Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica

dc.contributor.advisorVallejo Díaz, Bibiana Margaritaspa
dc.contributor.authorRodríguez Vera, Edward Andrésspa
dc.contributor.researchgroupInvestigación en Procesos de Transformación de Materiales Para la Industria Farmacéuticaspa
dc.date.accessioned2024-01-22T20:02:36Z
dc.date.available2024-01-22T20:02:36Z
dc.date.issued2023-08-02
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn esta investigación se estudiaron los fenómenos de transporte de masa y momento en un dispositivo de dimensiones milimétricas, fabricado con el propósito de recrear un modelo simplificado de cavidad nasal; este dispositivo permite la inserción de una película polimérica y el flujo de un fluido simulado de sangre. La descripción de estos fenómenos se realizó a través del planteamiento de un modelo matemático que fue discretizado con un esquema combinado de diferencias finitas centradas y diferencias finitas hacia atrás, incorporando un método de avance temporal semi-implícito. Para validar el modelo matemático se realizó un experimento que consiste en insertar una película polimérica cargada de rodamina dentro del dispositivo de estudio y se capturan imágenes en un microscopio de fluorescencia a diferentes tiempos; por otro lado, a la salida del dispositivo se recolectan muestras que se cuantifican posteriormente por medio de un espectrofotómetro UV-vis. También, se desarrollaron una serie de experimentos complementarios que retroalimentan la simulación. El resultado de las operaciones computacionales sumado a la estandarización del método de elaboración de películas seleccionado (vertimiento en placa) permitió aplicar bases científicas y matemáticas al diseño de películas poliméricas siguiendo algunos conceptos de la metodología del Diseño Integrado de Producto y Proceso. Gracias a los experimentos y las herramientas computacionales, se plantearon una serie de casos para el análisis de la influencia de parámetros en el desempeño de la liberación de películas poliméricas. (Texto tomado de la fuente).spa
dc.description.abstractIn the current research, the mass and momentum transport phenomena were studied in a device of millimeter dimensions, manufactured with the purpose of recreating a simplified model of the nasal cavity; this device allows the insertion of a polymeric film and the flow of a simulated blood fluid. Phenomena description was carried out through the approach of a mathematical model that was discretized with a combined centered finite differences and backwards finite differences schemes, incorporating a semi-implicit time advance method. To validate the mathematical model, it was developed an experiment that consists of inserting a rhodamine-loaded polymeric film inside the study device and capturing images in a fluorescence microscope at different times; on the other hand, at the exit of the device, samples are collected and quantified by means of a UV-vis spectrophotometer. Also, a series of complementary experiments were elaborated to feed back the simulation. The results of the computational operations added to the standardization method to produce films (casting) allowed to apply scientific and mathematical bases to polymeric films design following some concepts of the Integrated Product and Process Development methodology. As a result of the experiments and the computational tools, a series of cases were raised for the analysis of the influence of parameters on the release performance of polymeric films.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaFarmacotecnia e ingeniería farmacéuticaspa
dc.format.extentxviii, 148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85403
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.referencesAchberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., Schenke-Layland, K., Ueffing, M., Liebau, S., & Loskill, P. (2019). Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 8, e46188. https://doi.org/10.7554/eLife.46188spa
dc.relation.referencesAdrover, A., & Nobili, M. (2015). Release kinetics from oral thin films: Theory and experiments. Chemical Engineering Research and Design, 98, 188-201. https://doi.org/10.1016/j.cherd.2015.04.016spa
dc.relation.referencesAlexeenko, A. A., Ganguly, A., & Nail, S. L. (2009). Computational analysis of fluid dynamics in pharmaceutical freeze-drying. Journal of Pharmaceutical Sciences, 98(9), 3483-3494. https://doi.org/10.1002/jps.21862spa
dc.relation.referencesAlSalka, Y., Hakki, A., Fleisch, M., & Bahnemann, D. W. (2018). Understanding the degradation pathways of oxalic acid in different photocatalytic systems: Towards simultaneous photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 366, 81-90. https://doi.org/10.1016/j.jphotochem.2018.04.008spa
dc.relation.referencesAnderson, J. D. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill.spa
dc.relation.referencesAscanio, G., Castro, B., & Galindo, E. (2004). Measurement of Power Consumption in Stirred Vessels—A Review. Chemical Engineering Research and Design, 82(9), 1282-1290. https://doi.org/10.1205/cerd.82.9.1282.44164spa
dc.relation.referencesASTM Standards. (2018). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://www.astm.org/d0882-18.htmlspa
dc.relation.referencesBader, R. A., Herzog, K. T., & Kao, W. J. (2009). A study of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing. Polymer Bulletin, 62(3), 381-389. https://doi.org/10.1007/s00289-008-0023-xspa
dc.relation.referencesBain, A., Chandna, P., Butcher, G., & Bryant, J. (2000). Picosecond polarized fluorescence studies of anisotropic fluid media. II. Experimental studies of molecular order and motion in jet aligned rhodamine 6G and resorufin solutions. The Journal of Chemical Physics, 112, 10435-10449. https://doi.org/10.1063/1.481679spa
dc.relation.referencesBanerjee, A., Shuai, Y., Dixit, R., Papautsky, I., & Klotzkin, D. (2010). Concentration dependence of fluorescence signal in a microfluidic fluorescence detector. Journal of Luminescence, 130(6), 1095-1100. https://doi.org/10.1016/j.jlumin.2010.02.002spa
dc.relation.referencesBassi, P., & Kaur, G. (2017). Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharmaceutical Journal, 25(1), 32-43. https://doi.org/10.1016/j.jsps.2015.06.003spa
dc.relation.referencesBeebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and Applications of Microfluidics in Biology. Annual Review of Biomedical Engineering, 4(1), 261-286. https://doi.org/10.1146/annurev.bioeng.4.112601.125916spa
dc.relation.referencesBird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena (Revised ed). Wiley.spa
dc.relation.referencesBöhling, P., Khinast, J. G., Jajcevic, D., Davies, C., Carmody, A., Doshi, P., Am Ende, M. T., & Sarkar, A. (2019). Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster Coater. Journal of Pharmaceutical Sciences, 108(1), 538-550. https://doi.org/10.1016/j.xphs.2018.10.016spa
dc.relation.referencesBudak, K., Sogut, O., & Aydemir Sezer, U. (2020). A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research, 27(8), 208. https://doi.org/10.1007/s10965-020-02187-1spa
dc.relation.referencesBusatto, C., Pesoa, J., Helbling, I., Luna, J., & Estenoz, D. (2018). Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. International Journal of Pharmaceutics, 536(1), 360-369. https://doi.org/10.1016/j.ijpharm.2017.12.006spa
dc.relation.referencesChen, X., Partheniadis, I., Nikolakakis, I., & Al-Obaidi, H. (2020). Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers, 12(4), 854. https://doi.org/10.3390/polym12040854spa
dc.relation.referencesColombo, S., Beck-Broichsitter, M., Bøtker, J. P., Malmsten, M., Rantanen, J., & Bohr, A. (2018). Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews, 128, 115-131. https://doi.org/10.1016/j.addr.2018.04.004spa
dc.relation.referencesConnors, K. A., Amidon, G. L., & Stella, V. J. (1986). Chemical stability of pharmaceuticals: A handbook for pharmacists (2nd ed). Wiley.spa
dc.relation.referencesCulbertson, C. (2002). Diffusion coefficient measurements in microfluidic devices. Talanta, 56(2), 365-373. https://doi.org/10.1016/S0039-9140(01)00602-6spa
dc.relation.referencesde Guzman, R., Polykratis, I. A., Sondeen, J. L., Darlington, D. N., Cap, A. P., & Dubick, M. A. (2013). Stability of Tranexamic Acid after 12-Week Storage at Temperatures from –20°C to 50°C. Prehospital Emergency Care, 17(3), 394-400. https://doi.org/10.3109/10903127.2013.792891spa
dc.relation.referencesDepartment of Defense. (1998). Integrated Product and Process Development Handbook.spa
dc.relation.referencesDing, C., Zhang, M., & Li, G. (2015). Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydrate Polymers, 119, 194-201. https://doi.org/10.1016/j.carbpol.2014.11.057spa
dc.relation.referencesEntwistle, C. A., & Rowe, R. C. (2011). Plasticization of cellulose ethers used in the film coating of tablets. Journal of Pharmacy and Pharmacology, 31(1), 269-272. https://doi.org/10.1111/j.2042-7158.1979.tb13499.xspa
dc.relation.referencesFerreira, L. F. M., Thomaz, D. V., Duarte, M. P. F., Lopez, R. F. V., Pedrazzi, V., Freitas, O. de, & Couto, R. O. do. (2021). Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration. Revista de Ciências Farmacêutica Básica e Aplicadas - RCFBA, 42, e707. https://doi.org/10.4322/2179-443X.0707spa
dc.relation.referencesFerziger, J. H., & Perić, M. (2002). Computational methods for fluid dynamics (3rd, rev. ed ed.). Springer.spa
dc.relation.referencesGendron, P.-O., Avaltroni, F., & Wilkinson, K. J. (2008). Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 18(6), 1093-1101. https://doi.org/10.1007/s10895-008-0357-7spa
dc.relation.referencesGhadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., & Khosrowshahi Asl, A. (2019). Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Science & Nutrition, 7(11), 3363-3377. https://doi.org/10.1002/fsn3.1206spa
dc.relation.referencesGuarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications: POLYCAPROLACTONE: SYNTHESIS, PROPERTIES, AND APPLICATIONS. En John Wiley & Sons, Inc. (Ed.), Encyclopedia of Polymer Science and Technology (pp. 1-36). John Wiley & Sons, Inc. https://doi.org/10.1002/0471440264.pst658spa
dc.relation.referencesHajji, H., Kolsi, L., Hassen, W., Al-Rashed, A. A. A. A., Borjini, M. N., & Aichouni, M. A. (2018). Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Physica E: Low-Dimensional Systems and Nanostructures, 104, 177-186. https://doi.org/10.1016/j.physe.2018.07.034spa
dc.relation.referencesHonary, S., & Orafai, H. (2002). The Effect of Different Plasticizer Molecular Weights and Concentrations on Mechanical and Thermomechanical Properties of Free Films. Drug Development and Industrial Pharmacy, 28(6), 711-715. https://doi.org/10.1081/DDC-120003863spa
dc.relation.referencesHonary, S., Orafai, H., & Shojaei, A. H. (2000). The Influence of Plasticizer Molecular Weight on Spreading Droplet Size of HPMC Aqueous Solutions Using an Indirect Method. Drug Development and Industrial Pharmacy, 26(9), 1019-1024. https://doi.org/10.1081/DDC-100101332spa
dc.relation.referencesKalyan, S., & Bansal, M. (2012). Recent Trends in the Development of Oral dissolving Film.spa
dc.relation.referencesKanabekova, P., Kadyrova, A., & Kulsharova, G. (2022). Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines, 13(3), 428. https://doi.org/10.3390/mi13030428spa
dc.relation.referencesKaratay, E. (2013). Microfluidic studies of interfacial transport [PhD, University of Twente]. https://doi.org/10.3990/1.9789036506915spa
dc.relation.referencesKaya, D., Küçükada, K., & Alemdar, N. (2019). Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films. Carbohydrate Polymers, 215, 189-197. https://doi.org/10.1016/j.carbpol.2019.03.041spa
dc.relation.referencesKremer, D. M., & Hancock, B. C. (2006). Process Simulation in the Pharmaceutical Industry: A Review of Some Basic Physical Models. Journal of Pharmaceutical Sciences, 95(3), 517-529. https://doi.org/10.1002/jps.20583spa
dc.relation.referencesKrevelen, D. W. van, & Nijenhuis, K. te. (2009). Properties of polymers: Their correlation with chemical structure: their numerical estimation and prediction from additive group contributions (4th, completely rev. ed ed.). Elsevier.spa
dc.relation.referencesLakshmi, P., Sridharan, A., & Sreekanth, J. (2011). Formulation development of fast releasing oral thin films of levocetrizine dihydrochloride with Eudragit ® Epo and optimization through Taguchi orthogonal experimental design. Asian Journal of Pharmaceutics, 5(2), 84. https://doi.org/10.4103/0973-8398.84548spa
dc.relation.referencesLi, X., & Zhou, Y. (Eds.). (2013). Microfluidic devices for biomedical applications. Woodhead Publishing.spa
dc.relation.referencesLi, Z., & Seker, E. (2017). Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab on a Chip, 17(19), 3331-3337. https://doi.org/10.1039/C7LC00851Aspa
dc.relation.referencesLiew, K. B., Tan, Y. T. F., & Peh, K.-K. (2014). Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Development and Industrial Pharmacy, 40(1), 110-119. https://doi.org/10.3109/03639045.2012.749889spa
dc.relation.referencesLuo, Y., Hong, Y., Shen, L., Wu, F., & Lin, X. (2021). Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech, 22(1), 34. https://doi.org/10.1208/s12249-020-01909-4spa
dc.relation.referencesLustig, S. R., & Peppas, N. A. (1988). Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. Journal of Applied Polymer Science, 36(4), 735-747. https://doi.org/10.1002/app.1988.070360401spa
dc.relation.referencesMcMillan, D. E., Strigberger, J., & Utterback, N. G. (1987). Rapidly recovered transient flow resistance: A newly discovered property of blood. American Journal of Physiology-Heart and Circulatory Physiology, 253(4), H919-H926. https://doi.org/10.1152/ajpheart.1987.253.4.H919spa
dc.relation.referencesMedical Cañada. (s. f.). EPISTAXIS Y TAPONAMIENTO NASAL. RAUCOCEL. Recuperado 2 de octubre de 2022, de https://blog.medicalcanada.es/2015/07/epistaxis-y-taponamiento-nasal-raucocel/spa
dc.relation.referencesMinisterio de Energía de España. (s. f.). Ministerio para la Transición Ecológica y el Reto Demográfico—Documentos reconocidos. Recuperado 13 de febrero de 2023, de https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspxspa
dc.relation.referencesMinisterio de la Protección Social. (2005). DECRETO NÚMERO 4725 DE 2005.spa
dc.relation.referencesMukherjee, S., Ghati, A., & Paul, G. (2021). An Ultraviolet–Visible Spectrophotometric Approach to Establish a Method for Determining the Presence of Rhodamine B in Food Articles. ACS Food Science & Technology, 1(9), 1615-1622. https://doi.org/10.1021/acsfoodscitech.1c00172spa
dc.relation.referencesNaik, V., Patil, N., Aparadh, V., & Karadge, B. (2014). METHODOLOGY IN DETERMINATION OF OXALIC ACID IN PLANT TISSUE: A COMPARATIVE APPROACH. Journal Global Trends in Pharmaceutical Sciences, 5, 1662-1672.spa
dc.relation.referencesnanoComposix. (s. f.). Molecular Weight to Size Calculator. NanoComposix. Recuperado 28 de julio de 2023, de https://nanocomposix.com/pages/molecular-weight-to-size-calculatorspa
dc.relation.referencesNasouri, K., Shoushtari, A. M., & Mojtahedi, M. R. M. (2015). Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent: RESEARCH ARTICLE. Advances in Polymer Technology, 34(3), n/a-n/a. https://doi.org/10.1002/adv.21495spa
dc.relation.referencesNiaounakis, M. (2015). Properties. En Biopolymers: Processing and Products (pp. 79-116). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00002-7spa
dc.relation.referencesOhtsuki, C. (s. f.). How to prepare the simulated body fluid (SBF) and its related solutions. Recuperado 7 de octubre de 2022, de https://www.chembio.nagoya-u.ac.jp/archive/apchem/ketsu5/contents/SBF/spa
dc.relation.referencesOssa, A., Zapata, V., & Botero-Jaramillo, E. (2015, noviembre 18). METODOLOGÍA PARA RESOLVER POR DIFERENCIAS FINITAS NUEVOS MODELOS CONSTITUTIVOS EN EL PROGRAMA FLAC3D.spa
dc.relation.referencesPanda, B., Parihar, A. S., & Mallick, S. (2014). Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film. International Journal of Biological Macromolecules, 67, 295-302. https://doi.org/10.1016/j.ijbiomac.2014.03.033spa
dc.relation.referencesPedacchia, A., & Adrover, A. (2014). Study of release kinetics and diffusion coefficients in swellable cellulosic thin films by means of a simple spectrophotometric technique. Chemical Engineering Research and Design, 92(11), 2550-2556. https://doi.org/10.1016/j.cherd.2014.03.017spa
dc.relation.referencesPeppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75-81. https://doi.org/10.1016/j.jconrel.2014.06.041spa
dc.relation.referencesPervin, R., Ghosh, P., & Basavaraj, M. G. (2021). Engineering polymer film porosity for solvent triggered actuation. Soft Matter, 17(10), 2900-2912. https://doi.org/10.1039/D0SM01772Hspa
dc.relation.referencesPolyvinyl Alcohol—An overview | ScienceDirect Topics. (s. f.). Recuperado 18 de julio de 2023, de https://www.sciencedirect.com/topics/chemical-engineering/polyvinyl-alcoholspa
dc.relation.referencesPranzo, D., Larizza, P., Filippini, D., & Percoco, G. (2018). Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review. Micromachines, 9(8), 374. https://doi.org/10.3390/mi9080374spa
dc.relation.referencesQiu, S., Chu, H., Zou, Y., Xiang, C., Zhang, H., Sun, L., & Xu, F. (2016). Thermochemical studies of Rhodamine B and Rhodamine 6G by modulated differential scanning calorimetry and thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 123(2), 1611-1618. https://doi.org/10.1007/s10973-015-5055-5spa
dc.relation.referencesRao, N. M., & Sankar, D. G. (2016). Development and Validation of Stability-indicating RP-HPLC Method for The Estimation of Pseudoephedrine, Ambroxol and Desloratadine in Bulk and Their Tablet Dosage Forms. Indian Journal of Pharmaceutical Sciences, 78(4). https://doi.org/10.4172/pharmaceutical-sciences.1000144spa
dc.relation.referencesRiahi, S., Hadiloo, F., Milani, S. M. R., Davarkhah, N., Ganjali, M. R., Norouzi, P., & Seyfi, P. (2011). A new technique for spectrophotometric determination of Pseudoephedrine and Guaifenesin in syrup and synthetic mixture. Drug Testing and Analysis, 3(5), 319-324. https://doi.org/10.1002/dta.235spa
dc.relation.referencesRiccio, B. V. F., Silvestre, A. L. P., Meneguin, A. B., Ribeiro, T. de C., Klosowski, A. B., Ferrari, P. C., & Chorilli, M. (2022). Exploiting Polymeric Films as a Multipurpose Drug Delivery System: A Review. AAPS PharmSciTech, 23(7), 269. https://doi.org/10.1208/s12249-022-02414-6spa
dc.relation.referencesRomero, A. I., Villegas, M., Cid, A. G., Parentis, M. L., Gonzo, E. E., & Bermúdez, J. M. (2018). Validation of kinetic modeling of progesterone release from polymeric membranes. Asian Journal of Pharmaceutical Sciences, 13(1), 54-62. https://doi.org/10.1016/j.ajps.2017.08.007spa
dc.relation.referencesRoy, A., Ghosh, A., Datta, S., Das, S., Mohanraj, P., Deb, J., & Bhanoji Rao, M. E. (2009). Effects of plasticizers and surfactants on the film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets. Saudi Pharmaceutical Journal, 17(3), 233-241. https://doi.org/10.1016/j.jsps.2009.08.004spa
dc.relation.referencesSadia, M., Arafat, B., Ahmed, W., Forbes, R. T., & Alhnan, M. A. (2018). Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. Journal of Controlled Release, 269, 355-363. https://doi.org/10.1016/j.jconrel.2017.11.022spa
dc.relation.referencesSai Cheong Wan, L., Wan Sia Heng, P., & Fun Wong, L. (1995). Matrix swelling: A simple model describing extent of swelling of HPMC matrices. International Journal of Pharmaceutics, 116(2), 159-168. https://doi.org/10.1016/0378-5173(94)00285-Dspa
dc.relation.referencesSakellariou, P., Hassan, A., & Rowe, R. C. (1993). Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol. European Polymer Journal, 29(7), 937-943. https://doi.org/10.1016/0014-3057(93)90289-Rspa
dc.relation.referencesSeiffert, S., & Thiele, J. (2020). Microfluidics: Theory and practice for beginners. De Gruyter.spa
dc.relation.referencesSetapa, A., Ahmad, N., Mohd Mahali, S., & Mohd Amin, M. C. I. (2020). Mathematical Model for Estimating Parameters of Swelling Drug Delivery Devices in a Two-Phase Release. Polymers, 12(12), Article 12. https://doi.org/10.3390/polym12122921spa
dc.relation.referencesShamsi, M., Mohammadi, A., Manshadi, M. K. D., & Sanati-Nezhad, A. (2019). Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release, 307, 150-165. https://doi.org/10.1016/j.jconrel.2019.06.014spa
dc.relation.referencesSiepmann, J., Kranz, H., Bodmeier, R., & Peppas, N. A. (1999). HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics. Pharmaceutical Research, 16(11), 1748-1756. https://doi.org/10.1023/A:1018914301328spa
dc.relation.referencesSiepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161(2), 351-362. https://doi.org/10.1016/j.jconrel.2011.10.006spa
dc.relation.referencesSkolotneva, E., Cretin, M., & Mareev, S. (2021). A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane. Membranes, 11(6), 431. https://doi.org/10.3390/membranes11060431spa
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2018). Principles of instrumental analysis (Seventh edition). Cengage Learning.spa
dc.relation.referencesSoylak, M., Unsal, Y. E., Yilmaz, E., & Tuzen, M. (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 49(8), 1796-1799. https://doi.org/10.1016/j.fct.2011.04.030spa
dc.relation.referencesStationery Office. (2009). British pharmacopoeia.spa
dc.relation.referencesStone, R. B., & Wood, K. L. (1999). Development of a Functional Basis for Design. Volume 3: 11th International Conference on Design Theory and Methodology, 261-275. https://doi.org/10.1115/DETC99/DTM-8765spa
dc.relation.referencesSuzuki, T., & Nakagami, H. (1999). Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. European Journal of Pharmaceutics and Biopharmaceutics, 47(3), 225-230. https://doi.org/10.1016/S0939-6411(98)00102-7spa
dc.relation.referencesTang, S., Zhang, R., Liu, F., & Liu, X. (2015). Hansen solubility parameters of polyglycolic acid and interaction parameters between polyglycolic acid and solvents. European Polymer Journal, 72, 83-88. https://doi.org/10.1016/j.eurpolymj.2015.09.009spa
dc.relation.referencesTho, I. (2018). Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics, 10, 222. https://doi.org/10.3390/pharmaceutics10040222spa
dc.relation.referencesTiwari, S. K., Bhat, S., & Mahato, K. K. (2020). Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65995-xspa
dc.relation.referencesTrache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056spa
dc.relation.referencesTretinnikov, O. N., & Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. Journal of Applied Spectroscopy, 79(4), 521-526. https://doi.org/10.1007/s10812-012-9634-yspa
dc.relation.referencesUragami, T., Sumida, I., Miyata, T., Shiraiwa, T., Tamura, H., & Yajima, T. (2011). Pervaporation Characteristics in Removal of Benzene from Water through Polystyrene-Poly (Dimethylsiloxane) IPN Membranes. Materials Sciences and Applications, 02(03), 169-179. https://doi.org/10.4236/msa.2011.23021spa
dc.relation.referencesUsher, J. M., Roy, U., & Parsaei, H. (1998). Integrated Product and Process Development: Methods, Tools, and Technologies. John Wiley & Sons.spa
dc.relation.referencesVallejo Díaz, B. M., Cortés Rodríguez, C. J., Espinosa, A., & Barbosa B., H. J. (2004). Aplicación de la metodología de diseño axiomático en el desarrollo de productos de liberación modificada. https://repositorio.unal.edu.co/handle/unal/28662spa
dc.relation.referencesVallejo Díaz, B. M. R., & Perilla Perilla, J. E. (2009). Estudio del fenómeno de adhesión a superficies biológicas de películas obtenidas partir de biopolímeros, para aplicaciones en el área de la salud.spa
dc.relation.referencesvan den Broek, C. N., Pullens, R. A. A., Frøbert, O., Rutten, M. C. M., den Hartog, W. F., & van de Vosse, F. N. (2008). Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology, 45(6), 651-661. https://doi.org/10.3233/BIR-2008-0513spa
dc.relation.referencesVarani, G. (2017). Buccal and Topical drug delivery [PhD]. University of Rome.spa
dc.relation.referencesVulović, A., Šušteršič, T., Cvijić, S., Ibrić, S., & Filipović, N. (2018). Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. European Journal of Pharmaceutical Sciences, 113, 171-184. https://doi.org/10.1016/j.ejps.2017.10.022spa
dc.relation.referencesWise, D. L. (2000). Handbook of Pharmaceutical Controlled Release Technology. CRC Press.spa
dc.relation.referencesYan, P., Zhou, M., & Sebastian, D. (1999). An integrated product and process development methodology: Concept formulation. Robotics and Computer-Integrated Manufacturing, 15(3), 201-210. https://doi.org/10.1016/S0736-5845(99)00025-3spa
dc.relation.referencesYoung, R. E., & Huh, D. D. (2021). Organ-on-a-chip technology for the study of the female reproductive system. Advanced Drug Delivery Reviews, 173, 461-478. https://doi.org/10.1016/j.addr.2021.03.010spa
dc.relation.referencesZeinali Kalkhoran, A. H., Vahidi, O., & Naghib, S. M. (2018). A new mathematical approach to predict the actual drug release from hydrogels. European Journal of Pharmaceutical Sciences, 111, 303-310. https://doi.org/10.1016/j.ejps.2017.09.038spa
dc.relation.referencesZhang, L., Huang, Y.-K., Yue, L.-N., Xu, L., Qian, J.-Y., & He, X.-D. (2022). Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films. Carbohydrate Polymers, 296, 119951. https://doi.org/10.1016/j.carbpol.2022.119951spa
dc.relation.referencesZhang, L., Yu, L., Liu, H., Wang, Y., Simon, G. P., Ji, Z., & Qian, J. (2017). Effect of processing conditions on microstructures and properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Food Hydrocolloids, 70, 251-259. https://doi.org/10.1016/j.foodhyd.2017.03.019spa
dc.relation.referencesZhang, S., & Byrne, G. (2021). Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling. Journal of Drug Delivery Science and Technology, 61, 102136. https://doi.org/10.1016/j.jddst.2020.102136spa
dc.relation.referencesZhu, L., Liu, Q., Yang, B., Ju, H., & Lei, J. (2018). Pixel Counting of Fluorescence Spots Triggered by DNA Walkers for Ultrasensitive Quantification of Nucleic Acid. Analytical Chemistry, 90(11), 6357-6361. https://doi.org/10.1021/acs.analchem.8b01146spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc530 - Física::532 - Mecánica de fluidosspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decssistemas de liberación de medicamentosspa
dc.subject.decsDrug Delivery Systemseng
dc.subject.decsdiseño de fármacosspa
dc.subject.decsDrug Designeng
dc.subject.decsmecánica de fluidosspa
dc.subject.decsFlow Mechanicseng
dc.subject.proposalMIcrofluidosspa
dc.subject.proposalPelícula poliméricaspa
dc.subject.proposalMIcrofluidicseng
dc.subject.proposalPolymeric filmeng
dc.subject.proposalDinámica de fluidos computacionalspa
dc.subject.proposalSistemas de liberación modificadaspa
dc.subject.proposalDiseño integrado de producto y procesospa
dc.subject.proposalComputational fluid dynamicseng
dc.subject.proposalModified release systemeng
dc.subject.proposalIntegrated product and process developmenteng
dc.titleEstudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película poliméricaspa
dc.title.translatedStudy of mass transport phenomena at a microscopic scale, for its application in the design of modified release systems of the polymeric film typeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFacultad de Ciencias - Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010237370.2023.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: