Evaluación de la capacidad neutralizante de un antiveneno anticoral polivalente en una preparación neuromuscular

dc.contributor.advisorGuerrero Pabón, Mario Francisco
dc.contributor.authorMartínez Ramírez, Jhon Edison
dc.contributor.educationalvalidatorFrancisco Javier Ruiz Gómez
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)spa
dc.date.accessioned2023-02-08T20:41:56Z
dc.date.available2023-02-08T20:41:56Z
dc.date.issued2022-05
dc.descriptionilustraciones, fotografías acolorspa
dc.description.abstractEl veneno de las serpientes de coral, del género Micrurus, es conocido por generar un efecto neurotóxico. Este efecto es similar entre las diferentes especies de este género, sin embargo, aún no se conoce completamente la eficacia de la neutralización cruzada de los antivenenos. En el presente estudio evaluamos los efectos de los venenos de tres serpientes de coral colombianas, de las especies M. lemniscatus, M, medemi y M, sangilensis. Determinando la capacidad de inhibir la neurotransmisión, en una preparación de nervio frénico y diafragma de ratas Wistar. Se evaluaron los efectos del veneno a dosis de 1, 10 y 50 µg/ml y se evaluó la capacidad neutralizante del antiveneno anticoral polivalente (AAP) del Instituto Nacional de Salud (INS), frente a la dosis de 10 µg/ml de cada especie. Los 3 venenos generaron bloqueos neuromusculares dependientes de las dosis en comparación con los controles. Siendo el veneno de M. lemniscatus el que tuvo una actividad neurotóxica más rápida, seguido de M. sangilensis y finalmente de M. medemi. Así mismo los 3 venenos fueron neutralizados con éxito por el AAP del INS. Siendo el veneno de M. medemi el que más porcentaje de neutralización tuvo, seguido del veneno de M, sangilensis y finalmente del veneno de M, lemniscatus. Demostrando así que el AAP del INS tiene una capacidad neutralizante y polivalente. A pesar de ser fabricado con venenos de serpientes de coral distintas a las involucradas en este estudio. (Texto tomado de la fuente)spa
dc.description.abstractCoral snake’s venoms of the genus Micrurus are characterized by peripheral paralysis neurotoxicity. A similar neurotoxic effect is induced by the venom of most members of this genus, yet the efficaciousness of cross species venom/anti-venom treatment has not been thoroughly investigated. In this study we evaluated the effects of the venom of three Colombian coral snakes, species M. lemniscatus, M. medemi, and M. sangilensis, and its ability to inhibit neurotransmission in the phrenic nerve and diaphragm of Wistar rats. Venom effects were evaluated in doses of 1, 10, and 50 µg / ml. Further, the neutralizing capacity of the polyvalent anticoral antivenom (PAA) of the National Institute of Health (NIH) was evaluated against a venom dose of 10 µg / ml of each species. All 3 venoms generated a significant, dose-dependent, neuromuscular block compared to controls with M. lemniscatus exhibiting the fastest neurotoxic response followed by M. sangilensis, and M. medemi. Finally, the NIH PAA was able to completely neutralize M. medemi and partially neutralize both M. sangilensis and M. lemniscatus. Thus, we have demonstrated that the INS AAP has neutralizing and polyvalent capacity despite being manufactured with venoms from coral snakes not involved in this study.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias – Farmacologíaspa
dc.description.sponsorshipEl Departamento Administrativo de Ciencia, Tecnología e Innovación Minciencias, es la entidad encargada de promover las políticas públicas para fomentar la ciencia, la tecnología y la innovación en Colombia por medio del Proyecto 2104777-58348, Contrato 686 de 2018 COLCIENCIAS-INS: “Caracterización bioquímica y biológica del veneno de las corales colombianas Micrurus medemi, Micrurus sangilensis y Micrurus lenmiscatus y su neutralización con el antiveneno anticoral polivalente producido por el INS” que permitió el desarrollo y culminación de este proyecto de tesis.spa
dc.description.sponsorshipInstituto Nacional de Salud, permitió el uso de instalaciones, reactivos, animales de laboratorio y uso de salas del bioterio de barrera ABSL2 para el entrenamiento y desarrollo de pruebas preliminares para el desarrollo y culminación de este proyecto de tesis.spa
dc.description.sponsorshipLa Universidad Nacional de Colombia, permitió el uso de instalaciones, reactivos, animales de laboratorio y uso de salas del bioterio para el entrenamiento y desarrollo de pruebas preliminares para el desarrollo y culminación de este proyecto de tesis.spa
dc.format.extent88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83391
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.referencesBarber, C. M., Isbister, G. K., & Hodgson, W. C. (2013). Alpha neurotoxins. Toxicon, 66, 47–58.spa
dc.relation.referencesBedoya-Medina, J., Mendivil-Perez, M., Rey-Suarez, P., Jimenez-Del-Rio, M., Núñez, V., & Velez-Pardo, C. (2019). L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. International Journal of Biological Macromolecules, 134, 1052–1062.spa
dc.relation.referencesBolívar-Barbosa, J. A., & Rodríguez-Vargas, A. L. (2020). Neurotoxical activity of micrurus snake venom and methods for its analysis. A literature review. Revista Facultad de Medicina, 68(3), 453–462.spa
dc.relation.referencesBucaretchi, F., De Capitani, E. M., Vieira, R. J., Rodrigues, C. K., Zannin, M., Da Silva, N. J., Casais-E-Silva, L. L., & Hyslop, S. (2016). Coral snake bites (Micrurus spp.) in Brazil: A review of literature reports. Clinical Toxicology, 54(3), 222–234.spa
dc.relation.referencesBulbring, E. (1946). Observations on the isolated phrenic nerve diaphragm preparation of the rat. British Journal of Pharmacology and Chemotherapy, 1, 38–61.spa
dc.relation.referencesCamargo, T. M., de Roodt, A. R., da Cruz-Höfling, M. A., & Rodrigues-Simioni, L. (2011). The neuromuscular activity of Micrurus pyrrhocryptus venom and its neutralization by commercial and specific coral snake antivenoms. Journal of Venom Research, 2, 24–31.spa
dc.relation.referencesCampbell, J. A., Lamar, W. W. (2004). The Venomous Reptiles of the Western Hemisphere. In Wilderness & Environmental Medicine ((Vol. 1, N, Vol. 1).spa
dc.relation.referencesCastillo-Beltrán, M. C., Hurtado-Gómez, J. P., Corredor-Espinel, V., & Ruiz-Gómez, F. J. (2018). A polyvalent coral snake antivenom with broad neutralization capacity. PLoS Neglected Tropical Diseases, 13(3), 1–14.spa
dc.relation.referencesChippaux, J. P. (2017). Snakebite envenomation turns again into a neglected tropical disease! Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 1–2.spa
dc.relation.referencesCiscotto, P. H. C., Rates, B., Silva, D. A. F., Richardson, M., Silva, L. P., Andrade, H., Donato, M. F., Cotta, G. A., Maria, W. S., Rodrigues, R. J., Sanchez, E., De Lima, M. E., & Pimenta, A. M. C. (2011). Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. Journal of Proteomics, 74(9), 1810–1825.spa
dc.relation.referencesCrachi, M. T., Hammer, L. W., & Hodgson, W. C. (1999). A pharmacological examination of venom from the Papuan taipan (Oxyuranus scutellatus canni). Toxicon, 37(12), 1721–1734.spa
dc.relation.referencesDe Abreu, V. A., Leite, G. B., Oliveira, C. B., Hyslop, S., Furtado, M. D. F. D., & Simioni, L. R. (2008). Neurotoxicity of Micrurus altirostris (Uruguayan coral snake) venom and its neutralization by commercial coral snake antivenom and specific antiserum raised in rabbits. Clinical Toxicology, 46(6), 519–527.spa
dc.relation.referencesDurban, J., Sasa, M., & Calvete, J. J. (2018). Venom gland transcriptomics and microRNA profiling of juvenile and adult yellow-bellied sea snake, Hydrophis platurus, from Playa del Coco (Guanacaste, Costa Rica). Toxicon, 153(August), 96–105.spa
dc.relation.referencesDutertre, S., Nicke, A., & Tsetlin, V. I. (2017). Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology, 127, 196–223.spa
dc.relation.referencesFloriano, R. S., Schezaro-Ramos, R., Silva, N. J., Bucaretchi, F., Rowan, E. G., & Hyslop, S. (2019). Neurotoxicity of Micrurus lemniscatus lemniscatus (South American coral snake) venom in vertebrate neuromuscular preparations in vitro and neutralization by antivenom. Archives of Toxicology, 93(7), 2065–2086.spa
dc.relation.referencesFloriano, R. S., Torres-Bonilla, K. A., Rojas-Moscoso, J. A., Dias, L., Rocha, T., Silva, N. J., Hyslop, S., & Rowan, E. G. (2020a). Cardiovascular activity of Micrurus lemniscatus lemniscatus (South American coral snake) venom. Toxicon, 186(August), 58–66.spa
dc.relation.referencesGanguly, D. K., Nath, D. N., Ross, H. ‐G, & Vedasiromoni, J. R. (1978). Rat Isolated Phrenic Nerve‐Diaphragm Preparation for Pharmacological Study of Muscle Spindle Afferent Activity: Effect of Oxotremorine. British Journal of Pharmacology, 64(1), 47–52.spa
dc.relation.referencesGinsborg, B. L., & Warriner, J. (1960). the Isolated Chick Biventer Cervicis Nerve‐Muscle Preparation. British Journal of Pharmacology and Chemotherapy, 15(3), 410–411.spa
dc.relation.referencesGómez-Betancur, I., Gogineni, V., Salazar-Ospina, A., & León, F. (2019). Perspective on the therapeutics of anti-snake venom. Molecules, 24(18), 1–29.spa
dc.relation.referencesGopalakrishnakone, P., Inagaki, H., Vogel, C., Mukherjee, A. K., & Rahmy, T. R. (2017). Snake Venoms.spa
dc.relation.referencesGoularte, F. C., Cruz-Höfling, M. A., Cogo, J. C., Gutiérrez, J. M., & Rodrigues-Simioni, L. (1995). The ability of specific antivenom and low temperature to inhibit the myotoxicity and neuromuscular block induced by Micrurus nigrocinctus venom. Toxicon, 33(5), 679–689.spa
dc.relation.referencesGutiérrez, J. M. (2018). Antivenoms: Life-saving drugs for envenomings by animal bites and stings. Toxicon, 150(May), 11–12.spa
dc.relation.referencesGutiérrez, J. M., Solano, G., Pla, D., Herrera, M., Segura, Á., Vargas, M., Villalta, M., Sánchez, A., Sanz, L., Lomonte, B., León, G., & Calvete, J. J. (2017). Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: State-of-the-art and challenges ahead. Toxins, 9(5), 1–22.spa
dc.relation.referencesHarris, R. J., Youngman, N. J., Zdenek, C. N., Huynh, T. M., Nouwens, A., Hodgson, W. C., Harrich, D., Dunstan, N., Portes-Junior, J. A., & Fry, B. G. (2020). Assessing the binding of venoms from aquatic elapids to the nicotinic acetylcholine receptor orthosteric site of different prey models. International Journal of Molecular Sciences, 21(19), 1–13.spa
dc.relation.referencesHarvey, A. L., Harvey, A. L., Barfaraz, A., Thomson, E., Faiz, A., Preston, S., & Venoms, R. (1994). Screening of Snake Venoms for Neurotoxic and Myotoxic Effects Using Simple in Vitro Preparations From Rodents and Chicks. Toxicon, 32(3), 257–265.spa
dc.relation.referencesHerrera, M., Cássia, R. De, Collaço, D. O., Villalta, M., Segura, Á., Vargas, M., Wright, C. E., Paiva, O. K., Matainaho, T., Jensen, S. D., León, G., Williams, D. J., Rodrigues-simioni, L., & María, J. (2016). Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan ( Oxyuranus scutellatus ) by F ( ab 0 ) 2 and whole IgG antivenoms. Toxicology Letters, 241, 175–183.spa
dc.relation.referencesHodgson, Wayne C., Wickramaratna, J. C. (2002). Animal Toxins of Asia and Australia: In Vitro Neuromuscular Activity Of Snake Venoms. Clinical and Experimental Pharmacology and Physiology, 29, 807–814.spa
dc.relation.referencesJorge Da Silva, N., & D. Aird, S. (2001). Prey specificity, comparative lethality and compositional differences of coral snake venoms. In Comparative Biochemistry and Physiology - C Toxicology and Pharmacology (Vol. 128, Issue 3).spa
dc.relation.referencesKasturiratne, A., Wickremasinghe, A. R., De Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & De Silva, H. J. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), 1591–1604.spa
dc.relation.referencesKini, R. M. (2011). Evolution of three-finger toxins - A versatile mini protein scaffold. Acta Chimica Slovenica, 58(4), 693–701.spa
dc.relation.referencesKopper, R. A., Harper, G. R., Zimmerman, S., & Hook, J. (2013). Comparison of total protein and phospholipase A2 levels in individual coral snake venoms. Toxicon, 76, 59–62.spa
dc.relation.referencesLeón, G., Sánchez, L., Hernández, A., Villalta, M., Herrera, M., Segura, Á., Estrada, R., & Gutiérrez, J. M. (2011). Immune response towards snake venoms. Inflammation and Allergy - Drug Targets, 10(5), 381–398.spa
dc.relation.referencesLomonte, B., Rey-Suárez, P., Fernández, J., Sasa, M., Pla, D., Vargas, N., Bénard-Valle, M., Sanz, L., Corrêa-Netto, C., Núñez, V., Alape-Girón, A., Alagón, A., Gutiérrez, J. M., & Calvete, J. J. (2016). Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon, 122, 7–25.spa
dc.relation.referencesMendes, G. F., Stuginski, D. R., Loibel, S. M. C., Morais-Zani, K. De, Da Rocha, M. M. T., Fernandes, W., Sant’anna, S. S., & Grego, K. F. (2019). Factors that can influence the survival rates of coral snakes (Micrurus corallinus) for antivenom production. Journal of Animal Science, 97(2), 972–980.spa
dc.relation.referencesMoraes, F. V., Sousa-e-Silva, M. C. C., Barbaro, K. C., Leitão, M. A., & Furtado, M. F. D. (2003). Biological and immunochemical characterization of Micrurus altirostris venom and serum neutralization of its toxic activities. Toxicon, 41(1), 71–79.spa
dc.relation.referencesNirthanan, S., & Gwee, M. C. E. (2004). Three-Finger α-Neurotoxins and the Nicotinic Acetylcholine Receptor, Forty Years On. Journal of Pharmacological Sciences, 94(1), 1–17.spa
dc.relation.referencesRenjifo, C., Smith, E. N., Hodgson, W. C., Renjifo, J. M., Sanchez, A., Acosta, R., Maldonado, J. H., & Riveros, A. (2012a). Neuromuscular activity of the venoms of the Colombian coral snakes Micrurus dissoleucus and Micrurus mipartitus: An evolutionary perspective. Toxicon, 59(1), 132–142.spa
dc.relation.referencesRey-Suárez, P., Núñez, V., Fernández, J., & Lomonte, B. (2016). Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. Journal of Proteomics, 136, 262–273.spa
dc.relation.referencesRey-Suárez, P., Saldarriaga-Córdoba, M., Torres, U., Marin-Villa, M., Lomonte, B., & Núñez, V. (2019). Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms: Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon, 170(July), 85–93.spa
dc.relation.referencesRojas Bárcenas, A. M. (2018). Accidente ofídico en Colombia. Informes de Evento, 1(1), 33.spa
dc.relation.referencesRossan, A., Da Silva, B. P., Yamagushi, I. K., Morais, J. F., Higashi, H. G., Raw, I., Ho, P. L., & Silveira de Oliveira, J. (2001). Cross reactivity of different specific Micrurus antivenom sera with homologous and heterologous snake venoms. Toxicon, 39(7), 949–953.spa
dc.relation.referencesSilva, A., Kuruppu, S., Othman, I., Goode, R. J. A., Hodgson, W. C., & Isbister, G. K. (2017). Neurotoxicity in Sri Lankan Russell’s Viper (Daboia russelii) Envenoming is Primarily due to U1-viperitoxin-Dr1a, a Pre-Synaptic Neurotoxin. Neurotoxicity Research, 31(1), 11–19.spa
dc.relation.referencesSmith, C. M. (1963). Neuromuscular Pharmacology: Drugs and Muscle Spindles. Annual Review of Pharmacology, 3(1), 223–242.spa
dc.relation.referencesSouza, J. De, Oshima-franco, Y., & Freitas, N. P. De. (2020). A preparação nervo frênico-diafragma ( camundongos / ratos ) e a técnica miográfica como ferramenta farmacológica.spa
dc.relation.referencesSu, M. J., Coulter, A. R., Sutherland, S. K., & Chang, C. C. (1983). The presynaptic neuromuscular blocking effect and phospholipase A2 activity of textilotoxin, a potent toxin isolated from the venom of the Australian brown snake, Pseudonaja textilis. Toxicon, 21(1), 143–151.spa
dc.relation.referencesTanaka, G. D., Furtado, M. D. F. D., Portaro, F. C. V., Sant’Anna, O. A., & Tambourgi, D. V. (2010). Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Neglected Tropical Diseases, 4(3), 1–12.spa
dc.relation.referencesTaylor, P., Salazar, E., Barrios, M., Salazar, A. M., Abad, M. J., Urdanibia, I., Shealy, D., Arocha-Piñango, C. L., & Guerrero, B. (2016). Role of the inflammatory response in the hemorrhagic syndrome induced by the hemolymph of the caterpillar Lonomia achelous. Toxicon, 121, 77–85.spa
dc.relation.referencesUrdaneta, A. H., Bolaños, F., & Gutiérrez, J. M. (2004). Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 138(4), 485–492.spa
dc.relation.referencesWarrell, D. A. (2010). Snake bite. The Lancet, 375(9708), 77–88.spa
dc.relation.referencesWhaler, B. C. (1978). Venoms: Chemistry and Molecular Biology. Biochemical Society Transactions, 6(2), 474–476.spa
dc.relation.referencesWHO. (2017). Annex 5. Guidelines for the production, control and regulation of snake antivenom immunoglobulins Replacement of Annex 2 of WHO Technical Report Series. World Health Organization Technical Report Series, No. 964, 197–388.spa
dc.relation.referencesWHO. (1981). Progress in the characterization of venoms and standardization of antivenoms.spa
dc.relation.referencesWHO. (2016). Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. October, 89.spa
dc.relation.referencesWilliams, D., Gutiérrez, J. M., Harrison, R., Warrell, D. A., White, J., Winkel, K. D., & Gopalakrishnakone, P. (2010). The Global Snake Bite Initiative: an antidote for snake bite. The Lancet, 375(9708), 89–91.spa
dc.relation.referencesZanetti, G., Negro, S., Pirazzini, M., & Caccin, P. (2018). Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Bio-Protocol, 8(5), 1–12.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsAntídotosspa
dc.subject.decsVeneno de víborasspa
dc.subject.decsViper Venomseng
dc.subject.lembAntidoteseng
dc.subject.proposalMicrurusspa
dc.subject.proposalMicruruseng
dc.subject.proposalbloqueo neuromuscularspa
dc.subject.proposalVenenospa
dc.subject.proposalPreparación neuromuscularspa
dc.subject.proposalPlaca neuromotoraspa
dc.subject.proposalUnión neuromuscularspa
dc.subject.proposalNeuromuscular blockadeeng
dc.subject.proposalVenomeng
dc.subject.proposalNeuromuscular preparationseng
dc.subject.proposalNeuromuscular junctioneng
dc.titleEvaluación de la capacidad neutralizante de un antiveneno anticoral polivalente en una preparación neuromuscularspa
dc.title.translatedEvaluation of the neutralizing capacity of a polyvalent anticoral antivenom in a neuromuscular preparationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030581957.2022.pdf
Tamaño:
3.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: