T. V. (2005). The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2), 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.xspa
dc.relation.referencesCermak, V., & Rybach, L. (1982). Thermal properties: Thermal conductivity and specific heat of minerals and rocks. Landolt-Bornstein Zahlenwerte Und Funktionen Aus Naturwissenschaften Und Technik, Neue Serie, 1, 305–343.spa
dc.relation.referencesCorreia, A., & Šafanda, J. (2002). Geothermal modeling along a two-dimensional crustal profile in Southern Portugal. Journal of Geodynamics, 34(1), 47–61. https://doi.org/10.1016/S0264-3707(01)00080-1spa
dc.relation.referencesCourant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5(3), 243–255. https://doi.org/10.1002/cpa.3160050303spa
dc.relation.referencesFlores, E. L. (2001). Boundary conditions in thermal models: An application to the KTB site, Germany. Geofisica Internacional, 40(2), 97–109. https://doi.org/10.22201/igeof.00167169p.2001.40.2.372spa
dc.relation.referencesFountain, D. M., & Salisbury, M. H. (1981). Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters, 56(C), 263–277. https://doi.org/10.1016/0012-821X(81)90133-3spa
dc.relation.referencesFuchs, S., Balling, N., & Förster, A. (2015). Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International, 203(3), 1977–2000. https://doi.org/10.1093/gji/ggv403spa
dc.relation.referencesFuchs, S., Balling, N., & Mathiesen, A. (2020). Deep basin temperature and heat-flow field in Denmark – New insights from borehole analysis and 3D geothermal modelling. Geothermics, 83(June 2019), 101722. https://doi.org/10.1016/j.geothermics.2019.101722spa
dc.relation.referencesGemmer, L., & Nielsen, S. B. (2001). Three-dimensional inverse modelling of the thermal structure and implications for lithospheric strength in Denmark and adjacent areas of Northwest Europe. Geophysical Journal International, 147(1), 141–154. https://doi.org/10.1046/j.0956-540X.2001.01528.xspa
dc.relation.referencesGerya, T. (2010). Introduction to numerical geodynamic modelling. Cambrifge University Press.spa
dc.relation.referencesHacker, B. R., Kelemen, P. B., & Behn, M. D. (2011). Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3–4), 501–516. https://doi.org/10.1016/j.epsl.2011.05.024spa
dc.relation.referencesHacker, B. R., Kelemen, P. B., & Behn, M. D. (2015). Continental lower crust. Annual Review of Earth and Planetary Sciences, 43, 167–205. https://doi.org/10.1146/annurev-earth-050212-124117spa
dc.relation.referencesHamza, V. M., & Vieira, F. (2018). Global Heat Flow: New Estimates Using Digital Maps and GIS Techniques. International Journal of Terrestrial Heat Flow and Applications, 1(1), 6–13. https://doi.org/10.31214/ijthfa.v1i1.6spa
dc.relation.referencesHasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307(1–2), 59–70. https://doi.org/10.1016/j.epsl.2011.04.034spa
dc.relation.referencesHasterok, D., Gard, M., & Webb, J. (2017). On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geoscience Frontiers, 9(6), 1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012spa
dc.relation.referencesHokstad, K., Tašárová, Z. A., Clark, S. A., Kyrkjebø, R., Duffaut, K., Fichler, C., & Wiik, T. (2017). Radiogenic heat production in the crust from inversion of gravity and magnetic data. Norwegian Journal of Geology, 97(3), 241–254. https://doi.org/10.17850/njg97-3-04spa
dc.relation.referencesHorton, B. K., & Saylor, J. E. (2010). Resolving uplift of the using detrital zircon. July. https://doi.org/10.1130/GSATG76A.1spa
dc.relation.referencesJaupart, C., & Mareschal, J. C. (1999). The thermal structure and thickness of continental roots. Developments in Geotectonics, 24(C), 93–114. https://doi.org/10.1016/S0419-0254(99)80007-Xspa
dc.relation.referencesJaupart, C. (2007). 6.05 Heat Flow and Thermal Structure of the Lithosphere.spa
dc.relation.referencesJaupart, Claude, & Mareschal, J. C. (2011). Lithosphere, continental: Thermal structure. In H. K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics (pp. 681–693). Springer. https://doi.org/10.1007/978-90-481-8702-7spa
dc.relation.referencesJaupart, Claude, Mareschal, J. C., & Iarotsky, L. (2016). Radiogenic heat production in the continental crust. Lithos, 262, 398–427. https://doi.org/10.1016/j.lithos.2016.07.017spa
dc.relation.referencesKammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. (2020). Structural Styles of the Eastern Cordillera of Colombia.spa
dc.relation.referencesKehle, R. O., Schoeppel, R. J., & Deford, R. K. (1970). The AAPG geothermal survey of North America. Geothermics, 2(PART 1), 358–367. https://doi.org/10.1016/0375-6505(70)90034-9spa
dc.relation.referencesKroonenberg, S. B. (2019). The proterozoic basement of the Western Guiana Shield and the Northern Andes. In Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_3spa
dc.relation.referencesLabus, M., & Labus, K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal of Thermal Analysis and Calorimetry, 132(3), 1669–1676. https://doi.org/10.1007/s10973-018-7090-5spa
dc.relation.referencesLachenbruch, A. H. (1978). Heat flow in the Basin and Range province and thermal effects of tectonic extension. Pure and Applied Geophysics PAGEOPH, 117(1–2), 34–50. https://doi.org/10.1007/BF00879732spa
dc.relation.referencesLachenbruch, A., & Sass, J. H. (1978). Models of an extending lithosphere and heat flow in the Basin and Range province. Memoir of the Geological Society of America, 152, 209–250. https://doi.org/10.1130/MEM152-p209spa
dc.relation.referencesLagardère, C., & Vargas, C. A. (2021). Earthquake distribution and lithospheric rheology beneath the Northwestern Andes, Colombia. Geodesy and Geodynamics, 12(1), 1–10. https://doi.org/10.1016/j.geog.2020.12.002spa
dc.relation.referencesLambert, L., & Heier, K. (1968). Estimates of the crustal abundance of Thorium, Uranium and Potassium. Chemical Geology, 3, 233–238.spa
dc.relation.referencesLarrota, D., & Concha, A. E. (2018). Petrografía y geoquímica de la Sienita Nefelínica de San José del Guaviare en cercanías de El Capricho. Geologia Colombiana, 41, 27–42.spa
dc.relation.referencesLaske, G., Masters, G., Ma, Z., Pasyanos, M. E., & Livermore, L. (2013). EGU2013-2658 Update on CRUST1 . 0 : A 1-degree Global Model of Earth ’ s Crust. Geophysical Research Abstracts, 15, Abstract EGU2013–2658. https://igppweb.ucsd.edu/~gabi/crust1/laske-egu13-crust1.pdfspa
dc.relation.referencesLee, C. T. A., Luffi, P., Plank, T., Dalton, H., & Leeman, W. P. (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1–2), 20–33. https://doi.org/10.1016/j.epsl.2008.12.020spa
dc.relation.referencesLemenager, A., O’Neill, C., Zhang, S., & Evans, M. (2018). The effect of temperature-dependent thermal conductivity on the geothermal structure of the Sydney Basin. Geothermal Energy, 6(1). https://doi.org/10.1186/s40517-018-0092-5spa
dc.relation.referencesLoskor, W. Z., & Sarkar, R. (2022). A Numerical Solution of Heat Equation for Several Thermal Diffusivity Using Finite Difference Scheme with Stability Conditions. Journal of Applied Mathematics and Physics, 10(02), 449–465. https://doi.org/10.4236/jamp.2022.102034spa
dc.relation.referencesMajorowicz, J., Polkowski, M., & Grad, M. (2019). Thermal properties of the crust and the lithosphere–asthenosphere boundary in the area of Poland from the heat flow variability and seismic data. International Journal of Earth Sciences, 108(2), 649–672. https://doi.org/10.1007/s00531-018-01673-8spa
dc.relation.referencesManea, M. (2014). Curie depth vs . flat subduction in Central Mexico Pure and Applied Geophysics Curie Point Depth Estimates and Correlation with Subduction in Mexico. May. https://doi.org/10.1007/s00024-010-0238-2spa
dc.relation.referencesMareschal, J., & Bergantz, G. (1990). Constraints on thermal models of the basin and range province. Tectonophysics, 174(1–2), 137–146. https://doi.org/10.1016/0040-1951(90)90387-Nspa
dc.relation.referencesMareschal, J. C., Cunningham, J. P., & Lowell, R. P. (1985). Downward continuation of heat flow data: Method and examples from the western United States. Geophysics, 50(5), 846–851. https://doi.org/10.1190/1.1441960spa
dc.relation.referencesMareschal, J. C., & Jaupart, C. (2013). Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 609, 524–534. https://doi.org/10.1016/j.tecto.2012.12.001spa
dc.relation.referencesMather, B., Moresi, L., & Rayner, P. (2019). Adjoint inversion of the thermal structure of Southeastern Australia. Geophysical Journal International, 219(3), 1648–1659. https://doi.org/10.1093/gji/ggz368spa
dc.relation.referencesMathews, J., & Fink, K. (2000). Métodos numéricos con Matlab (I. Capella (ed.)). Prentice Hall.spa
dc.relation.referencesMatiz-Leon, J. (2018). Metodología para determinar el modelo espacial del gradiente geotérmico en las cuencas sedimentarias del Valle Medio del Magdalena , Cordillera Oriental y Llanos Orientales en Colombia Metodología para determinar el modelo espacial del gradiente geotérmico. Universidad Distrital Francisco Jose de Caldas.spa
dc.relation.referencesMiao, S., Li, H., & Chen, G. (2014). The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere. Geophysical Journal International, 197(2), 900–909. https://doi.org/10.1093/gji/ggu020spa
dc.relation.referencesMiddleton, M. F. (2016). Radiogenic Heat Generation in Western Australia — Implications for Geothermal Energy. In Advanges in Geothermal Energy (pp. 49–90).spa
dc.relation.referencesMoretti, I., Mora, C., Zamora, W., Valendia, M., Mayorga, M., & Rodriguez, G. (2009). Petroleum System Variations in the Llanos Basin (Colombia). AAPG Bulletin, September.spa
dc.relation.referencesNegrete-Aranda, R., Contreras, J., & Spelz, R. M. (2013). Viscous dissipation, slab melting, and post-subduction volcanism in south-central Baja California, Mexico. Geosphere, 9(6), 1714–1728. https://doi.org/10.1130/GES00901.1spa
dc.relation.referencesOuali, S. (2009). Thermal Conductivity in Relation To Porosity and Geological Stratigraphy. Os.Is, 23. https://orkustofnun.is/gogn/unu-gtp-report/UNU-GTP-2009-23.pdf%0Ahttp://www.os.is/gogn/unu-gtp-report/UNU-GTP-2009-23.pdfspa
dc.relation.referencesPeacock, S. M. (1996). Thermal and petrologic structure of subduction zones. Geophysical Monograph Series, 96, 119–133. https://doi.org/10.1029/GM096p0119spa
dc.relation.referencesPollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31(3), 267–280. https://doi.org/10.1029/93RG01249spa
dc.relation.referencesPoveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate. Journal of Geophysical Research: Solid Earth, 123(2), 1459–1485. https://doi.org/10.1002/2017JB014688spa
dc.relation.referencesPowell, W. G., Chapman, D. S., & Balling, N. (1988). Continental heat-flow density. In Handbook of Terrestrial Heat-Flow Density Determination (pp. 167–222).spa
dc.relation.referencesRestrepo, J. J., & Toussaint, J. F. (2020). Tectonostratigraphic Terranes in Colombia: An Update First Part: Continental Terranes https://doi.org/10.32685/pub.esp.35.2019.03. The Geology of Colombia, 1.spa
dc.relation.referencesRudnick, R. L., & Gao, S. (2014). Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6spa
dc.relation.referencesRudnick, Roberta L., & Gao, S. (2003). Composition of the Continental Crust. In Treatise on Geochemistry (Vol. 1).spa
dc.relation.referencesRybach, L., & Buntebarth, G. (1984). The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics, 103(1–4), 335–344. https://doi.org/10.1016/0040-1951(84)90095-7spa
dc.relation.referencesŠafanda, J. A. N. (1985). in Two-Dimensional Geothermal Profile. Studia Geoph. et Geod., 29, 191–207. https://doi.org/10.1007/bf01585720spa
dc.relation.referencesŠafanda, J. A. N. (1988). HEAT FLOW VARIATIONS IN THE PRESENCE OF AN IRREGULAR CONTACT OF DIFFERENT ROCK TYPE. Studia Geoph. et Geod., 32, 159–170. https://doi.org/10.1007/bf01637579spa
dc.relation.referencesSarmiento-Rojas, L, Wess, J. D. Van, & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera , Colombian Andes : Inferences from tectonic models. South American Earth Science, 21, 383–411. https://doi.org/10.1016/j.jsames.2006.07.003spa
dc.relation.referencesSarmiento-Rojas, Luis. (2001). Mesozoic transtensional basin history of the Eastern Cordillera , Colombian Andes : Inferences from tectonic models Inferences from tectonic models [Amsterdam University]. https://doi.org/10.1016/j.jsames.2006.07.003spa
dc.relation.referencesSass, J. H. (1994). Thermal regime of the southern Basin and Range Province: 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada. Journal of Geophysical Research, 99(B11). https://doi.org/10.1029/94jb01891spa
dc.relation.referencesSclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post-mid-cretaceous sudsidence of the central North Sea basin. Journal of Geophysical Research, 85, 3711–3739. https://doi.org/http://dx.doi.org/10.1029/JB085iB07p03711; doi:10.spa
dc.relation.referencesSiravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera , Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002spa
dc.relation.referencesTurcotte, D. L., & Schubert, G. (2002). Geodynamics (Third edit). Cambridge University Press. https://doi.org/10.1017/CBO9780511807442 Vargas, C. (2020). Subduction Geometries in Northwestern South America. 4(May).spa
dc.relation.referencesVargas, C. A., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. 103(3), 2025–2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVedanti, N., Srivastava, R. P., Pandey, O. P., & Dimri, V. P. (2011). Fractal behavior in continental crustal heat production. Nonlinear Processes in Geophysics, 18(1), 119–124. https://doi.org/10.5194/npg-18-119-2011spa
dc.relation.referencesVieira, F. P., & Hamza, V. M. (2012). Global distribution of the lithosphere-asthenosphere boundary: A new look. Solid Earth, 3(2), 199–212. https://doi.org/10.5194/se-3-199-2012spa
dc.relation.referencesWeber, M. B. I., Tarney, J., Kempton, P. D., & Kent, R. W. (2002). Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics, 345(1–4), 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2spa
dc.relation.referencesWeides, S., & Majorowicz, J. (2014). Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin. April. https://doi.org/10.3390/en7042573spa
dc.relation.referencesWhittington, A. G., Hofmeister, A. M., & Nabelek, P. I. (2009). Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458(7236), 319–321.spa
dc.relation.referencesWorkman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005spa
dc.relation.referencesZhang, L., Mao, X., & Lu, A. (2009). Experimental study on the mechanical properties of rocks at high temperature. Science in China, Series E: Technological Sciences, 52(3), 641–646. https://doi.org/10.1007/s11431-009-0063-yspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.ddc530 - Física::536 - Calorspa
dc.subject.lembCalentamiento globalspa
dc.subject.lembGlobal warmingeng
dc.subject.lembCalorimetríaspa
dc.subject.lembCalorimeters and calorimetryeng
dc.subject.proposalCampo térmicospa
dc.subject.proposalFlujo de calorspa
dc.subject.proposalDiferencias finitasspa
dc.subject.proposalGradiente geotérmicospa
dc.subject.proposalCordillera orientalspa
dc.subject.proposalThermal fieldeng
dc.subject.proposalHeat floweng
dc.subject.proposalFinite differenceeng
dc.subject.proposalGeothermal gradienteng
dc.subject.proposalEastern cordilleraeng
dc.titleModelado del campo térmico litosférico por el método de diferencias finitas conservativas aplicado en el área de la Cordillera Oriental, Colombiaspa
dc.title.translatedModeling of the lithospheric thermal field by the method of conservative finite differences applied around the area of the Eastern Cordillera , Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentModelspa
dc.type.contentSoftwarespa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024509176.2023.pdf
Tamaño:
4.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geofísica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: