Pares coherentes generalizados de polinomios ortogonales en dos variables

dc.contributor.advisorPinzón Cortés, Natalia Camila
dc.contributor.authorCortés Garzón, Juan Esteban
dc.date.accessioned2023-07-07T20:15:55Z
dc.date.available2023-07-07T20:15:55Z
dc.date.issued2023-06
dc.description.abstractEn este trabajo nos centraremos en la obtención de pares x_k-coherentes de polinomios ortogonales en varias variables a partir de un sistema de polinomios ortogonales escogido inicialmente, concepto introducido en [28] de 2019 por Francisco Marcellán, Misael Marriaga, Teresa Pérez y Miguel Piñar, mediante el uso de programación en el software Wolfram Mathematica. (Texto tomado de la fuente)spa
dc.description.abstractIn this work we will focus on obtaining xk-coherent pairs of orthogonal polynomials in several variables from an initially chosen system of orthogonal polynomials, a concept introduced in [28] of 2019 by Francisco Marcellán, Misael Marriaga, Teresa Pérez and Miguel Piñar, by using programming in Wolfram Mathematica software.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extentvii, 46 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84168
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesÁlvarez-Nodarse, Renato: Monogr. Semin. Mat. García Galdeano. Vol. 26: Polinomios hipergeométricos clásicos y q-polinomios. Zaragoza: Prensas Universitarias de Zaragoza, 2003. – ISBN 84–7733–637–7.spa
dc.relation.referencesAppell, P. ; Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques. Polynômes d’Hermite. 1926.spa
dc.relation.referencesArea, Iván: Hypergeometric multivariate orthogonal polynomials. En: Orthogonal polynomials. Proceedings of the 2nd AIMS-Volkswagen Stiftung workshop on introduction to orthogonal polynomials and applications, Douala, Cameroon, October 5–12, 2018. Cham: Birkhäuser, 2020. – ISBN 978–3–030–36743–5; 978–3–030–36746–6; 978–3–030– 36744–2, p. 165–193.spa
dc.relation.referencesArea, Iván. ; Godoy, E. ; Ronveaux, A. ; Zarzo, A.: Bivariate second-order linear partial differential equations and orthogonal polynomial solutions. En: J. Math. Anal.Appl. 387 (2012), Nr. 2, p. 1188–1208. – ISSN 0022–247X.spa
dc.relation.referencesBarrio, Roberto ; Peña, Juan M. ; Sauer, Tomas: Three term recurrence for the evaluation of multivariate orthogonal polynomials. En: Journal of Approximation Theory 162 (2010), Nr. 2, p. 407–420. – ISSN 0021–9045.spa
dc.relation.referencesChihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.spa
dc.relation.referencesDelgado, Antonia M.: Ortogonalidad no estándar: Problemas Directos e Inversos, Doctoral Dissertation, Universidad Carlos III de Madrid. In Spanish, Tesis de Grado, 2006.spa
dc.relation.referencesDelgado, Antonia M. ; Geronimo, Jeffrey S. ; Iliev, Plamen ; Marcellán, Francisco: Two variable orthogonal polynomials and structured matrices. En: SIAM J. Matrix Anal. Appl. 28 (2006), Nr. 1, p. 118–147. – ISSN 0895–4798.spa
dc.relation.referencesDelgado, Antonia M. ; Marcellán, Francisco: Companion linear functionals and Sobolev inner products: a case study. En: Methods Appl. Anal. 11 (2004), Nr. 2, p. 237–266.spa
dc.relation.referencesDelgado, Antonia M. ; Marcellán, Francisco: On an extension of symmetric coherent pairs of orthogonal polynomials. En: J. Comput. Appl. Math. 178 (2005), Nr. 1-2, p. 155–168.spa
dc.relation.referencesDunkl, Charles F. ; Xu, Yuan: Orthogonal polynomials of several variables. Cambridge: Cambridge University Press, 2001 (Encycl. Math. Appl.). ISSN 0953–4806.spa
dc.relation.referencesEngelis, G. K.: On some two-dimensional analogues of the classical orthogonal polynomials. En: Latv. Mat. Ezheg. 15 (1974), p. 169–202. – ISSN 0321–2270.spa
dc.relation.referencesFernández, Lidia ; Pérez, Teresa E. ; Piñar, Miguel A.: Classical orthogonal polynomials in two variables: a matrix approach. En: Numer. Algorithms 39 (2005), Nr. 1-3, p. 131–142. – ISSN 1017–1398.spa
dc.relation.referencesGarza, Luis ; Marcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-coherent pairs on the unit circle. En: Abstr. Appl. Anal. 2013 (2013), p. 8. – Id/No 307974. – ISSN 1085–3375.spa
dc.relation.referencesHahn, Wolfgang: Über die Jacobischen Polynome und zwei verwandte Polynomklassen. En: Mathematische Zeitschrift 39 (1935), p. 634–638.spa
dc.relation.referencesHermite, M. ; des sciences (France), Académie: Sur Un Nouveau Développement en Série Des Fonctions. Imprimerie de Gauthier-Villars, 1864.spa
dc.relation.referencesIserles, Arieh ; Koch, P. E. ; Nørsett, Syvert P. ; Sanz-Serna, J. M.: On polynomials orthogonal with respect to certain Sobolev inner products. En: J. Approx. Theory 65 (1991), Nr. 2, p. 151–175. – ISSN 0021–9045.spa
dc.relation.referencesJacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. 1859 (1859), Nr. 56, p. 149–165.spa
dc.relation.referencesde Jesus, M. N. ; Marcellán, Francisco. ; Petronilho, J. ; Pinzón-Cortés, N. C.: (M,N)-coherent pairs of order (m, n) and Sobolev orthogonal polynomials. En: J. Comput. Appl. Math. 256 (2014), p. 16–35. – ISSN 0377–0427.spa
dc.relation.referencesKarlin, S. ; McGregor, J. On some stochastic models in genetics. Stochastic Models Med. Biol., Proc. Sympos. Univ. Wisconsin 1963, 245-279. 1964.spa
dc.relation.referencesKarlin, S. ; McGregor, J.: Linear Growth Models with Many Types and Multidimensional Hahn Polynomials. En: Askey, Richard A. (Ed.): Theory and Application of Special Functions. Academic Press, 1975. – ISBN 978–0–12–064850–4, p. 261–288.spa
dc.relation.referencesKoornwinder, Tom: Two-Variable Analogues of the Classical Orthogonal Polynomials. En: Askey, Richard A. (Ed.): Theory and Application of Special Functions. Academic Press, 1975. – ISBN 978–0–12–064850–4, p. 435–495.spa
dc.relation.referencesKowalski, M. A.: Orthogonality and recursion formulas for polynomials in n variables. En: SIAM J. Math. Anal. 13 (1982), p. 316–323. – ISSN 0036–1410.spa
dc.relation.referencesKowalski, M. A.: The recursion formulas for orthogonal polynomials in n variables. En: SIAM J. Math. Anal. 13 (1982), p. 309–315. – ISSN 0036–1410.spa
dc.relation.referencesKrall, H. L. ; Frink, Orrin: A new class of orthogonal polynomials: The Bessel polynomials. En: Trans. Am. Math. Soc. 65 (1949), p. 100–115. – ISSN 0002–9947.spa
dc.relation.referencesKrall, H. L. ; Sheffer, I. M.: Orthogonal polynomials in two variables. En: Ann. Mat. Pura Appl. (4) 76 (1967), p. 325–376. – ISSN 0373–3114.spa
dc.relation.referencesLegendre, Adrien M.: Recherches sur l’attraction des spheroides homogenes. En: Mémoires de mathématique et de physique : prés. á l’Acad´emie Royale des Sciences, par divers savans, et lûs dans ses assemblées 1785 (2007), p. 411 – 434.spa
dc.relation.referencesMarcellán, Francisco ; Marriaga, Misael E. ; Pérez, Teresa E. ; Piñar, Miguel A.: Coherent pairs of bivariate orthogonal polynomials. En: J. Approx. Theory 245 (2019), p. 40–63. – ISSN 0021–9045.spa
dc.relation.referencesMarcellán, Francisco ; Pérez, Teresa E. ; Piñar, Miguel A.: Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case. En: Ann. Numer. Math. 2 (1995), Nr. 1-4, p. 93–122. – ISSN 1021–2655.spa
dc.relation.referencesMarcellán, Francisco ; Petronilho, J.: Orthogonal polynomials and coherent pairs: The classical case. En: Indag. Math., New Ser. 6 (1995), Nr. 3, p. 287–307. – ISSN 0019–3577.spa
dc.relation.referencesMarcellán, Francisco ; Petronilho, José C. ; Pérez, Teresa E. ; Piñar, Miguel A.: What is beyond coherent pairs of orthogonal polynomials? En: J. Comput. Appl. Math. 65 (1995), Nr. 1-3, p. 267–277. – ISSN 0377–0427.spa
dc.relation.referencesMarcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-q-coherent pairs. En: Numer. Algorithms 60 (2012), Nr. 2, p. 223–239. – ISSN 1017–1398.spa
dc.relation.referencesMarcellán, Francisco ; Pinzón-Cortés, Natalia C.: (1, 1)-Dω-coherent pairs. En: J. Difference Equ. Appl. 19 (2013), Nr. 11, p. 1828–1848. – ISSN 1023–6198.spa
dc.relation.referencesMeijer, H. G.: Coherent pairs and zeros of Sobolev-type orthogonal polynomials. En: Indag. Math., New Ser. 4 (1993), Nr. 2, p. 163–176. – ISSN 0019–3577.spa
dc.relation.referencesMeijer, H. G.: Determination of all coherent pairs. En: J. Approx. Theory 89 (1997), Nr. 3, p. 321–343. – ISSN 0021–9045.spa
dc.relation.referencesProriol, Joseph: Sur une famille de polynômes à deux variables orthogonaux dans un triangle. En: C. R. Acad. Sci., Paris 245 (1957), p. 2459–2461. – ISSN 0001–4036.spa
dc.relation.referencesStieltjes, T.-J.: Recherches sur les fractions continues. En: Annales de la Faculté des sciences de Toulouse : Mathématiques 8 (1894), Nr. 4, p. J1–J122.spa
dc.relation.referencesSuetin, P. K.: Anal. Methods Spec. Funct.. Vol. 3: Orthogonal polynomials in two variables. Transl. from the 1988 Russian original by E. V. Pankratiev . Amsterdam: Gordon and Breach Science Publishers, 1999. – ISBN 90–5699–167–1.spa
dc.relation.referencesSzegö, Gábor: Colloq. Publ., Am. Math. Soc.. Vol. 23: Orthogonal polynomials. American Mathematical Society (AMS), Providence, RI, 1939 ISSN 0065–9258.spa
dc.relation.referencesTchebychev, Pafnutii L.: Théorie des mécanismes connus sous le nom de parallélogrammes. Imprimerie de l’Académie impériale des sciences, 1853.spa
dc.relation.referencesTchebyshev, Pafnutii L.: Sur le développement des fonctions à une seule variable. En: Bull. Acad. Sci. St. Petersb 1 (1859), Nr. 193-200, p. 124.spa
dc.relation.referencesWolfram Research, Inc. Mathematica, Version 12.1. Champaign, Illinois, (2020).spa
dc.relation.referencesZernike, F. ; Brinkman, H. C.: Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome. En: Proc. Akad. Wet. Amsterdam 38 (1935), p. 161–170. – ISSN 0370–0348.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembFunciones ortogonalesspa
dc.subject.lembFunctions, orthogonaleng
dc.subject.lembSeries ortogonalesspe
dc.subject.lembSeries, orthogonaleng
dc.subject.proposalPolinomios Ortogonalesspa
dc.subject.proposalVarias Variablesspa
dc.subject.proposalPares Coherentesspa
dc.subject.proposalProgramaciónspa
dc.titlePares coherentes generalizados de polinomios ortogonales en dos variablesspa
dc.title.translatedGeneralized Coherent Pairs of Orthogonal Polynomials in Two Variableseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016053440.2023.pdf
Tamaño:
434.71 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: