Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr

dc.contributor.advisorVelasquéz Márquez, León Mauricio
dc.contributor.authorQuiroga Mateus, William Andrés
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2023-06-01T15:10:41Z
dc.date.available2023-06-01T15:10:41Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEn este trabajo de investigación se realizó inicialmente una revisión del estado del arte sobre la reacción de carboxilación directa entre el glicerol y el CO2 para la obtención de carbonato de glicerol, abarcando aspectos como las problemáticas ambientales, la naturaleza de los catalizadores empleados, limitaciones cinéticas y termodinámicas. Posteriormente, óxidos de La y La/Zr fueron sintetizados por el método de coprecipitación convencional y caracterizados evaluando sus propiedades fisicoquímicas para luego ser empleados en dicha reacción. Adicionalmente, se realizó un estudio sobre los parámetros que afectan la reacción como el efecto del agua, temperatura, presión, tiempo, agente desecante y masa de catalizador. Finalmente, los resultados obtenidos ilustran que el catalizador de La/Zr es promisorio para la producción de este compuesto de alto interés industrial debido a la correlación entre su capacidad de captura y liberación de CO2 junto a su actividad catalítica. (Texto tomado de la fuente)spa
dc.description.abstractIn this research work, a review of the state of the art on the direct carboxylation reaction between glycerol and CO2 to obtain glycerol carbonate was mainly carried out, covering aspects such as environmental problems, the nature of the catalysts used, kinetic and thermodynamics limitations. Subsequently, the oxides of La and La/Zr were synthesized by the conventional coprecipitation method and characterized by evaluating their physicochemical properties to later be used in this reaction. Additionally, a study was carried out on the parameters that flourish the reaction such as the effect of water, temperature, pressure, time, drying agent and catalyst mass. Finally, the results obtained illustrate that the La/Zr catalyst is promising for the production of this compound of high industrial interest due to the connection between its capacity to capture and release CO2 together with its catalytic activity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaCatálisis Heterogéneaspa
dc.format.extent86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83943
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] C. Teodoriu and O. Bello, “A review of cement testing apparatus and methods under CO2 environment and their impact on well integrity prediction – Where do we stand ?,” J. Pet. Sci. Eng., vol. 187, no. September 2019, p. 106736, 2020.spa
dc.relation.references[2] H. Esmaeili, “A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts,” Fuel Process. Technol., vol. 230, no. March, p. 107224, 2022.spa
dc.relation.references[3] M. V Semkiv, J. Ruchala, K. V Dmytruk, and A. A. Sibirny, “100 Years Later , What Is New in Glycerol Bioproduction ?,” Trends Biotechnol., vol. 38, no. 8, pp. 907–916, 2020.spa
dc.relation.references[4] J. A. Posada-duque and C. A. Cardona-alzate, “Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiésel la producción de biodiésel,” Ing. Univ. Bogotá, vol. 14, no. 1, pp. 9–27, 2010.spa
dc.relation.references[5] International Energy Agency, “CO2 emissions from fuel combustion,” Outlook, pp. 1–92, 2020.spa
dc.relation.references[6] S. Lukato, G. N. Kasozi, B. Naziriwo, and E. Tebandeke, “Glycerol carbonylation with CO2spa
dc.relation.references[7] P. de Caro, M. Bandres, M. Urrutigoïty, C. Cecutti, and S. Thiebaud-Roux, “Recent progress in synthesis of glycerol carbonate and evaluation of its plasticizing properties,” Front. Chem., vol. 7, no. MAY, pp. 1–13, 2019.spa
dc.relation.references[8] “Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases.” [Online]. Available: https://gml.noaa.gov/ccgg/trends/global.html. [Accessed: 19-Feb-2022].spa
dc.relation.references[9] S. Chen, G. Zhou, and C. Miao, “Green and renewable bio-diesel produce from oil hydrodeoxygenation : Strategies for catalyst development and mechanism,” Renew. Sustain. Energy Rev., vol. 101, no. November 2018, pp. 568–589, 2019.spa
dc.relation.references[10] Herrera et all, “Biocombustibles En Colombia,” FedeBiocombustibles, p. 22, 2020.spa
dc.relation.references[11] “Federación nacional de biocombustibles de Colombia,” 2021. [Online]. Available: https://www.fedebiocombustibles.com/nota-web-id-488.htm. [Accessed: 23-Mar-2021].spa
dc.relation.references[12] M. Ripoll and L. Betancor, “Opportunities for the valorization of industrial glycerol via biotransformations,” Curr. Opin. Green Sustain. Chem., vol. 28, 2021.spa
dc.relation.references[13] A. Khosravanipour Mostafazadeh et al., “An insight into an electro-catalytic reactor concept for high value-added production from crude glycerol: Optimization, electrode passivation, product distribution, and reaction pathway identification,” Renewable Energy, vol. 172. pp. 130–144, 2021.spa
dc.relation.references[14] P. U. Okoye, A. Longoria, P. J. Sebastian, S. Wang, S. Li, and B. H. Hameed, “A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol,” Sci. Total Environ., vol. 719, 2020.spa
dc.relation.references[15] S. Nomanbhay, M. Y. Ong, K. W. Chew, P. Show, M. K. Lam, and W. Chen, “Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production : A Review,” Energies, vol. 13, no. 1483, pp. 1–23, 2020.spa
dc.relation.references[16] M. O. Sonnati, S. Amigoni, T. Darmanin, and O. Choulet, “Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications,” Green Chem., no. 2005, pp. 283–306, 2013.spa
dc.relation.references[17] S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, and J. A. Lopez-Sanchez, “Recent progress in the synthesis and applications of glycerol carbonate,” Curr. Opin. Green Sustain. Chem., vol. 14, pp. 99–107, 2018.spa
dc.relation.references[18] G. P. Fernandes and G. D. Yadav, “Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst,” Catal. Today, vol. 309, no. March 2017, pp. 153–160, 2018.spa
dc.relation.references[19] W. K. Teng, G. C. Ngoh, R. Yusoff, and M. K. Aroua, “A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters,” Energy Convers. Manag., vol. 88, pp. 484–497, 2014.spa
dc.relation.references[20] S. Sahani, S. N. Upadhyay, and Y. C. Sharma, “Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification,” Ind. Eng. Chem. Res., vol. 60, no. 1, pp. 67–88, 2021.spa
dc.relation.references[21] H. Li et al., “Synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3/ZnO 36 catalysts,” Catal. Sci. Technol., vol. 0, no. 0, p. 0, 2013.spa
dc.relation.references[22] J. Liu and D. He, “Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst,” J. CO2 Util., vol. 26, no. May, pp. 370–379, 2018.spa
dc.relation.references[23] J. Liu, Y. Li, H. Liu, and D. He, “Transformation of CO2 and glycerol to glycerol carbonate over CeO2 e ZrO2 solid solution effect of Zr doping,” Biomass and Bioenergy, vol. 118, no. October 2017, pp. 74–83, 2018.spa
dc.relation.references[24] H. Li et al., “Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites,” Catal. Sci. Technol., vol. 5, no. 2, pp. 989–1005, 2015.spa
dc.relation.references[25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 663–674, 2003.spa
dc.relation.references[25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 663–674, 2003.spa
dc.relation.references[26] Huntsman Corp, “JEFFSOL ® Glycerine Carbonate,” p. Technical Bulletin, 2010.spa
dc.relation.references[27] R. G. Sotomayor, A. R. Holguín, D. M. Cristancho, D. R. Delgado, and F. Martínez, “Extended Hildebrand Solubility Approach applied to piroxicam in ethanol + water mixtures,” J. Mol. Liq., vol. 180, pp. 34–38, 2013.spa
dc.relation.references[28] P. Lameiras et al., “Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR,” J. Magn. Reson., vol. 212, no. 1, pp. 161–168, 2011.spa
dc.relation.references[29] D. Bégin, M. Moumen, and M. Gérin, “La substitution des solvants par l’alcool benzylique rapport.” 2005.spa
dc.relation.references[30] C. Ursin, C. M. Hansen, J. W. Van Dyk, P. O. Jensen, I. J. Christensen, and J. Ebbehoej, “Permeability of Commercial Solvents Through Living Human Skin,” Am. Ind. Hyg. Assoc. J., vol. 56, no. 7, pp. 651–660, 1995.spa
dc.relation.references[31] G. Ou, B. He, and Y. Yuan, “Design of biosolvents through hydroxyl functionalization of compounds with high dielectric constant,” Appl. Biochem. Biotechnol., vol. 166, no. 6, pp. 1472–1479, 2012.spa
dc.relation.references[32] M. Benoit, Y. Brissonnet, E. Guélou, K. De-Oliveira-Vigier, J. Barrault, and F. Jérôme, “Acidcatalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent,” ChemSusChem, vol. 3, no. 11, pp. 1304–1309, 2010.spa
dc.relation.references[33] S. Holmiere, R. Valentin, and P. Marechal, “Esters of oligo- ( glycerol carbonate-glycerol ): new biobased oligomeric,” 2016.spa
dc.relation.references[34] J. Britz, W. H. Meyer, and G. Wegner, “Blends of poly(meth)acrylates with 2-oxo- (1,3)dioxolane side chains and lithium salts as lithium ion conductors,” Macromolecules, vol. 40, no. 21, pp. 7558–7565, 2007.spa
dc.relation.references[35] A. S. Kovvali and K. K. Sirkar, “Dendrimer liquid membranes: CO2 separation from gas mixtures,” Ind. Eng. Chem. Res., vol. 40, no. 11, pp. 2502–2511, 2001.spa
dc.relation.references[36] K. Iaych, S. Dumarcay, P. Gérardin, R. Belakhmima, M. Ebn Touhami, and M. Chaouch, “Non isocyanate route to polyurethanes from polyglycerol five membered polycarbonate,” J. Mater. Environ. Sci., vol. 6, no. 11, pp. 3245–3250, 2015.spa
dc.relation.references[37] R. Bai et al., “One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2,” Green Chem., vol. 15, no. 10, pp. 2929–2934, 2013.spa
dc.relation.references[38] J. Geschwind and H. Frey, “Poly(1,2-glycerol carbonate): A fundamental polymer structure synthesized from CO2 and glycidyl ethers,” Macromolecules, vol. 46, no. 9, pp. 3280–3287, 2013.spa
dc.relation.references[39] Y. Tachibana, X. Shi, D. Graiver, and R. Narayan, “The Use of Glycerol Carbonate in the Preparation of Highly Branched Siloxy Polymers,” Silicon, vol. 7, no. 1, pp. 5–13, 2015.spa
dc.relation.references[40] H. Joo, S. J. Cho, and K. Na, “Control of CO2 absorption capacity and kinetics by MgO-based dry sorbents promoted with carbonate and nitrate salts,” J. CO2 Util., vol. 19, pp. 194–201, 2017.spa
dc.relation.references[41] J. Miranda-Pizarro, A. Perejón, J. M. Valverde, L. A. Pérez-Maqueda, and P. E. SánchezJiménez, “CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions,” Fuel, vol. 196, pp. 497–507, 2017.spa
dc.relation.references[42] N. Azri, R. Irmawati, U. Idris Nda-Umar, M. Izham Saiman, and Y. Hin Taufiq-Yap, “Promotional Effect of Transition Metals (Cu, Ni, Co, Fe, Zn)–Supported on Dolomite for Hydrogenolysis of Glycerol into 1,2-propanediol,” Arab. J. Chem., p. 103047, 2021.spa
dc.relation.references[43] T. Leungcharoenwattana and S. Jitkarnka, “Bio-based chemical production from glycerol conversion with ethanol co-feeding over Zr-promoted MgAl-layered double oxide catalysts: Impact of zirconium location,” J. Clean. Prod., vol. 273, 2020.spa
dc.relation.references[44] X. Su et al., “Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate,” Green Chem., vol. 19, no. 7, pp. 1775–1781, 2017.spa
dc.relation.references[45] H. Li et al., “Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X = F, Cl, Br) catalysts: The influence of the interlayer anion,” J. Mol. Catal. A Chem., vol. 402, pp. 71–78, 2015.spa
dc.relation.references[46] N. A. Razali, M. Conte, and J. McGregor, “The role of impurities in the La2O3 catalysed carboxylation of crude glycerol,” Catal. Letters, vol. 149, no. 5, pp. 1403–1414, 2019.spa
dc.relation.references[47] V. A. Online, A. B. Halgeri, and G. V Shanbhag, “Glycerol acetins: Fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst,” RSC Adv., vol. 5, no. 126, pp. 104354–104362, 2015.spa
dc.relation.references[48] L. Jyoti et al., “Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride: Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous carbons,” J. Catal., vol. 329, pp. 237–247, 2015.spa
dc.relation.references[49] M. Aresta, A. Dibenedetto, F. Nocito, and C. Pastore, “A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions,” Atmos. Environ., vol. 41, no. 2, pp. 407–416, 2007.spa
dc.relation.references[50] J. George, Y. Patel, S. M. Pillai, and P. Munshi, “Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst,” J. Mol. Catal. A Chem., vol. 304, no. 1–2, pp. 1–7, 2009.spa
dc.relation.references[51] P. G. Jessop and B. Subramaniam, “Gas-Expanded Liquids,” Chem. Rev., vol. 107, pp. 2666– 2694, 2007.spa
dc.relation.references[52] J. Zhang and D. He, “Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: the role of supports,” Wiley Online Libr., no. April, 2014.spa
dc.relation.references[53] J. Liu, Y. Li, J. Zhang, and D. He, “Glycerol carbonylation with CO2 to glycerol carbonate 38 over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters,” Appl. Catal. A Gen., vol. 513, pp. 9–18, 2016.spa
dc.relation.references[54] C. yi Park, H. Nguyen-Phu, and E. W. Shin, “Glycerol carbonation with CO2 and La2O2CO3ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure,” Mol. Catal., vol. 435, pp. 99–109, 2017.spa
dc.relation.references[55] L. P. Ozorio and C. J. A. Mota, “Direct Carbonation of Glycerol with CO2 Catalyzed by Metal Oxides,” ChemPubSoc Eur., vol. 909, pp. 3260–3265, 2017.spa
dc.relation.references[56] J. Liu, Y. Li, H. Liu, and D. He, “Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts,” Appl. Catal. B Environ., vol. 244, no. September 2018, pp. 836–843, 2019.spa
dc.relation.references[57] Y. Li, H. Liu, L. Ma, J. Liu, and D. He, “Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3-ZnO catalyst — a case study of the photo-thermal synergism,” Catal. Sci. Technol., vol. 11, no. 3, pp. 1007–1013, 2021.spa
dc.relation.references[58] C. Collett, O. Mašek, N. Razali, and J. McGregor, “Influence of biochar composition and source material on catalytic performance: the carboxylation of glycerol with CO2 as a case study,” Catalysts, vol. 10, no. 9, pp. 1–20, 2020.spa
dc.relation.references[59] C. Vieville, J. W. Yoo, S. Pelet, and Z. Mouloungui, “Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins,” Catal. Letters, vol. 56, pp. 245–247, 1998.spa
dc.relation.references[60] L. P. Ozorio et al., “Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2,” Appl. Catal. A Gen., vol. 504, pp. 187–191, 2015.spa
dc.relation.references[61] C. Hu, M. Yoshida, H. Chen, S. Tsunekawa, Y. Lin, and J. Huang, “Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst,” Chem. Eng. Sci., vol. 235, p. 116451, 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalCarbonato de glicerolspa
dc.subject.proposalBiodiéselspa
dc.subject.proposalCarboxilación directaspa
dc.subject.proposalCaptura de CO2spa
dc.subject.proposalGlycerol carbonateeng
dc.subject.proposalBiodieseleng
dc.subject.proposalDirect carboxylationeng
dc.subject.proposalCO2 captureeng
dc.subject.wikidatacarboxylationeng
dc.subject.wikidataCarboxilaciónspa
dc.subject.wikidatacatalytic activityeng
dc.subject.wikidataactividad catalíticaspa
dc.titleObtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zrspa
dc.title.translatedObtaining of glycerol carbonate from glycerol and CO2 using La and La/Zr oxideseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024545419.2023.pdf
Tamaño:
2.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: