Propuesta técnica para la implementación de la infraestructura de medición avanzada en Colombia a partir de los esquemas de eficiencia energética en demanda concentrada

dc.contributor.advisorCarvajal Quintero, Sandra Ximena
dc.contributor.advisorMarín Jiménez, Juan David
dc.contributor.authorPachón Hernández, Mateo
dc.contributor.researchgroupEnvironmental Energy and Education Policy E3Pspa
dc.date.accessioned2024-08-13T20:58:37Z
dc.date.available2024-08-13T20:58:37Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractComo respuesta a los retos de la transición energética planteados para Colombia en el horizonte del año 2030, la infraestructura de medición avanzada tiene el objetivo de reconfigurar el funcionamiento del sector, fundamental para mejora operacional en eficiencia energética y modelos bidireccionales, donde, típicamente las redes eléctricas operaban de manera unidireccional. La entrada de habilitadores como la medición inteligente a través de AMI se proyecta a adquirir, transmitir y concentrar información eléctrica mediante comunicación bidireccional en pro de mejorar la confiabilidad, resiliencia y eficiencia del servicio eléctrico. Las tecnologías de la información y comunicación se destacan como herramientas fundamentales para el control y monitoreo en la distribución de energía, permitiendo flujos de información entre productores y consumidores. Este cambio ha transformado a los usuarios en parte activa del sistema, participando en un modelo dinámico de demanda activa y facilitando la articulación de nuevos servicios compartidos entre los involucrados. A pesar de los desafíos técnicos en la estandarización e interoperabilidad en la implementación de AMI, el sector eléctrico en Colombia ha establecido importantes objetivos para impulsar procesos clave de digitalización, descentralización y descarbonización conjuntamente. Sin embargo, el camino hacia la masificación plantea incertidumbres, especialmente en materia técnica y regulatoria. La implementación exitosa de dichos sistemas deberá ir acompañada de incentivos que materialicen beneficios para los usuarios y aseguren la remuneración adecuada, especialmente en el contexto de migración hacia una demanda activa (Texto tomado de la fuente)spa
dc.description.abstractIn response to the challenges of the energy transition facing Colombia on the horizon of 2030, advanced metering infrastructure aims to reconfigure the functioning of the sector, which is essential for operational improvements in energy efficiency and bidirectional models, where typically electrical networks operated unidirectionally. The introduction of enablers such as smart metering through AMI is projected to acquire, transmit, and concentrate electrical information through bidirectional communication to enhance the reliability, resilience, and efficiency of the electrical service. Information and communication technologies stand out as fundamental tools for control and monitoring in energy distribution, enabling information flows between producers and consumers. This shift has transformed users into active participants in the system, engaging in a dynamic model of active demand and facilitating the integration of new shared services among stakeholders. Despite technical challenges in standardization and interoperability in AMI implementation, the electric sector in Colombia has established significant objectives to drive key processes of digitization, decentralization, and decarbonization collectively. However, the path to mass adoption poses uncertainties, especially in technical and regulatory matters. The successful implementation of such systems should be accompanied by incentives that materialize benefits for users and ensure adequate remuneration, especially in the context of transitioning towards active demand.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaEficiencia Energéticaspa
dc.format.extentxvii, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86725
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesAcadémie des technologies. (2019). Les compteurs communicants Linky. https://www.academie-technologies.fr/wp-content/uploads/2021/10/Avis_Linky.pdfspa
dc.relation.referencesAhammed, M. T., & Khan, I. (2022). Ensuring power quality and demand-side management through IoT-based smart meters in a developing country. Energy, 250, 123747. https://doi.org/10.1016/J.ENERGY.2022.123747spa
dc.relation.referencesAlves, F. C. L., Pereira, A. O., & Sánchez, J. C. M. (2022). Analysis of regulatory process for the implementation of smart metering in Brazil. Decision Analytics Journal, 3, 100053. https://doi.org/10.1016/J.DAJOUR.2022.100053spa
dc.relation.referencesAsghar, M. R., Dán, G., Miorandi, D., & Chlamtac, I. (2017). Smart Meter Data Privacy: A Survey. IEEE Communications Surveys & Tutorials, 19(4), 2820–2835. https://doi.org/10.1109/COMST.2017.2720195spa
dc.relation.referencesAsoenergía. (2023, October 18). AMI, Respuesta de la Demanda y Tarifas Dinámicas. https://asoenergia.com/ami-respuesta-de-la-demanda-y-tarifas-dinamicas/spa
dc.relation.referencesBanco Interamericano de Desarrollo. (2016). Antecedentes y Marco Conceptual del Análisis, Evaluación y Recomendaciones para la Implementación de Redes Inteligentes en Colombia. https://www1.upme.gov.co/DemandayEficiencia/Doc_Hemeroteca/Smart_Grids_Col ombia_Vision_2030/1_Parte1_Proyecto_BID_Smart_Grids.pdfspa
dc.relation.referencesBanco Interamericano de Desarrollo. (2016). Smart Grids Colombia Visión 2030. http://www.upme.gov.co/Estudios/2016/SmartGrids2030/1_Parte1_Proyecto_BID_Smart_Grids.pdfspa
dc.relation.referencesBanco Interamericano de Desarrollo. (2022). La medición inteligente en America Latina y el Caribe. https://doi.org/http://dx.doi.org/10.18235/0004805spa
dc.relation.referencesBarai, G. R., Member, S., Krishnan, S., Member, S., & Venkatesh, B. (2015). Smart metering and functionalities of smart meters in smart grid - a review; Smart metering and functionalities of smart meters in smart grid - a review. https://doi.org/10.1109/EPEC.2015.7379940spa
dc.relation.referencesBedoya, S. (2022). Estrategias Técnico - Regulatorias para la Implementación de la Infraestructura AMI en el Horizonte 2030 en Colombia. Universidad Nacional de Colombiaspa
dc.relation.referencesBenmalek, M., Challal, Y., Derhab, A., & Bouabdallah, A. (2018). VerSAMI: Versatile and Scalable key management for Smart Grid AMI systems. Computer Networks, 132, 161–179. https://doi.org/10.1016/J.COMNET.2018.01.010spa
dc.relation.referencesBessa, R., Sampaio, G., Miranda, V., & Pereira, J. (2018). Probabilistic low-voltage state estimation using analog-search techniques. 20th Power Systems Computation Conference, PSCC 2018. https://doi.org/10.23919/PSCC.2018.8443074spa
dc.relation.referencesBinz, R., & Bracho, R. (2019). A Report on the Implementation of Smart Grids in Mexico. https://www.nrel.gov/docs/fy19osti/72699.pdfspa
dc.relation.referencesCadena Muñoz, E., Eslava Blanco, H. J., & Franco Calderón, J. A. (2015). Gestión del espectro radioeléctrico en Colombia. Revista Tecnura, 19(45), 159. https://doi.org/10.14483/udistrital.jour.tecnura.2015.3.a12spa
dc.relation.referencesCaicedo, E., Castillo, J., Morales, W., Echeverry, R., & Garcia, J. (2015). Metodología para la Evaluación de Proyectos Pilotos “SMART GRID” en Colombia. http://www.upme.gov.co/Estudios/2016/SmartGrids2030/4_Parte4_Anexo9_Proyecto_SmartGrids.pdfspa
dc.relation.referencesCardona, M., Gallego, J. M., García, J. J., & Franco, J. A. (2020). Prepaid electricity and in-home displays: An alternative for the most vulnerable households in Colombia. The Electricity Journal, 33(8), 106824. https://doi.org/10.1016/J.TEJ.2020.106824spa
dc.relation.referencesCFE Distribución. (2020). Programa de Ampliación Modernización de las Redes Generales de Distribución 2020 – 2034. https://www.cfe.mx/distribucion/cumplimiento/Documents/PAM%20de%20las%20RGD%202020-2034.pdfspa
dc.relation.referencesChakraborty, S., Das, S., Sidhu, T., & Siva, A. K. (2021). Smart meters for enhancing protection and monitoring functions in emerging distribution systems. International Journal of Electrical Power & Energy Systems, 127, 106626. https://doi.org/10.1016/J.IJEPES.2020.106626spa
dc.relation.referencesChawla, Y., Kowalska-Pyzalska, A., & Skowrońska-Szmer, A. (2020). Perspectives of smart meters’ roll-out in India: An empirical analysis of consumers’ awareness and preferences. Energy Policy, 146, 111798. https://doi.org/10.1016/J.ENPOL.2020.111798spa
dc.relation.referencesColombia Inteligente. (2018). Lineamientos estratégicos virtualización de la información acciones para la masificación de la medida en AMI. https://www.minenergia.gov.co/documents/7852/CI_Experiencias_Medici%C3%B3n_Flexible__1.pdfspa
dc.relation.referencesColombia Inteligente. (2023, December). Desarrollo Perfiles BAIOP – Gestión de datos AMI. https://colombiainteligente.org/producto/perfil-baiop-gestion-datos-ami/#spa
dc.relation.referencesComisión de Regulación de Energía y Gas. (2018). Infraestructura de Medición Avanzada - Documento CREG-077. https://gestornormativo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/3413698103ff1fde052582e5007b5317/$FILE/Circular054-2018%20Anexo.pdfspa
dc.relation.referencesComisión de Regulación de Energía y Gas. (2020a, December). Estrategias para la implementación de esquemas de señales de precios y cargos horarios a los usuarios finales en el SIN, para ser utilizados en programas de respuesta de la demanda. https://creg.gov.co/publicaciones/15313/estrategias-para-la-implementacion-de-esquemas-de-senales-de-precios-y-cargos-horarios-a-los-usuarios-finales-en-el-sin-para-ser-utilizados-en-programas-de-respuesta-de-la-demanda/spa
dc.relation.referencesComisión de Regulación de Energía y Gas. (2020b). Resolución CREG 131 de 2020. In Infraestructura de Medición Avanzada. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0131_2020.htmspa
dc.relation.referencesComisión de Regulación de Energía y Gas. (2022a). Condiciones para la Implementación de la Infraestructura de Medición Avanzada en el SIN. In Documento CREG-002 (D-002-2022). CREGspa
dc.relation.referencesComisión de Regulación de Energía y Gas. (2022b, May 25). Fundamentos y líneas generales de la Resolución 101 001 de 2022. https://www.youtube.com/watch?v=FT09kp5LR-Yspa
dc.relation.referencesContatto, M. (2018). Aceitabilidade social de medidores inteligentes:Um estudo de caso no Brasil [Pós-Graduação em Arquitetura e Urbanismo]. Universidade Federal de Santa Catarina.spa
dc.relation.referencesCour des Comptes. (2018). Les compteurs communicants Linky : tirer pour les consommateurs tous les bénéfices d’un investissement coûteux. 243–287. www.ccomptes.fr-@Courdescomptesspa
dc.relation.referencesDepartment for Business Energy & Industrial Strategy. (2021). Smart Meter Policy Framework Post 2020. https://assets.publishing.service.gov.uk/media/60b60f6fe90e0732b40d73f1/smart-meter-policy-framework-post-2020-govt-response-minimum-annual-targets.pdfspa
dc.relation.referencesElectrificadora de Santander. (2021a). Medición centralizada e Infraestructura de Medición Avanzada - AMI - NTM-05. https://www.essa.com.co/site/Portals/proveedores/normas-tecnicas-transicion/ntm-05%20medicion%20centralizada%20e%20infraestructura%20de%20medida%20avanzada%20AMI.pdf?ver=2021-10-19-232213-650spa
dc.relation.referencesElectrificadora de Santander. (2021b). Medida Concentrada en Poste NTM-07. https://www.essa.com.co/site/Portals/proveedores/normas-tecnicas-transicion/ntm-07%20medida%20concentrada%20en%20poste.pdf?ver=2021-10-19-1spa
dc.relation.referencesEnel-Codensa. (2019). Sistema de Medida Centralizada - ET927-A. https://www.enel.com.co/content/dam/enel-co/ingl%C3%A9s/2-1-6-technical-standards/especificaciones-tecnicas-para-materiales-y-equipos-de-baja-tension/ET-927.pdfspa
dc.relation.referencesErlinghagen, S., Lichtensteiger, B., & Markard, J. (2015). Smart meter communication standards in Europe – a comparison. Renewable and Sustainable Energy Reviews, 43, 1249–1262. https://doi.org/10.1016/J.RSER.2014.11.065spa
dc.relation.referencesFarah, N. (2014). Marco Regulatorio de la Red Eléctrica Inteligente (REI) en México. https://www.gob.mx/cms/uploads/attachment/file/102193/6068.pdfspa
dc.relation.referencesFaruqui, A., & Lessem, N. (2012). Managing the Benefits and Costs of Dynamic Pricing in Australia. https://www.aemc.gov.au/sites/default/files/content/04f6b84c-d839-4cc5-9f4b-35f9e321c3c5/The-Brattle-Group-%C2%80%C2%93-Managing-the-costs-and-benefits-of-dynamic-pricing.PDFspa
dc.relation.referencesFlüry, B., & Dufay, J. (2017). Le déploiement du compteur Linky. https://igedd.documentation.developpement-durable.gouv.fr/documents/Affaires-0009518/010655-01_rapport.pdspa
dc.relation.referencesGeels, F. W., Sareen, S., Hook, A., & Sovacool, B. K. (2021). Navigating implementation dilemmas in technology-forcing policies: A comparative analysis of accelerated smart meter diffusion in the Netherlands, UK, Norway, and Portugal (2000-2019). Research Policy, 50(7), 104272. https://doi.org/10.1016/J.RESPOL.2021.104272spa
dc.relation.referencesGhosal, A., & Conti, M. (n.d.). Key Management Systems for Smart Grid Advanced Metering Infrastructure: A Survey. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 21(3). https://doi.org/10.1109/COMST.2019.2907650spa
dc.relation.referencesGSMA. (2016). KDDI’s 4G Empowers Japan’s Utilities. https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/uploads/2016/02/cl_kddi_utilities_01_16.pdfspa
dc.relation.referencesGumz, J., Fettermann, D. C., Sant’Anna, Â. M. O., & Tortorella, G. L. (2022). Social Influence as a Major Factor in Smart Meters’ Acceptance: Findings from Brazil. Results in Engineering, 15, 100510. https://doi.org/10.1016/J.RINENG.2022.100510spa
dc.relation.referencesGunturi, S. K., & Sarkar, D. (2021). Ensemble machine learning models for the detection of energy theft. Electric Power Systems Research, 192, 106904. https://doi.org/10.1016/J.EPSR.2020.106904spa
dc.relation.referencesHarnish, M. (2015a, April 27). The number of electric smart meters operating in two-way mode has surpassed the number of one-way smart meters. Electricity Monthly Update. https://www.eia.gov/electricity/monthly/update/archive/april2015/spa
dc.relation.referencesHarnish, M. (2015b, April 27). The number of electric smart meters operating in two-way mode has surpassed the number of one-way smart meters. Electricity Monthly Update. https://www.eia.gov/electricity/monthly/update/archive/april2015/spa
dc.relation.referencesHasan, M. K., Habib, A. A., Shukur, Z., Ibrahim, F., Islam, S., & Razzaque, M. A. (2023). Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations. Journal of Network and Computer Applications, 209, 103540. https://doi.org/10.1016/J.JNCA.2022.103540spa
dc.relation.referencesHassan, A., Afrouzi, H. N., Siang, C. H., Ahmed, J., Mehranzamir, K., & Wooi, C. L. (2022a). A survey and bibliometric analysis of different communication technologies available for smart meters. Cleaner Engineering and Technology, 7, 100424. https://doi.org/10.1016/J.CLET.2022.100424spa
dc.relation.referencesHassan, A., Afrouzi, H. N., Siang, C. H., Ahmed, J., Mehranzamir, K., & Wooi, C. L. (2022b). A survey and bibliometric analysis of different communication technologies available for smart meters. Cleaner Engineering and Technology, 7, 100424. https://doi.org/10.1016/J.CLET.2022.100424spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2014). Requisitos para sistemas de infraestructura de medición avanzada (AMI) en redes de distribución de energía eléctrica. In NTC 6079.spa
dc.relation.referencesIEEE Standards Committee., IEEE Standards Coordinating Committee 21 on Fuel Cells, P., Institute of Electrical and Electronics Engineers., & IEEE-SA Standards Board. (2011). IEEE guide for smart grid interoperability of energy technology and information technology operation with the electric power system (EPS), end-use applications and loads. 110.spa
dc.relation.referencesInstitute of Communication & Computer. (2015). Study on cost benefit analysis of Smart Metering Systems in EU Member States.spa
dc.relation.referencesInternational Energy Agency. (2020). Korea 2020 Energy Policy Review. https://www.iea.org/reports/korea-2020spa
dc.relation.referencesInternational Energy Agency. (2022, August 18). Japan Electricity Security Policy –Analysis - IEA. https://www.iea.org/articles/japan-electricity-security-policyspa
dc.relation.referencesInternational Smart Grid Action Network (ISGAN). (2014, July 12). Telegestore, Automated Meter Management Project. AMI CASE Case05 / ITALY. https://www.iea-isgan.org/ami-case-case05-italy/spa
dc.relation.referencesISGAN - International Smart Grids Action Network. (2014a, July 12). AMI CASE Case05 / ITALY. Telegestore, Automated Meter Management Project. https://www.iea-isgan.org/ami-case-case05-italyspa
dc.relation.referencesISGAN - International Smart Grids Action Network. (2014b, July 19). ISGAN - AMI CASE Case03 / FRANCE. Linky Project. https://www.iea-isgan.org/ami-case-case03-france/spa
dc.relation.referencesISGAN - International Smart Grids Action Network. (2015, January 3). AMI CASE Case10 / SPAIN. Smart Meter Deployment at Domestic Customer. https://www.iea-isgan.org/ami-case-case10-spain/spa
dc.relation.referencesItalian Regulatory Authority for electricity and gas. (2011). PROMOTING INNOVATION AND INVESTMENTS IN SMART GRID The Italian Regulatory Experiencespa
dc.relation.referencesJaskolka, J. (2018). Challenges in Assuring Security and Resilience of Advanced Metering Infrastructure. 2018 IEEE Electrical Power and Energy Conference (EPEC)spa
dc.relation.referencesJensterle, M., & Venjakob, M. (2019). Smart power grids and integration of renewables in Japan. www.adelphi.despa
dc.relation.referencesJha, I. S., Sen, S., & Agarwal, V. (2015). Advanced metering infrastructure analytics - A Case Study. 2014 18th National Power Systems Conference, NPSC 2014. https://doi.org/10.1109/NPSC.2014.7103882spa
dc.relation.referencesKabalcı, E., Kabalcı, Y., & Siano, P. (2022). Design and implementation of a smart metering infrastructure for low voltage microgrids. International Journal of Electrical Power & Energy Systems, 134, 107375. https://doi.org/10.1016/J.IJEPES.2021.107375spa
dc.relation.referencesKeller, M. (2021, May 20). Grid Mod in the Age of Utility Carbon Reduction. https://sepapower.org/knowledge/grid-mod-in-the-age-of-utility-carbon-reduction/spa
dc.relation.referencesKerai, M. (2022). Smart Meter Statistics in Great Britain: Quarterly Report to end June 2022. https://assets.publishing.service.gov.uk/media/6303afe2d3bf7f365f4f7e7d/Q2_2022_Smart_Meters_Statistics_Report.pdfspa
dc.relation.referencesKuzlu, M., Pipattanasomporn, M., & Rahman, S. (2014). Communication network requirements for major smart grid applications in HAN, NAN and WAN. Computer Networks, 67, 74–88. https://doi.org/10.1016/J.COMNET.2014.03.029spa
dc.relation.referencesLee, S., Kim, J., Yoo, H., & Shon, T. (2016). Case Studies for Analyzing DLMS/COSEM Based Smart Meter Vulnerabilities in Korea; Case Studies for Analyzing DLMS/COSEM-Based Smart Meter Vulnerabilities in Korea. 2016 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). https://doi.org/10.1109/iThings GreenCom-CPSCom-SmartData.2016.145spa
dc.relation.referencesLi, S., Luo, F., Yang, J., Ranzi, G., & Wen, J. (2019). A personalized electricity tariff recommender system based on advanced metering infrastructure and collaborative filtering. International Journal of Electrical Power & Energy Systems, 113, 403–410. https://doi.org/10.1016/J.IJEPES.2019.05.042spa
dc.relation.referenceslo Schiavo, L., Delfanti, M., Fumagalli, E., & Olivieri, V. (2011). Changing the Regulation for Regulating the Change Innovation-driven regulatory developments in Italy: smart grids, smart metering and e-mobility. IEFE ‐ The Center for Research on Energy and Environmental, 1–42. www.iefe.unibocconi.itspa
dc.relation.referencesLópez, D. (2019). Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano. Universidad Nacional de Colombia.spa
dc.relation.referencesLópez, G., Moreno, J. I., Amarís, H., & Salazar, F. (2015). Paving the road toward Smart Grids through large-scale advanced metering infrastructures. Electric Power Systems Research, 120, 194–205. https://doi.org/10.1016/J.EPSR.2014.05.006spa
dc.relation.referencesLópez Rodríguez, R. H., & Céspedes, R. H. (2011). Challenges of Advanced Metering Infrastructure Implementation in Colombia. IEEE Pes Conference on Innovative Smart Grid Technologies Latin America (ISGT LA). https://doi.org/10.1109/ISGT LA.2011.6083205spa
dc.relation.referencesMah, D. N. yin. (2020). Conceptualising government-market dynamics in socio-technical energy transitions: A comparative case study of smart grid developments in China and Japan. Geoforum, 108, 148–168. https://doi.org/10.1016/J.GEOFORUM.2019.07.025spa
dc.relation.referencesMangunkusumo, K. G. H., Surya, A. S., Tambunan, H. B., & Jintaka, D. R. (2021). Guidance on Communication Media Selection for Advanced Metering Infrastructure in Indonesia. 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), 408–413. https://doi.org/10.1109/ICHVEPS53178.2021.9600964spa
dc.relation.referencesMcHenry, M. P. (2013a). Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks. Energy Policy, 59, 834–842. https://doi.org/10.1016/J.ENPOL.2013.04.048spa
dc.relation.referencesMcHenry, M. P. (2013b). Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks. Energy Policy, 59, 834–842. https://doi.org/10.1016/J.ENPOL.2013.04.048spa
dc.relation.referencesMedina, W. (2019, March 25). Sistemas de medición inteligente en el contexto de Smart Grid. Smart Grid: Sistemas de Medición Inteligente y Confiabilidad Del Sistema Eléctricospa
dc.relation.referencesMey, A., & Hoff, S. (2017, December 6). Nearly half of all U.S. electricity customers have smart meters. https://www.eia.gov/todayinenergy/detail.php?id=34012spa
dc.relation.referencesMinisterio de Minas y Energía. (2018). Resolución 40072. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_minminas_40072_2018.htmspa
dc.relation.referencesMinisterio de Minas y Energía. (2021). ABC sobre Infraestructura de Medición Avanzada (AMI). https://www.minenergia.gov.co/infraestructura-de-medicion-avanzadaspa
dc.relation.referencesMinisterio de Minas y Energía-Colombia Inteligente. (2020, June 30). Estrategia para la Implementación de Infraestructura de Medición Avanzada en Energía. Estrategias Medición Avanzada Apropiación Tecnológica. https://www.youtube.com/watch?v=UVeO2zI1FcMspa
dc.relation.referencesMinistry of Energy of Canada. (2014). Smart Metering Initiative. https://www.auditor.on.ca/en/content/annualreports/arreports/en14/311en14.pdfspa
dc.relation.referencesNafi, N. S., Ahmed, K., Gregory, M. A., & Datta, M. (2018). Software defined neighborhood area network for smart grid applications. Future Generation Computer Systems, 79, 500–513. https://doi.org/10.1016/J.FUTURE.2017.09.064spa
dc.relation.referencesNicolson, M. L., Fell, M. J., & Huebner, G. M. (2018). Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. Renewable and Sustainable Energy Reviews, 97, 276–289. https://doi.org/10.1016/J.RSER.2018.08.040spa
dc.relation.referencesOffice of Electricity. (2017, July 28). ARRA SGIG CenterPoint Energy Houstin Electric, LLC (Smart Grid Project) . https://www.energy.gov/oe/downloads/arra-sgig centerpoint-energy-houstin-electric-llc-smart-grid-projectspa
dc.relation.referencesOjeda, A. (2020). Análisis y experiencias para la implementación de sistemas de medición, monitoreo y control en redes eléctricas. Universidad Católica de la Santísima Concepción – UCSC.spa
dc.relation.referencesOsamu, M., Hidekazu, S., Masaharu, T., Makoto, F., & Tsutomu, O. (2016). NEC’s Contribution to Advanced Metering Infrastructures (AMI’s). Special Issue on NEC’s Smart Energy Solutions Led by ICT, 10, 78–81.spa
dc.relation.referencesÖstling, L. (2022). Smart Metering in Asia-Pacificspa
dc.relation.referencesOtani, T., & Miyashita, M. (2013). Characteristics of AMI using DLMS/COSEM and IEEE 802.15.4g Multi-hop Wireless Communication. https://doi.org/10.1109/SmartGridComm.2013.6687978spa
dc.relation.referencesOtuoze, A. O., Mustafa, M. W., & Larik, R. M. (2018). Smart grids security challenges: Classification by sources of threats. Journal of Electrical Systems and Information Technology, 5(3), 468–483. https://doi.org/10.1016/J.JESIT.2018.01.001spa
dc.relation.referencesPandey, R. K., & Misra, M. (2017). Cyber security threats-Smart grid infrastructure. 2016 National Power Systems Conference, NPSC 2016. https://doi.org/10.1109/NPSC.2016.7858950spa
dc.relation.referencesMinisterio de Minas y Energía. (2014). Ley 1715 (Ley 1715 de 2014). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353spa
dc.relation.referencesRashed Mohassel, R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014a). A survey on Advanced Metering Infrastructure. International Journal of Electrical Power & Energy Systems, 63, 473–484. https://doi.org/10.1016/J.IJEPES.2014.06.025spa
dc.relation.referencesRashed Mohassel, R., Fung, A. S., Mohammadi, F., & Raahemifar, K. (2014b). A Survey on Advanced Metering Infrastructure and its Application in Smart Grids. 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). https://doi.org/10.1109/CCECE.2014.6901102spa
dc.relation.referencesRodrigues, W. (2020). Medidores Inteligentes e Comunicação de Dados em Redes Inteligentes [Bacharel em Engenharia Elétrica]. Universidade Federal de Campina Grandespa
dc.relation.referencesRodríguez, C. F., Calvache, B. A., & Caicedo, E. F. (2017). Una propuesta de modelos de datos y protocolos de intercambio de información estandarizados aplicables a sistemas de medida centralizada. Revista Ingenierías Universidad de Medellín, 16(30), 149–167. https://doi.org/10.22395/rium.v16n30a8spa
dc.relation.referencesRomero, A., & Mach, T. (2019). Foco 3, fase I: Descentralización y Digitalización de la Industria y la Gestión Eficiente de la Demanda.spa
dc.relation.referencesRosero, J. (2016). Definición de las funcionalidades de Medidores Inteligentes requeridas en Colombia para soporte del desarrollo del Mapa de Ruta. Ejecución y Avance, 2–29spa
dc.relation.referencesSahu, A., Goulart, A., & Butler-Purry, K. (2016). Modeling AMI network for real-time simulation in NS-3. 2016 Principles, Systems and Applications of IP Telecommunications (IPTComm), 1–8. https://doi.org/10.1109/IPTComm39427.2016.7780248spa
dc.relation.referencesSánchez. Javier. (2016). Estimación del impacto de las Redes Eléctricas Inteligentes (Smart Grids) en el precio de la electricidad en Colombia [Línea de Profundización]. Universidad Nacional de Colombiaspa
dc.relation.referencesSavian, F. de S., Siluk, J. C. M., Garlet, T. B., do Nascimento, F. M., Pinheiro, J. R., & Vale, Z. (2021). Non-technical losses: A systematic contemporary article review. Renewable and Sustainable Energy Reviews, 147, 111205. https://doi.org/10.1016/J.RSER.2021.111205spa
dc.relation.referencesSerrano, V. (2021). Estudio del impacto y viabilidad de la implementación de la infraestructura de medición avanzada (AMI) para los operadores de red EMCALI y ENEL-CODENSA en el mercado eléctrico colombiano. Universidad de los Andes.spa
dc.relation.referencesSilva, W. N., Henrique, L. F., Silva, A. F. P. da C., Dias, B. H., & Soares, T. A. (2022a). Market models and optimization techniques to support the decision-making on demand response for prosumers. Electric Power Systems Research, 210, 108059. https://doi.org/10.1016/J.EPSR.2022.108059spa
dc.relation.referencesSilva, W. N., Henrique, L. F., Silva, A. F. P. da C., Dias, B. H., & Soares, T. A. (2022b). Market models and optimization techniques to support the decision-making on demand response for prosumers. Electric Power Systems Research, 210, 108059. https://doi.org/10.1016/j.epsr.2022.108059spa
dc.relation.referencesSmart Energy Europe. (2019). The smartEn Map Network Tariffs and Taxes. www.cyber-grid.comspa
dc.relation.referencesSmartGrid.gov. (2015, March 13). Recovery Act: Advanced Metering Infrastructure and Customer Systems. Estado de Desarrollo de Los Sistemas AMI. https://www.smartgrid.gov/recovery_act/deployment_status/sdgp_ami_systems.htmlspa
dc.relation.referencesSovacool, B. K., Hook, A., Sareen, S., & Geels, F. W. (2021). Global sustainability, innovation and governance dynamics of national smart electricity meter transitions. Global Environmental Change, 68, 102272. https://doi.org/10.1016/J.GLOENVCHA.2021.102272spa
dc.relation.referencesTamblyn, J. (2009). National Electricity Amendment (Victorian Jurisdictional Derogation, Advanced Metering Infrastructure Roll Out) Rule 2009. https://www.aemc.gov.au/rule-changes/victorian-jurisdictional-derogation-advanced-metespa
dc.relation.referencesTautiva, C. (2017). Lineamientos para el desarrollo de Infraestructura de Medición Avanzada. UPME-UNAL: Definición de Funcionalidades Mínimas de Medidores Inteligentes Para Colombia, 1–20.spa
dc.relation.referencesTéllez Gutiérrez, S., Duarte Velasco, O., & Rosero Garciá, J. (2020). Demand-side management strategies based on energy key performance indicators in real-time: Case study. CTyF - Ciencia, Tecnologia y Futuro, 10(1), 5–16spa
dc.relation.referencesTéllez Gutiérrez, S. M., Rosero García, J., & Céspedes Gandarillas, R. (2018). Advanced metering infrastructure in Colombia: benefits, challenges and opportunities. Ingeniería y Desarrollo, 36(2), 470–488.spa
dc.relation.referencesTéllez, S. (2021). Definición de Funcionalidades Mínimas de un Medidor Inteligente en Colombia.spa
dc.relation.referencesThe Carbon Trust. (2020). Apoyo al despliegue de tecnologías de redes inteligentes en Colombia.spa
dc.relation.referencesThe Carbon Trust. (2022). Beneficios Económicos de las Tarifas Horarias para los Usuarios Finales.spa
dc.relation.referencesTian, H., Jian, Y., & Ge, X. (2022). Blockchain-based AMI framework for data security and privacy protection. Sustainable Energy, Grids and Networks, 32, 100807. https://doi.org/10.1016/J.SEGAN.2022.100807spa
dc.relation.referencesTian, S., & Xu, R. W. (2010). Key technology research of China advanced metering infrastructure. 2010 International Conference on Power System Technology: Technological Innovations Making Power Grid Smarter, POWERCON2010. https://doi.org/10.1109/POWERCON.2010.5666047spa
dc.relation.referencesTiwari, A., & Pindoriya, N. M. (2022). Automated Demand Response in Smart Distribution Grid: A Review on Metering Infrastructure, Communication Technology and Optimization Models. Electric Power Systems Research, 206, 107835. https://doi.org/10.1016/J.EPSR.2022.107835spa
dc.relation.referencesTounquet, F., & Alaton, C. (2019). Benchmarking smart metering deployment in the EU-28spa
dc.relation.referencesTresca, M. (2021). Smart metering: tra innovazione del settore elettrico e tutela del consumatore. Amministrazione in Cammino, 1–22.spa
dc.relation.referencesUnidad de Planeación Minero-Energética. (2021). Programa de Uso Racional y Eficiente de Energía. https://www1.upme.gov.co/DemandayEficiencia/Documents/PROURE/Documento_Consulta_PAI_PROURE_IJ.pdfspa
dc.relation.referencesU.S. Department of Energy. (2016). Advanced Metering Infrastructure and Customer Systems: Results from the Smart Grid Investment Grant Programspa
dc.relation.referencesU.S. Energy Information Administration. (2011). Smart Grid Legislative and Regulatory Policies and Case Studies. www.eia.govspa
dc.relation.referencesU.S. Energy Information Administration (EIA). (2021, November 2). How many smart meters are installed in the United States, and who has them? https://www.eia.gov/tools/faqs/faq.php?id=108&t=3spa
dc.relation.referencesVanegas, A., Berrío, L., Cano, J., Alzate, O., Luna, R., Giraldo, M., & Franco, J. (2022, July). Sandbox como plataforma para la transformación de los negocios. Revista EPM (20), 66–84spa
dc.relation.referencesVélez-Henao, J. A., García-Mazo, C. M., Freire-González, J., & Vivanco, D. F. (2020). Environmental rebound effect of energy efficiency improvements in Colombian households. Energy Policy, 145, 111697. https://doi.org/10.1016/J.ENPOL.2020.111697spa
dc.relation.referencesVergara, J. (2022). Las exigencias técnicas y su cumplimiento para la Medición Avanzada en Colombia. In Siemens AG (Ed.), Foro AMI – Medición Inteligente. Camara Colombiana de la Energía.spa
dc.relation.referencesVictorian Government. (2007). Advanced Metering Infrastructure Rollout . https://www.aemc.gov.au/sites/default/files/content/2b37ed79-6d8d-4be6-a204-154dbbcd7793/Victorian-Government-Proposal.pdfspa
dc.relation.referencesWadhera, A., Ayoub, J., & Marylène, R. (2019). Smart Grid in Canada 2018. Natural Resources Canadaspa
dc.relation.referencesWood, L. (2022, August 11). Asia-Pacific Smart Metering Markets Report 2022-2027. https://www.globenewswire.com/en/news-release/2022/08/11/2496747/28124/en/Asia-Pacific-Smart-Metering-Markets-Report-2022-2027-with-In-depth-Profiles-of-China-Japan-South-Korea-India-Bangladesh-Indonesia-the-Philippines-Thailand-Vietnam-Australia-and-New.htmlspa
dc.relation.referencesWorighi, I., Maach, A., Hafid, A., Hegazy, O., & van Mierlo, J. (2019). Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustainable Energy, Grids and Networks, 18, 100226. https://doi.org/10.1016/J.SEGAN.2019.100226spa
dc.relation.referencesXcel Energy. (2024, January 28). PSCo Hosting Capacity Map Overview. Hosting Capacity. https://www.xcelenergy.com/hosting_capacity_mapspa
dc.relation.referencesYadav, K., & Singh, M. (2023). Design and development of a bidirectional DC net meter for vehicle to grid technology at TRL-9 level. Measurement, 207, 112403. https://doi.org/10.1016/J.MEASUREMENT.2022.112403spa
dc.relation.referencesYan, Z., Member, S., Wen, H., & Member, S. (2021). Electricity Theft Detection Base on Extreme Gradient Boosting in AMI. IEEE Transactions on Instrumentation and Measurement, 70, 2504909. https://doi.org/10.1109/TIM.2020.3048784spa
dc.relation.referencesYang, C. J. (2017). Opportunities and barriers to demand response in China. Resources, Conservation and Recycling, 121, 51–55. https://doi.org/10.1016/J.RESCONREC.2015.11.015spa
dc.relation.referencesYapa, C., de Alwis, C., Liyanage, M., & Ekanayake, J. (2021). Survey on blockchain for future smart grids: Technical aspects, applications, integration challenges and future research. Energy Reports, 7, 6530–6564. https://doi.org/10.1016/J.EGYR.2021.09.112spa
dc.relation.referencesYoun, S. (2018). Advanced Metering Infrastructure (AMI). Different Situations, Different Requirements, 1–18.spa
dc.relation.referencesZhou, K., Yang, C., & Shen, J. (2017). Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China. Utilities Policy, 44, 73–84. https://doi.org/10.1016/J.JUP.2017.01.004spa
dc.relation.referencesZhou, S., & Matisoff, D. C. (2016). Advanced Metering Infrastructure Deployment in the United States: The Impact of Polycentric Governance and Contextual Changes. Review of Policy Research, 33, 646–665. https://doi.org/10.1111/ropr.12203spa
dc.relation.referencesZhu, E. G., & Liu, X. (2013). Advanced metering key technologies of supporting the implementation of step electricity tariff. 2013 IEEE International Conference on Applied Superconductivity andElectromagnetic Devices, ASEMD 2013, 237–240. https://doi.org/10.1109/ASEMD.2013.6780752spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalEficiencia Energéticaspa
dc.subject.proposalInfraestructura de Medición Avanzadaspa
dc.subject.proposalMedidor Inteligentespa
dc.subject.proposalParticipación Activa de la Demandaspa
dc.subject.proposalRedes Inteligentesspa
dc.subject.proposalActive Demand Participationeng
dc.subject.proposalAdvanced Metering Infrastructureeng
dc.subject.proposalEnergy Efficiencyeng
dc.subject.proposalSmart Grideng
dc.subject.proposalSmart Metereng
dc.subject.unescoEnergía eléctrica
dc.subject.unescoElectric power
dc.titlePropuesta técnica para la implementación de la infraestructura de medición avanzada en Colombia a partir de los esquemas de eficiencia energética en demanda concentradaspa
dc.title.translatedTechnical proposal for the implementation of the advanced metering infrastructure in Colombia based on energy efficiency schemes in concentrated demandeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053867076.2024.pdf
Tamaño:
2.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: