Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA)

dc.contributor.advisorGrisales Díaz, Víctor Hugo
dc.contributor.advisorVélez Upegui, Jaime Ignacio
dc.contributor.authorSucerquia Serna, Cristian Giovanny
dc.date.accessioned2023-01-18T21:39:24Z
dc.date.available2023-01-18T21:39:24Z
dc.date.issued2022
dc.descriptionIlustracionesspa
dc.description.abstractEl método de Análisis Exergético de Ciclo de Vida (ELCA) es implementado, de la cuna a la puerta, para evaluar el aprovechamiento de tallos de café proveniente del departamento de Caldas - Colombia, como combustible en un proceso de gasificación que utiliza tecnología de lecho fijo. Esta biomasa ha sido utilizada por generaciones como combustible en fogones de leña artesanales es distintas fincas cafeteras, práctica que se ha ido reemplazando paulatinamente debido a la naturaleza contaminante de los gases generados y los efectos nocivos evidenciados en la salud. El proceso de gasificación de la biomasa fue simulado en Aspen Plus® y en el cual, se obtuvo una composición del gas de síntesis acorde con resultados experimentales y teóricos hallados en la literatura y que incluye H2 (17,07%), CO (18,62%), CO2 (15,66%), CH4 (5,37%) y N2 (43,28%) con un poder calorífico de 6.119 kJ/Nm3. Por otra parte, el Análisis de Ciclo de Vida se llevó a cabo en el software Umberto® LCA cuyos resultados, junto al Análisis Exergético permitieron determinar, para una distancia de transporte de biomasa de 30 km, la etapa con menor eficiencia exergética, la generación de energía en el motor de combustión interna (21,404%), y una Demanda Acumulada de Exergía (CExD) para la etapa con mayor consumo de recursos de 196,3714 MJeq, correspondiente a la Generación eléctrica (gasificador y motor); una vez se alcanzan los 100 km, la etapa con mayor consumo recursos pasa a ser el transporte. (Texto tomado de la fuente)spa
dc.description.abstractThe Exergetic Life Cycle Analysis (ELCA) method is implemented, from cradle to gate, to evaluate the use of coffee stems from the department of Caldas - Colombia, as fuel in a gasification process using fixed bed technology. This biomass has been used for generations as fuel in artisanal wood stoves in different coffee farms, a practice that has been gradually replaced due to the polluting nature of the gases generated and the harmful effects on health. The biomass gasification process was simulated in Aspen Plus® and the synthesis gas composition obtained was in accordance with experimental and theoretical results found in the literature, including H2 (17,07%), CO (18,62%), CO2 (15,66%), CH4 (5,37%) and N2 (43,28%) with a calorific value of 6.119 kJ/Nm3. In addition, the Life Cycle Analysis was carried out in Umberto® LCA software, whose results, combined with the Exergetic Analysis, allowed establishing, for a biomass transport distance of 30 km, the stage with the lowest exergy efficiency, the generation of energy in the internal combustion engine (21,404%), and a Cumulative Exergy Demand (CExD) for the stage with the highest resource consumption of 196,3714 MJeq, corresponding to electricity generation (gasifier and engine); once 100 km is reached, the stage with the highest resource consumption becomes transportation.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Medio Ambiente y Desarrollospa
dc.format.extentxv, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83021
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesIEA, “Global Energy Crisis,” 2022. https://www.iea.org/topics/global-energy-crisis (accessed Oct. 19, 2022)spa
dc.relation.referencesIEA, “Renewable Energy Market Update - May 2022,” 2022. Accessed: Oct. 19, 2022. [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-may-2022spa
dc.relation.referencesIEA, “Renewable Electricity,” 2022. Accessed: Oct. 20, 2022. [Online]. Available: https://www.iea.org/reports/renewable-electricityspa
dc.relation.referencesAgencia Nacional de Hidrocarburos, “Reservas de crudo y gas del país - Corte a 31 de diciembre de 2020,” Bogotá D.C., 2021.spa
dc.relation.referencesUPME, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2010.spa
dc.relation.referencesP. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2018.spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia, “El corazón de Caldas es el café,” https://caldas.federaciondecafeteros.org/cafe-de-caldas/, 2021.spa
dc.relation.referencesMinisterio de Agricultura, “Reporte: área, producción y rendimiento nacional por cultivo,” https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1, 2021.spa
dc.relation.referencesUPME, “Boletín Estadístico de Minas y Energía 2018 - 2021 1S,” 2021.spa
dc.relation.referencesIEA, IRENA, United Nations Statistics Division, The World Bank, and World Health Organization, “Tracking SDG7 The energy progress report 2022,” 2022.spa
dc.relation.referencesFederación Nacional de Cafeteros, Centro Nacional de Investigaciones de Café, Comité Departamental de Cafeteros de Caldas, Ministerio de Ambiente y Desarrollo Sostenible, and A. Lavola, “Nama café de Colombia: Acción de Mitigación Nacionalmente Apropiada (NAMA) en el Sector Cafetero de Colombia,” 2017.spa
dc.relation.referencesS. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, 2012, doi: 10.1038/nature11475.spa
dc.relation.referencesIEA, “World electricity generation mix by fuel, 1971-2019,” https://www.iea.org/data-and-statistics/charts/world-electricity-generation-mix-by-fuel-1971-2019, 2021.spa
dc.relation.referencesIPCC, “ Climate Change 2022: Mitigation of Climate Change,” 2022.spa
dc.relation.referencesIRENA, “World Energy Transitions Outlook 2022: 1.5°C Pathway,” Abu Dhabi, 2022.spa
dc.relation.referencesCongreso de la República de Colombia, Ley 1955. Congreso de la República de Colombia, 2019.spa
dc.relation.referencesUPME, “Boletín Estadístico de Minas y Energía 2016-2020,” 2021.spa
dc.relation.referencesUPME, “Plan Energético Nacional 2020-2050,” 2020.spa
dc.relation.referencesA. M. Osorio and L. Cifuentes, “Pequeñas centrales hidroeléctricas (PCH) en el Oriente del departamento de Caldas.‘Impactos ambientales y resistencias sociales en el posconflicto,’” Jurídicas, vol. 17, no. 2, pp. 180–198, 2020.spa
dc.relation.referencesL. Garavito Téllez, “Impactos ambientales de los parques eólicos y líneas de transmisión de energía sobre la biodiversidad de áreas protegidas del departamento de La Guajira, Colombia,” Universidad Pontificia Bolivariana, 2020.spa
dc.relation.referencesUPME, “Informe de avance de proyectos de generación - marzo de 2022,” http://www.siel.gov.co/Inicio/Generaci%C3%B3n/SeguimientoaproyectosdeGeneraci%C3%B3n/tabid/112/Default.aspx, 2022.spa
dc.relation.referencesC. González Posso and J. Barney, El viento del Este llega con revoluciones. Multinacionales y transición con energía eólica en territorio Wayúu, 2nd ed. Bogotá D.C., 2019.spa
dc.relation.referencesH. L. Raadal, L. Gagnon, I. S. Modahl, and O. J. Hanssen, “Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3417–3422, 2011, doi: https://doi.org/10.1016/j.rser.2011.05.001.spa
dc.relation.referencesA. Pascale, T. Urmee, and A. Moore, “Life cycle assessment of a community hydroelectric power system in rural Thailand,” Renew Energy, vol. 36, no. 11, pp. 2799–2808, 2011, doi: https://doi.org/10.1016/j.renene.2011.04.023.spa
dc.relation.referencesF. de Miranda Ribeiro and G. A. da Silva, “Life-cycle inventory for hydroelectric generation: a Brazilian case study,” J Clean Prod, vol. 18, no. 1, pp. 44–54, 2010, doi: https://doi.org/10.1016/j.jclepro.2009.09.006.spa
dc.relation.referencesVarun, R. Prakash, and I. K. Bhat, “Life cycle greenhouse gas emissions estimation for small hydropower schemes in India,” Energy, vol. 44, no. 1, pp. 498–508, 2012, doi: https://doi.org/10.1016/j.energy.2012.05.052.spa
dc.relation.referencesA. Garcia-Teruel, G. Rinaldi, P. R. Thies, L. Johanning, and H. Jeffrey, “Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance,” Appl Energy, vol. 307, p. 118067, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.118067.spa
dc.relation.referencesA. J. Nagle, G. Mullally, P. G. Leahy, and N. P. Dunphy, “Life cycle assessment of the use of decommissioned wind blades in second life applications,” J Environ Manage, vol. 302, p. 113994, 2022, doi: https://doi.org/10.1016/j.jenvman.2021.113994.spa
dc.relation.referencesQ. Li et al., “Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure,” Renewable and Sustainable Energy Reviews, vol. 138, p. 110499, 2021, doi: https://doi.org/10.1016/j.rser.2020.110499.spa
dc.relation.referencesR. Bhandari, B. Kumar, and F. Mayer, “Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors,” J Clean Prod, vol. 277, p. 123385, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123385.spa
dc.relation.referencesR. May, H. Middel, B. G. Stokke, C. Jackson, and F. Verones, “Global life-cycle impacts of onshore wind-power plants on bird richness,” Environmental and Sustainability Indicators, vol. 8, p. 100080, 2020, doi: https://doi.org/10.1016/j.indic.2020.100080.spa
dc.relation.referencesG. Mello, M. Ferreira Dias, and M. Robaina, “Wind farms life cycle assessment review: CO2 emissions and climate change,” Energy Reports, vol. 6, pp. 214–219, 2020, doi: https://doi.org/10.1016/j.egyr.2020.11.104.spa
dc.relation.referencesJ. Gong, S. B. Darling, and F. You, “Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts,” Energy Environ. Sci., vol. 8, no. 7, pp. 1953–1968, 2015, doi: 10.1039/C5EE00615E.spa
dc.relation.referencesV. M. Fthenakis and H. C. Kim, “Photovoltaics: Life-cycle analyses,” Solar Energy, vol. 85, no. 8, pp. 1609–1628, 2011, doi: https://doi.org/10.1016/j.solener.2009.10.002.spa
dc.relation.referencesA. Stoppato, “Life cycle assessment of photovoltaic electricity generation,” Energy, vol. 33, no. 2, pp. 224–232, 2008, doi: https://doi.org/10.1016/j.energy.2007.11.012.spa
dc.relation.referencesR. Kannan, K. C. Leong, R. Osman, H. K. Ho, and C. P. Tso, “Life cycle assessment study of solar PV systems: An example of a 2.7kWp distributed solar PV system in Singapore,” Solar Energy, vol. 80, no. 5, pp. 555–563, 2006, doi: https://doi.org/10.1016/j.solener.2005.04.008.spa
dc.relation.referencesM. Carpentieri, A. Corti, and L. Lombardi, “Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal,” Energy Convers Manag, vol. 46, no. 11, pp. 1790–1808, 2005, doi: https://doi.org/10.1016/j.enconman.2004.08.010.spa
dc.relation.referencesS. Farzad, M. A. Mandegari, and J. F. Görgens, “A critical review on biomass gasification, co-gasification, and their environmental assessments,” Biofuel Research Journal, vol. 3, no. 4, pp. 483–495, 2016, doi: 10.18331/BRJ2016.3.4.3.spa
dc.relation.referencesJ. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, and M. Ni, “Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants,” Science of The Total Environment, vol. 626, pp. 744–753, 2018, doi: https://doi.org/10.1016/j.scitotenv.2018.01.151.spa
dc.relation.referencesM. Kimming et al., “Biomass from agriculture in small-scale combined heat and power plants – A comparative life cycle assessment,” Biomass Bioenergy, vol. 35, no. 4, pp. 1572–1581, 2011, doi: https://doi.org/10.1016/j.biombioe.2010.12.027.spa
dc.relation.referencesF. Murphy, A. Sosa, K. McDonnell, and G. Devlin, “Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction,” Energy, vol. 109, pp. 1040–1055, 2016.spa
dc.relation.referencesC. A. Henao Henao, “Análisis energético, exergético y ambiental del uso de aceite crudo de Jatropha curcas en motores diésel,” Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesA. Ozbilen, I. Dincer, and M. A. Rosen, “Exergetic life cycle assessment of a hydrogen production process,” Int J Hydrogen Energy, vol. 37, no. 7, pp. 5665–5675, 2012, doi: 10.1016/j.ijhydene.2012.01.003.spa
dc.relation.referencesM. A. Curran, Life cycle assessment handbook: a guide for environmentally sustainable products. John Wiley & Sons, 2012.spa
dc.relation.referencesP. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour Technol, vol. 83, no. 1, pp. 37–46, 2002, doi: https://doi.org/10.1016/S0960-8524(01)00118-3.spa
dc.relation.referencesP. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresour Technol, vol. 83, no. 1, pp. 47–54, 2002, doi: https://doi.org/10.1016/S0960-8524(01)00119-5.spa
dc.relation.referencesL. Zhang, C. (Charles) Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Convers Manag, vol. 51, no. 5, pp. 969–982, 2010, doi: https://doi.org/10.1016/j.enconman.2009.11.038.spa
dc.relation.referencesA. D. Rijnsdorp and B. van Vingerhoed, “Feeding of plaice Pleuronectes platessa L. and sole Solea solea (L.) in relation to the effects of bottom trawling,” J Sea Res, vol. 45, no. 3–4, pp. 219–229, 2001.spa
dc.relation.referencesJ. Rezaiyan and N. P. Cheremisinoff, Gasification technologies: a primer for engineers and scientists. CRC press, 2005.spa
dc.relation.referencesP. Basu, Biomass gasification and pyrolysis: practical design and theory. Academic press, 2010.spa
dc.relation.referencesIRENA, “Estadísticas de Capacidad Renovable 2020,” 2022.spa
dc.relation.referencesASOCAÑA, “Informe anual 2020-2021 Sector Agroindustrial de la Caña,” 2021.spa
dc.relation.referencesICO, “ICO - World coffee production,” 2021.spa
dc.relation.referencesN. Rodríguez and D. Zambrano, “Los subproductos del café: fuente de energía renovable,” 2010.spa
dc.relation.referencesCenicafé, “Sistemas de renovación de cafetales para recuperar y estabilizar la producción,” Jan. 2016.spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia, “Informe de gestión 2021,” 2021. Accessed: Jul. 23, 2022. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2022/05/IG-2021-FNC-Web.pdfspa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia, “Comportamiento de la industria cafetera colombiana 2018,” 2018.spa
dc.relation.referencesC. M. Galanakis, Handbook of coffee processing by-products: sustainable applications. Academic Press, 2017.spa
dc.relation.referencesDANE, “La información del DANE en la toma de decisiones regionales, Manizales - Caldas,” 2022.spa
dc.relation.referencesW. Klöpffer, Background and future prospects in life cycle assessment. Springer Science & Business Media, 2014.spa
dc.relation.referencesICONTEC, “NTC-ISO 14040. Gestion ambiental. Análisis del Ciclo de Vida; Principios y marco de referencia.” Bogota, Colombia, 2007.spa
dc.relation.referencesG. F. Grubb and B. R. Bakshi, “Life Cycle of Titanium Dioxide Nanoparticle Production: Impact of Emissions and Use of Resources,” J Ind Ecol, vol. 15, no. 1, pp. 81–95, 2011, doi: 10.1111/j.1530-9290.2010.00292.x.spa
dc.relation.referencesJ. Dewulf et al., “Exergy: Its potential and limitations in environmental science and technology,” Environ Sci Technol, vol. 42, no. 7, pp. 2221–2232, 2008, doi: 10.1021/es071719a.spa
dc.relation.referencesE. Querol, B. Gonzalez-Regueral, and J. L. Perez-Benedito, Practical approach to exergy and thermoeconomic analyses of industrial processes. Springer Science & Business Media, 2012.spa
dc.relation.referencesB. de Meester, J. Dewulf, A. Janssens, and H. van Langenhove, “An improved calculation of the exergy of natural resources for Exergetic Life Cycle Assessment (ELCA),” Environ Sci Technol, vol. 40, no. 21, pp. 6844–6851, 2006, doi: 10.1021/es060167d.spa
dc.relation.referencesJ. Szargut, D. R. Morris, and F. R. Steward, “Exergy analysis of thermal, chemical, and metallurgical processes,” 1987.spa
dc.relation.referencesI. Dincer and M. A. Rosen, Exergy. 2013. doi: 10.1016/C2010-0-68369-6.spa
dc.relation.referencesJ. Niembro and M. González, “Categorías de evaluación de impacto de ciclo de vida vinculadas con energía: revisión y prospectiva,” 2008.spa
dc.relation.referencesM. E. Bösch, S. Hellweg, M. A. J. Huijbregts, and R. Frischknecht, “Applying Cumulative Exergy Demand (CExD) indicators to the ecoinvent database,” International Journal of Life Cycle Assessment, vol. 12, no. 3, pp. 181–190, 2007, doi: 10.1065/lca2006.11.282.spa
dc.relation.referencesN. A. Cano, C. Hasenstab, and H. I. Velásquez, “Exergy life cycle assessment indicators in colombian gold mining sector,” Journal of Sustainable Mining, vol. 19, 2020.spa
dc.relation.referencesF. Chejne, C. Valdés, and G. Marrugo, La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria.spa
dc.relation.referencesJ. Fernández, E. Flórez, and F. Mondragón, “Aproximación de la distribución de porosidad de un semicoque gasificado con CO2 y H2O,” 2000.spa
dc.relation.referencesW. Ruiz, A. Montoya, and F. Mondragón, “Efecto de inhibición del CO Y H2 durante la gasificación del semicoque de Titiribí con CO2 Y H2O,” 2000.spa
dc.relation.referencesW. Ruiz, O. Pérez, E. Flórez, and F. Mondragón, “Cinética de la gasificación de semicoque del carbón de Tititibí CO2, H2O Y CO2-H2O,” 2000.spa
dc.relation.referencesA. Ocampo, F. Chejne, and F. Mondragón, “Gasificación de carbones colombianos en lecho fluidizado,” 1999.spa
dc.relation.referencesG. Moreno, S. Cruz, and L. Pacheco, “Efectos del hinchamiento con solventes en la gasificación del carbón de Cerrejón,” 2000.spa
dc.relation.referencesE. Arenas, “Evolución del área superficial durante la gasificación de carbón,” 2002.spa
dc.relation.referencesG. Osorio Cano, Z. Zapata Benabithe, and E. Arenas Castiblanco, “Parámetros cinéticos de la gasificación de mezclas de residuos agrícolas y carbón ripio con vapor de agua,” Revista Energética Universidad Nacional de Colombia, 2007.spa
dc.relation.referencesJ. Espinosa, “Evaluación de la cadena de productiva para la potencial implementación y fabricación de sistemas de gasificación de carbón a escala industrial en Colombia,” Universidad Nacional de Colombia, 2011.spa
dc.relation.referencesE. J. Emery Genes, “Destilación secundaria de alquitranes generados en la gasificación de cuesco de palma africana,” Universidad Nacional de Colombia, 2014.spa
dc.relation.referencesJ. Barco Burgos, “Gasificación de cuesco de palma para la obtención de gas combustible en un reactor de lecho fijo,” Universidad Nacional de Colombia, Bogotá D.C., 2015.spa
dc.relation.referencesC. E. Oliveros, J. R. Sanz, and N. Rodríguez, “Evaluacion de un gasificador de flujo descendente utilizando astillas de madera de cafe,” 2017.spa
dc.relation.referencesC. A. García, Á. Peña, R. Betancourt, and C. A. Cardona, “Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case,” J Environ Manage, vol. 216, pp. 160–168, 2018.spa
dc.relation.referencesD. F. Vallejo Cifuentes, “Efecto de la peletización de biomasa sobre el desempeño del proceso gasificación en un reactor de lecho fluidizado - Caso de estudio: cascarilla de arroz,” Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesUPME, “Informe de registro de proyectos de generación de electricidad,” 2021. https://app.powerbi.com/view?r=eyJrIjoiMmMyZmM1MGMtNzExZC00NzJlLTk5ODAtNWUyMzYxMGMwMGYzIiwidCI6IjMzZWYwNmM5LTBiNjMtNDg3MC1hNTY1LWIzYzc5NWIxNmE1MyIsImMiOjR9 (accessed Nov. 18, 2022).spa
dc.relation.referencesUPME, “Solicitudes de autogeneración y generación distribuida,” 2022. https://public.tableau.com/app/profile/upme/viz/AutogeneracinYGeneracinDistribuida2022/Historia1 (accessed Nov. 18, 2022).spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible and Ministerio de Agricultura y Desarrollo Rural, “Plan de acción para la gestión sostenible de la biomasa residual,” 2022.spa
dc.relation.referencesEnergética 2030, “P4: Poligeneración la biomasa,” 2022. https://www.energetica2030.co/p4-poligeneracion-biomasa/ (accessed Nov. 18, 2022).spa
dc.relation.referencesH. R. Becerra-Lopez and P. Golding, “Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas,” Energy, vol. 32, no. 11, pp. 2167–2186, 2007, doi: 10.1016/j.energy.2007.04.009.spa
dc.relation.referencesL. Lombardi, “Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of a semi-closed gas turbine cycle with CO2 chemical absorption,” Energy Convers Manag, vol. 42, no. 1, pp. 101–114, 2001, doi: 10.1016/S0196-8904(00)00033-9.spa
dc.relation.referencesA. R. Azimian, P. L. Olausson, and M. Assadi, “Pre-design studies of cycles with energy, exergy, thermoeconomy and ELCA analysis,” in American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2002, vol. 4 A, pp. 313–318. doi: 10.1115/GT2002-30418.spa
dc.relation.referencesG. Finnveden and P. Östlund, “Exergies of natural resources in life-cycle assessment and other applications,” Energy, vol. 22, no. 9, pp. 923–931, 1997, doi: 10.1016/S0360-5442(97)00022-4.spa
dc.relation.referencesR. L. Cornelissen, “Thermodynamics and sustainable development The use of exergy analysis and the reduction of irreversibility,” Universiteit Twente, Enschede, 1997.spa
dc.relation.referencesR. L. Cornelissen and G. G. Hirs, “The value of the exergetic life cycle assessment besides the LCA,” Energy Convers Manag, vol. 43, no. 9–12, pp. 1417–1424, 2002, doi: 10.1016/S0196-8904(02)00025-0.spa
dc.relation.referencesD. Fiaschi and L. Lombardi, “Integrated gasifier combined cycle plant with integrated Co2 - H2S removal: Performance analysis, life cycle assessment and exergetic life cycle assessment,” International Journal of Applied Thermodynamics, vol. 5, no. 1, pp. 13–24, 2002, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036493408&partnerID=40&md5=52f54fc19743d6c7461ec36cf35ae76dspa
dc.relation.referencesG. Beccali, M. Cellura, and M. Mistretta, “New exergy criterion in the ‘multi-criteria’ context: A life cycle assessment of two plaster products,” Energy Convers Manag, vol. 44, no. 17, pp. 2821–2838, 2003, doi: 10.1016/S0196-8904(03)00043-8.spa
dc.relation.referencesL. Lombardi, “Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation,” Energy Convers Manag, vol. 44, no. 1, pp. 93–108, 2003, doi: 10.1016/S0196-8904(02)00049-3.spa
dc.relation.referencesM. Granovskii, I. Dincer, and M. A. Rosen, “Exergetic life cycle assessment of hydrogen production from renewables,” J Power Sources, vol. 167, no. 2, pp. 461–471, 2007, doi: 10.1016/j.jpowsour.2007.02.031.spa
dc.relation.referencesM. Belhani, M.-N. Pons, and D. Alonso, “SFGP 2007 - The effects of sludge digester biogas recovery on WWTP ecological impacts and exergetic balance,” International Journal of Chemical Reactor Engineering, vol. 6, 2008, doi: 10.2202/1542-6580.1666.spa
dc.relation.referencesH. I. Velásquez Arredondo, A. A. Ruiz Colorado, and S. Oliveira Junior, “Ethanol production from banana fruit and its lignocellulosic residues: Exergy and renewability analysis,” International Journal of Thermodynamics, vol. 12, no. 3, pp. 155–162, 2009, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953012534&partnerID=40&md5=05d1915e01556e95e679378bebf24cb4spa
dc.relation.referencesT. Hiraki and T. Akiyama, “Exergetic life cycle assessment of new waste aluminium treatment system with co-production of pressurized hydrogen and aluminium hydroxide,” Int J Hydrogen Energy, vol. 34, no. 1, pp. 153–161, 2009, doi: 10.1016/j.ijhydene.2008.09.073.spa
dc.relation.referencesB. de Meester, J. Dewulf, S. Verbeke, A. Janssens, and H. van Langenhove, “Exergetic life-cycle assessment (ELCA) for resource consumption evaluation in the built environment,” Build Environ, vol. 44, no. 1, pp. 11–17, 2009, doi: 10.1016/j.buildenv.2008.01.004.spa
dc.relation.referencesY. I. Zhang, S. Singh, and B. R. Bakshi, “Accounting for ecosystem sewices in life cycle assessment part I: A critical review,” Environ Sci Technol, vol. 44, no. 7, pp. 2232–2242, 2010, doi: 10.1021/es9021156.spa
dc.relation.referencesL. Talens Peiró, L. Lombardi, G. Villalba Méndez, and X. i Durany, “Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO),” Energy, vol. 35, no. 2, pp. 889–893, 2010, doi: 10.1016/j.energy.2009.07.013.spa
dc.relation.referencesY. Wang, J. Zhang, Y. Zhao, Z. Li, and C. Zheng, “Exergy life cycle assessment model of ‘cO2 zero-emission’ energy system and application,” Sci China Technol Sci, vol. 54, no. 12, pp. 3296–3303, 2011, doi: 10.1007/s11431-011-4567-x.spa
dc.relation.referencesY. Casas, J. Dewulf, L. E. Arteaga-Pérez, M. Morales, H. van Langenhove, and E. Rosa, “Integration of Solid Oxide Fuel Cell in a sugar-ethanol factory: Analysis of the efficiency and the environmental profile of the products,” J Clean Prod, vol. 19, no. 13, pp. 1395–1404, 2011, doi: 10.1016/j.jclepro.2011.04.018.spa
dc.relation.referencesS. Yang, Q. Yang, H. Li, X. Jin, X. Li, and Y. Qian, “An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes,” Ind Eng Chem Res, vol. 51, no. 48, pp. 15763–15777, 2012, doi: 10.1021/ie3015654.spa
dc.relation.referencesM. A. Rosen, I. Dincer, and A. Ozbilen, Exergy Analysis and its Connection to Life Cycle Assessment. 2012. doi: 10.1002/9781118528372.ch8.spa
dc.relation.referencesC. Moya et al., “Exergetic analysis in cane sugar production in combination with Life Cycle Assessment,” J Clean Prod, vol. 59, pp. 43–50, 2013, doi: 10.1016/j.jclepro.2013.06.028.spa
dc.relation.referencesS. Huysveld et al., “Resource use analysis of Pangasius aquaculture in the Mekong Delta in Vietnam using Exergetic Life Cycle Assessment,” J Clean Prod, vol. 51, pp. 225–233, 2013, doi: 10.1016/j.jclepro.2013.01.024.spa
dc.relation.referencesM. R. Hoque, X. G. Durany, G. v Méndez, and C. S. Sala, “Exergetic life cycle assessment: An improved option to analyze resource use efficiency of the construction sector,” Smart Innovation, Systems and Technologies, vol. 22, pp. 313–321, 2013, doi: 10.1007/978-3-642-36645-1_29.spa
dc.relation.referencesC. Koroneos and N. Stylos, “Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system,” International Journal of Life Cycle Assessment, vol. 19, no. 10, pp. 1716–1732, 2014, doi: 10.1007/s11367-014-0752-z.spa
dc.relation.referencesD. Iribarren, A. Susmozas, F. Petrakopoulou, and J. Dufour, “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification,” J Clean Prod, vol. 69, pp. 165–175, 2014, doi: 10.1016/j.jclepro.2014.01.068.spa
dc.relation.referencesX. Sui, Y. Zhang, S. Shao, and S. Zhang, “Exergetic life cycle assessment of cement production process with waste heat power generation,” Energy Convers Manag, vol. 88, pp. 684–692, 2014, doi: 10.1016/j.enconman.2014.08.035.spa
dc.relation.referencesT. Vandermeersch, R. A. F. Alvarenga, P. Ragaert, and J. Dewulf, “Environmental sustainability assessment of food waste valorization options,” Resour Conserv Recycl, vol. 87, pp. 57–64, 2014, doi: 10.1016/j.resconrec.2014.03.008.spa
dc.relation.referencesC. Ofori-Boateng and K. T. Lee, “An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment,” Appl Therm Eng, vol. 62, no. 1, pp. 90–104, 2014, doi: 10.1016/j.applthermaleng.2013.09.022.spa
dc.relation.referencesA. Keçebaş, “Determination of optimum insulation thickness in pipe for exergetic life cycle assessment,” Energy Convers Manag, vol. 105, pp. 826–835, 2015, doi: 10.1016/j.enconman.2015.08.017.spa
dc.relation.referencesS. E. Taelman, S. de Meester, L. Roef, M. Michiels, and J. Dewulf, “The environmental sustainability of microalgae as feed for aquaculture: A life cycle perspective,” Bioresour Technol, vol. 150, pp. 513–522, 2013, doi: 10.1016/j.biortech.2013.08.044.spa
dc.relation.referencesS. Huysveld et al., “Resource use assessment of an agricultural system from a life cycle perspective - a dairy farm as case study,” Agric Syst, vol. 135, pp. 77–89, 2015, doi: 10.1016/j.agsy.2014.12.008.spa
dc.relation.referencesG. Finnveden, Y. Arushanyan, and M. Brandão, “Exergy as a measure of resource use in life cyclet assessment and other sustainability assessment tools,” Resources, vol. 5, no. 3, 2016, doi: 10.3390/resources5030023.spa
dc.relation.referencesI. A. S. Ehtiwesh, M. C. Coelho, and A. C. M. Sousa, “Exergetic and environmental life cycle assessment analysis of concentrated solar power plants,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 145–155, 2016, doi: 10.1016/j.rser.2015.11.066.spa
dc.relation.referencesM. v Rocco and E. Colombo, “Exergy Life Cycle Assessment of a Waste-to-Energy Plant,” in Energy Procedia, 2016, vol. 104, pp. 562–567. doi: 10.1016/j.egypro.2016.12.095.spa
dc.relation.referencesM. v Rocco, A. di Lucchio, and E. Colombo, “Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach,” Appl Energy, vol. 194, pp. 832–844, 2017, doi: 10.1016/j.apenergy.2016.11.059.spa
dc.relation.referencesM. Risse, G. Weber-Blaschke, and K. Richter, “Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany,” Resour Conserv Recycl, vol. 126, pp. 141–152, 2017, doi: 10.1016/j.resconrec.2017.07.045.spa
dc.relation.referencesK. Whiting, L. G. Carmona, and T. Sousa, “A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 202–211, 2017, doi: 10.1016/j.rser.2017.03.059.spa
dc.relation.referencesA. Mehmeti, J. Pedro Pérez-Trujillo, F. Elizalde-Blancas, A. Angelis-Dimakis, and S. J. McPhail, “Exergetic, environmental and economic sustainability assessment of stationary Molten Carbonate Fuel Cells,” Energy Convers Manag, vol. 168, pp. 276–287, 2018, doi: 10.1016/j.enconman.2018.04.095.spa
dc.relation.referencesQ. Wang, Y. Ma, S. Li, J. Hou, and J. Shi, “Exergetic life cycle assessment of Fushun-type shale oil production process,” Energy Convers Manag, vol. 164, pp. 508–517, 2018, doi: 10.1016/j.enconman.2018.03.013.spa
dc.relation.referencesZ. Zhou, Y. Tang, Y. Chi, M. Ni, and A. Buekens, “Waste-to-energy: A review of life cycle assessment and its extension methods,” Waste Management and Research, vol. 36, no. 1, pp. 3–16, 2018, doi: 10.1177/0734242X17730137.spa
dc.relation.referencesS. Guven, “Calculation of optimum insulation thickness of external walls in residential buildings by using exergetic life cycle cost assessment method: Case study for Turkey,” Environ Prog Sustain Energy, vol. 38, no. 6, 2019, doi: 10.1002/ep.13232.spa
dc.relation.referencesS. Alanya-Rosenbaum and R. D. Bergman, “Life-cycle impact and exergy based resource use assessment of torrefied and non-torrefied briquette use for heat and electricity generation,” J Clean Prod, vol. 233, pp. 918–931, 2019, doi: 10.1016/j.jclepro.2019.05.298.spa
dc.relation.referencesA. G. Renteria Gamiz, W. de Soete, B. Heirman, P. Dahlin, S. de Meester, and J. Dewulf, “Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient,” Journal of Chemical Technology and Biotechnology, vol. 94, no. 6, pp. 1937–1944, 2019, doi: 10.1002/jctb.5975.spa
dc.relation.referencesD. Song, L. Lin, and Y. Wu, “Extended exergy accounting for a typical cement industry in China,” Energy, vol. 174, pp. 678–686, 2019, doi: 10.1016/j.energy.2019.03.006.spa
dc.relation.referencesM. A. Ehyaei, A. Ahmadi, and M. A. Rosen, “Energy, exergy, economic and advanced and extended exergy analyses of a wind turbine,” Energy Convers Manag, vol. 183, pp. 369–381, 2019, doi: 10.1016/j.enconman.2019.01.008.spa
dc.relation.referencesM. Dassisti, C. Semeraro, and M. Chimenti, “Hybrid exergetic Analysis-LCA approach and the industry 4.0 paradigm: Assessing manufacturing sustainability in an Italian SME,” in Procedia Manufacturing, 2019, vol. 33, pp. 655–662. doi: 10.1016/j.promfg.2019.04.082.spa
dc.relation.referencesH. Liu and S. Liu, “Exergy analysis in the assessment of hydrogen production from UCG,” Int J Hydrogen Energy, vol. 45, no. 51, pp. 26890–26904, 2020, doi: 10.1016/j.ijhydene.2020.07.112.spa
dc.relation.referencesY. Tang et al., “Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China,” Energy, vol. 205, 2020, doi: 10.1016/j.energy.2020.118002.spa
dc.relation.referencesQ. Li, G. Song, J. Xiao, J. Hao, H. Li, and Y. Yuan, “Exergetic life cycle assessment of hydrogen production from biomass staged-gasification,” Energy, vol. 190, 2020, doi: 10.1016/j.energy.2019.116416.spa
dc.relation.referencesM. Nwodo and C. Anumba, “Exergy‐based life cycle assessment of buildings: Case studies,” Sustainability (Switzerland), vol. 13, no. 21, 2021, doi: 10.3390/su132111682.spa
dc.relation.referencesJ. Li, L. Wang, Y. Chi, Z. Zhou, Y. Tang, and H. Zhang, “Life cycle assessment of advanced circulating fluidized bed municipal solid waste incineration system from an environmental and exergetic perspective,” Int J Environ Res Public Health, vol. 18, no. 19, 2021, doi: 10.3390/ijerph181910432.spa
dc.relation.referencesH. Hosseinzadeh-Bandbafha et al., “Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends,” Energy Convers Manag, vol. 241, 2021, doi: 10.1016/j.enconman.2021.114300.spa
dc.relation.referencesV. Selicati, N. Cardinale, and M. Dassisti, “The interoperability of exergy and Life Cycle Thinking in assessing manufacturing sustainability: A review of hybrid approaches,” J Clean Prod, vol. 286, 2021, doi: 10.1016/j.jclepro.2020.124932.spa
dc.relation.referencesZ. Khounani et al., “Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner,” J Environ Manage, vol. 279, 2021, doi: 10.1016/j.jenvman.2020.111822.spa
dc.relation.referencesUPME, “Informe Final Contrato UPME C-031-2019 Realizar un estudio que permita formular un programa actualizado de sustitución progresiva de leña como energético en el sector residencial en Colombia, con los componentes necesarios para su ejecución ,” 2019.spa
dc.relation.referencesCorporación Autónoma Regional de Caldas, “Plan de Acción Institucional 2016 - 2019,” 2016.spa
dc.relation.referencesGASNOVA, “Bases para el proyecto: Reemplazar el consumo de leña, mediante la ampliación de la cobertura de gas licuado de petróleo (GLP),” 2018.spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia, “Informe de gestión 2020 - Comité de Cafeteros de Caldas,” 2020.spa
dc.relation.referencesGobierno de Caldas, “Información de muncipios de Caldas,” https://site.caldas.gov.co/informacion-de-municipios, 2022.spa
dc.relation.referencesDANE, “Geovisor CNPV 2018 Caldas,” https://geoportal.dane.gov.co/geovisores/sociedad/cnpv-2018/?lt=4.456007353293281&lg=-73.2781601239999&z=6, 2018.spa
dc.relation.referencesS. Gmünder, C. Toro, J. M. Rojas Acosta, and N. Rodríguez-Valencia, “Huella Ambiental del Café en Colombia.” Quantis; Cenicafé, 2020.spa
dc.relation.referencesS. K. Sansaniwal, K. Pal, M. A. Rosen, and S. K. Tyagi, “Recent advances in the development of biomass gasification technology: A comprehensive review,” Renewable and sustainable energy reviews, vol. 72, pp. 363–384, 2017.spa
dc.relation.referencesA. Abuadala, I. Dincer, and G. F. Naterer, “Exergy analysis of hydrogen production from biomass gasification,” Int J Hydrogen Energy, vol. 35, no. 10, pp. 4981–4990, 2010.spa
dc.relation.referencesN. Romo Ortega, A. Toro, L. M. Florez Pardo, and A. Cañas Velazco, “Evaluation of physicochemical properties and thermal in stems coffee and its economic analysis for the production of solid pellets as biofuel,” 2011.spa
dc.relation.referencesV. Aristizábal-Marulanda, “Experimental production of ethanol, electricity, and furfural under the biorefinery concept,” Chem Eng Sci, vol. 229, p. 116047, 2021.spa
dc.relation.referencesC. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int J Hydrogen Energy, vol. 42, no. 9, pp. 5849–5864, 2017.spa
dc.relation.referencesS. Garcia-Freites, A. Welfle, A. Lea-Langton, P. Gilbert, and P. Thornley, “The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector,” Biomass Convers Biorefin, vol. 10, no. 4, pp. 1137–1152, 2020.spa
dc.relation.referencesK. Rabea, S. Michailos, M. Akram, K. J. Hughes, D. Ingham, and M. Pourkashanian, “An improved kinetic modelling of woody biomass gasification in a downdraft reactor based on the pyrolysis gas evolution,” Energy Convers Manag, vol. 258, p. 115495, 2022.spa
dc.relation.referencesW.-C. Yan et al., “Model-based downdraft biomass gasifier operation and design for synthetic gas production,” J Clean Prod, vol. 178, pp. 476–493, 2018.spa
dc.relation.referencesC. A. Rivillas and Á. Gaitán, “Germinadores de café,” Cenicafé, 2013. doi: https://doi.org/10.38141/cenbook-0026_14.spa
dc.relation.referencesJ. Arcila, F. Farfán, A. Moreno, L. F. Salazar, and E. Hincapíe, “Sistemas de producción de café en Colombia,” Chinchiná, Caldas, 2007.spa
dc.relation.referencesK. J. Ptasinski, Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries. 2016. doi: 10.1002/9781119118169.spa
dc.relation.referencesJ. Koppejan and S. van Loo, The handbook of biomass combustion and co-firing. Routledge, 2012.spa
dc.relation.referencesR. L. Reaño, V. A. N. de Padua, and A. B. Halog, “Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine,” Energies (Basel), vol. 14, no. 16, p. 4942, 2021.spa
dc.relation.referencesD. M. Y. Maya, A. L. E. Sarmiento, C. Oliveira, E. E. S. Lora, and R. Andrade, “Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits,” J Chem Chem Eng, vol. 10, no. 6, pp. 249–255, 2016.spa
dc.relation.referencesJ. Szargut, Exergy method: technical and ecological applications, vol. 18. WIT press, 2005.spa
dc.relation.referencesM. A. Fauzi, P. Setyono, and S. H. Pranolo, “Environmental assessment of a small power plant based on palm kernel shell gasification,” in AIP Conference Proceedings, 2020, vol. 2296, no. 1, p. 020038.spa
dc.relation.referencesC. Bauer, “Life Cycle Assessment of Fossil and Biomass Power Generation Chains,” Oct. 2008.spa
dc.relation.referencesJ. Szargut and D. R. Morris, “Cumulative exergy consumption and cumulative degree of perfection of chemical processes,” Int J Energy Res, vol. 11, no. 2, pp. 245–261, 1987.spa
dc.relation.referencesA. Agudelo, J. Agudelo, and P. Benjumea, “Diagnóstico exergético del proceso de combustión en un motor Diesel,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 45, pp. 41–53, 2008.spa
dc.relation.referencesM. Bararzadeh Ledari, Y. Saboohi, A. Valero, and S. Azamian, “Exergy analysis of a bio-system: Soil–plant interaction,” Entropy, vol. 23, no. 1, p. 3, 2020.spa
dc.relation.referencesM. Rasoolizadeh, M. Salarpour, M. A. Borazjani, A. Nikkhah, H. Mohamadi, and V. Sarani, “Modeling and optimizing the exergy flow of tropical crop production in Iran,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101683, 2022.spa
dc.relation.referencesI. Dincer and A. Abu-Rayash, “Chapter 5-Community energy systems,” Energy Sustainability, pp. 101–118, 2020.spa
dc.relation.referencesV. Schnorf, E. Trutnevyte, G. Bowman, and V. Burg, “Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland,” J Clean Prod, vol. 293, p. 125971, 2021.spa
dc.relation.referencesA. G. Renteria Gamiz, W. de Soete, B. Heirman, P. Dahlin, S. de Meester, and J. Dewulf, “Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 6, pp. 1937–1944, 2019.spa
dc.relation.referencesF. C. Eboh, P. Ahlström, and T. Richards, “Estimating the specific chemical exergy of municipal solid waste,” Energy Sci Eng, vol. 4, no. 3, pp. 217–231, 2016.spa
dc.relation.referencesM. Mehrpooya, M. Khalili, and M. M. M. Sharifzadeh, “Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources),” Renewable and Sustainable Energy Reviews, vol. 91, no. 2, pp. 869–887, 2018, doi: 10.1016/j.rser.2018.04.076.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembDemanda de energía eléctrica
dc.subject.lembImpacto ambiental
dc.subject.otherEnergía renovable
dc.subject.proposalexergíaspa
dc.subject.proposalgasificación de biomasaspa
dc.subject.proposaltallos de caféspa
dc.subject.proposalciclo de vidaspa
dc.subject.proposalanálisis exergéticospa
dc.subject.proposaldemanda de exergía acumuladaspa
dc.subject.proposalenergía renovablespa
dc.subject.proposalexergyeng
dc.subject.proposalbiomass gasificationeng
dc.subject.proposalcoffee stemseng
dc.subject.proposallife cycleeng
dc.subject.proposalExergetic analysiseng
dc.subject.proposalcumulative exergy demandeng
dc.subject.proposalrenewable energyeng
dc.titleIdentificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA)spa
dc.title.translatedIdentification of stages to be optimized in biomass gasification for sustainable energy production through the application of exergetic life cycle assessment (ELCA)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060646872.2022.pdf
Tamaño:
1.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Magister en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: