Síntesis alternativa de derivados dibenzazepínicos empleando aceite esencial de hierba santa (Piper auritum)

dc.contributor.advisorOchoa Puentes, Cristian
dc.contributor.advisorÁvila Murillo, Mónica Constanza
dc.contributor.authorRodríguez Huerto, Paula Andrea
dc.contributor.cvlacRODRÍGUEZ HUERTO, PAULA ANDREAspa
dc.contributor.researchgroupSíntesis Orgánica Sosteniblespa
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)spa
dc.date.accessioned2023-04-27T16:00:45Z
dc.date.available2023-04-27T16:00:45Z
dc.date.issued2022-10-07
dc.descriptionilustraciones, fotografías colorspa
dc.description.abstractEl trabajo de investigación descrito en este documento presenta los resultados obtenidos en la búsqueda de precursores sintéticos a partir de fuentes renovables y su posterior transformación química. Para cumplir con los objetivos de esta investigación se plantearon dos etapas donde la primera parte se enfocó hacia la obtención de aceite esencial de hierba santa (Piper auritum) y la segunda etapa consistió en explorar su potencial sintético dirigido hacia la obtención de derivados azepínicos. El aceite esencial de hierba santa, el cual posee un alto contenido de safrol (fenilpropanoide perteneciente a la lista de sustancias ilícitas de estupefacientes y psicoactivas en Colombia, de acuerdo con la resolución número 823 del 2003), se obtuvo por medio de hidrodestilación convencional y asistida por microondas empleando la parte aérea (hojas, tallos e inflorescencias). El aceite con el mayor contenido del fenilpropanoide (4,26 g safrol/100 g de material vegetal) y mejor calidad se obtuvo mediante idrodestilación convencional a partir de las inflorescencias colectadas en Doradal, Antioquia, con un rendimiento de extracción de 5,18 %p/p. Todos los aceites extraídos se analizaron por cromatografía de gases acoplada a espectrometría de masas (GC-MS) encontrando como componentes comunes y mayoritarios el safrol (72,68 – 89,56 %), terpinoleno y -terpineno. Una vez obtenido el aceite esencial, y con el fin de explorar su potencial sintético, se realizó una nitración (61 %) y reducción (64 %) con el fin de obtener la orto-alil anilina derivada del safrol (aminosafrol). Este precursor permitió obtener una serie de N-bencil derivados de aminosafrol con rendimientos entre 66 y 93 % mediante una reacción one-pot de condensación-reducción empleando benzaldehído y sus análogos con sustituyentes 2-metil, 4-metil, 2-metoxi, 3-metoxi, 4-metoxi, 4-dimetilamino, 4-isopropil, 2-bromo y 4-bromo. Estas aminas secundarias se emplearon por una parte para estudiar la ciclación intramolecular tipo Friedel-Crafts lo que permitió obtener un derivado de dibenzazocina con un rendimiento de 40%; por otra parte, la oxidación de una amina secundaria para generar una nitrona y su posterior ciclación intramolecular 1,3-dipolar, la cual generó diez derivados benzazepínicos con rendimientos entre 19 y 48 % para las dos etapas. En conclusión, ambas propuestas (azocinas y benzazepinas) se realizaron mediante 5 y 6 transformaciones sintéticas respectivamente, teniendo como rendimientos globales de reacción 10,4% y un rango entre 5 - 14%. (Texto tomado de la fuente)spa
dc.description.abstractThe research work described in this document presents the results obtained in the search for synthetic precursors from renewable sources and their subsequent chemical transformation. To meet the objectives of this research, two stages were proposed where the first focused on obtaining essential oil from Hierba Santa (Piper auritum) and the second stage consisted of exploring its synthetic potential directed towards obtaining azepine derivatives. The essential oil of Hierba Santa, which has a high content of safrole (phenylpropanoid belonging to the list of illicit narcotic and psychoactive substances in Colombia, following resolution number 823 of 2003), was obtained employing conventional hydrodistillation and microwave-assisted use of the aerial part (leaves, stems, and inflorescences). The oil with the highest content of phenylpropanoid (4.26 g safrole/100 g of plant material) and the best quality was obtained by conventional hydrodistillation from the inflorescences collected in Doradal, Antioquia, with an extraction yield of 5.18 % w/w. All the extracted oils were analyzed by gas chromatography coupled to mass spectrometry (GC-MS), finding safrole (72.68 – 89.56 %), terpinolene, and y-terpinene as common and major components. Once the essential oil was obtained, and to explore its synthetic potential, nitration (61 %) and reduction (64 %) were performed to obtain the ortho-allyl aniline derived from safrole (aminosafrol). This precursor made it possible to obtain a series of N-benzyl aminosafrole derivatives with yields between 66 and 93 % through a one-pot condensation-reduction reaction using benzaldehyde and its analogs with 2-methyl, 4-methyl, 2-methoxy, 3- methoxy, 4-methoxy, 4-dimethylamino, 4-isopropyl, 2-bromo and 4-bromo substituents. These secondary amines were used, on the one hand, to study the intramolecular FriedelCrafts type cyclization, which allowed obtaining one dibenzazocine derivative with yield of 40%. On the other hand, the oxidation of a secondary amine to generate a nitrone and its subsequent intramolecular 1,3-dipolar cyclization, which generated ten benzazepine derivatives with yields between 19 and 48 % for the two steps. In conclusion, both proposals (azocines and benzazepines) were carried out through 5 and 6 synthetic transformations, respectively, with overall reaction yields of 10.4% and a range between 5 - 14%.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestra en Químicaspa
dc.description.researchareaQuímica Verde y Síntesis Orgánicaspa
dc.format.extentxxiv, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83803
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesVizcaíno Páez, S., Safrol y Apiol: metabolismo, preparación de derivados y actividad antifúngica contra el hongo fitopatógeno Botryodiplodia theobromae. Escuela de Química 2014.spa
dc.relation.referencesSecretariat, G., Piper auritum kunth. Taxonomy, G. B., Ed. GBIF.org, 2021.spa
dc.relation.references(ICN), I. d. C. N. Colecciones Científicas en Línea. http://www.biovirtual.unal.edu.co/es/.spa
dc.relation.referencesMartínez, J. R.; Stashenko, E. E.; Leyva, M. A.; Rios, A. G., Determinación de la composición química y actividad antioxidante in vitro del aceite esencial de Piper auritum kunth (piperaceae) difundida en la costa colombiana. Scientia et technica 2007, 1 (33), 439-442.spa
dc.relation.referencesPineda, R. M.; Vizcaíno, S. P.; García, C. M.; Gil, J. H.; Durango, D. L., Chemical composition and antifungal activity of Piper auritum kunth and Piper holtonii C. DC. against phytopathogenic fungi. Chilean Journal of Agricultural Research 2012, 72 (4), 507.spa
dc.relation.referencesLeal, S. M.; Pino, N.; Stashenko, E. E.; Martínez, J. R.; Escobar, P., Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. Journal of Essential Oil Research 2013, 25 (6), 512-519.spa
dc.relation.referencesJairo René Martínez, E. E. S., Miguel Antonio Leyva, Alejandro Garcia Rios, Determinación de la composición química y actividad antioxidante in vitro del aceite esencial de Piper auritum kunth (piperaceae) difundida en la costa colombiana. Scientia et technica 2007, 1 (33), 439-442.spa
dc.relation.referencesnations, F. a. a. o. o. t. u., Flavours and fragrances of plant origin Roma, 1995; p. 22. https://www.fao.org/publications/card/es/c/ca4004e4-8bdf-5c46-9c08-8601c91231c1/.spa
dc.relation.referencesJeurissen, S. M.; Bogaards, J. J.; Awad, H. M.; Boersma, M. G.; Brand, W.; Fiamegos, Y. C.; van Beek, T. A.; Alink, G. M.; Sudhölter, E. J.; Cnubben, N. H., Human cytochrome P450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1‘-hydroxysafrole. Chemical research in toxicology 2004, 17(9), 1245-1250.spa
dc.relation.referencesKouznetsov, V. V., Essential Oils as Chemical Reagents in Heterocyclic Synthesis. Natural Product Communications 2019, 14 (1).spa
dc.relation.referencesLi, Y.; Fabiano-Tixier, A.-S.; Chemat, F., Essential oils as reagents in green chemistry. Springer International Publishing: 2014; Vol. 1.spa
dc.relation.referencesBakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M., Biological effects of essential oils–a review. Food chemical toxicology 2008, 46 (2), 446-475.spa
dc.relation.referencesRaut, J. S.; Karuppayil, S. M., A status review on the medicinal properties of essential oils. Industrial crops products 2014, 62, 250-264spa
dc.relation.referencesPavela, R., Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial crops products 2015, 76, 174-187.spa
dc.relation.referencesDewick, P. M., Medicinal natural products: a biosynthetic approach. John Wiley & Sons: 2002.spa
dc.relation.referencesYazdani, F.; Mafi, M.; Farhadi, F.; Tabar-Heidar, K.; Aghapoor, K.; Mohsenzadeh, F.; Darabi, H. R., Supercritical CO2 extraction of essential oil from clove bud: Effect of operation conditions on the selective isolation of eugenol and eugenyl acetate. Zeitschrift für Naturforschung B 2005, 60 (11), 1197-1201spa
dc.relation.referencesKouznetsov, V. V., Conexión de Biología y Química vía Síntesis Orgánica dirigida a la Diversidad molecular. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 2014, 129-141.spa
dc.relation.referencesKaufman, T. S., The multiple faces of eugenol. A versatile starting material and building block for organic and bio-organic synthesis and a convenient precursor toward bio-based fine chemicals. Journal of the Brazilian chemical Society 2015, 26 (6), 1055-1085.spa
dc.relation.referencesLima, L. M., Safrole and the versatility of a natural biophore. Rev. Virtual Quim 2015, 7, 495-538spa
dc.relation.referencesKumar, S.; Bawa, S.; Gupta, H., Biological activities of quinoline derivatives. Mini reviews in medicinal chemistry 2009, 9 (14), 1648-1654.spa
dc.relation.referencesKhanam, H., Bioactive Benzofuran derivatives: A review. European journal of medicinal chemistry 2015, 97, 483-504spa
dc.relation.referencesKouznetsov, V. V.; Bohorquez, A. R. R.; Stashenko, E. E., Three-component imino Diels–Alder reaction with essential oil and seeds of anise: generation of new tetrahydroquinolines. Tetrahedron Letters 2007, 48 (50), 8855-8860.spa
dc.relation.referencesPeñaranda Gómez, A. l.; Rodríguez Bejarano, O.; Kouznetsov, V. V.; Ochoa-Puentes, C., One-Pot Diastereoselective Synthesis of Tetrahydroquinolines from Star Anise Oil in a Choline Chloride/Zinc Chloride Eutectic Mixture. ACS Sustainable Chemistry Engineering 2019, 7 (22), 18630-18639.spa
dc.relation.referencesJ Hitce, M. C., C Bourdon, A Vivés,; X Marat, M. D.-C., Flash-metathesis for the coupling of sustainable (poly) hydroxyl β-methylstyrenes from essential oils. Green Chemistry 2015, 17 (7), 3756-3761.spa
dc.relation.referencesKouznetsov, V. V.; Merchan Arenas, D.; Romero Bohorquez, A., PEG-400 as green reaction medium for Lewis acid-promoted cycloaddition reactions with isoeugenol and anethole. Tetrahedron Letters 2008, 49 (19), 3097-3100spa
dc.relation.referencesGadkari, R. R.; Suwalka, S.; Yogi, M. R. A., Wazed; Das, A.; Alagirusamy, R., Green synthesis of chitosan-cinnamaldehyde cross-linked nanoparticles: Characterization and antibacterial activity. Carbohydrate polymers 2019, 226, 115298spa
dc.relation.referencesKaur, B.; Markan, M.; Singh, M., Green synthesis of gold nanoparticles from Syzygium aromaticum extract and its use in enhancing the response of a colorimetric urea biosensor. BioNanoScience 2012, 2 (4), 251-258spa
dc.relation.referencesZhang, Y.; Shareena Dasari, T. P.; Deng, H.; Yu, H., Antimicrobial activity of gold nanoparticles and ionic gold. Journal of Environmental Science Health, Part C 2015, 33 (3), 286-327.spa
dc.relation.referencesLi, X.; Robinson, S. M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D. F.; Sahar, A.; Riley, M. A.; Rotello, V. M., Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS nano 2014, 8 (10), 10682-10686.spa
dc.relation.referencesVillamizar, M. C. O.; Zubkov, F. I.; Galvis, C. E. P.; Méndez, L. Y. V.; Kouznetsov, V. V., The study of metal-free and palladium-catalysed synthesis of benzochromenes via direct C–H arylation using unactivated aryl benzyl ethers derived from essential oils as raw materials. Organic Chemistry Frontiers 2017, 4 (9), 1736-1744.spa
dc.relation.referencesAcelas, M.; Camargo, H. A.; Henao, J. A.; Kouznetsov, V. V.; Bohórquez, A. R. R.; Dugarte-Dugarte, A.; Delgado, J. M.; de Delgado, G. D., Synthesis, characterization and crystal structure of two polymorphs of trans N-benzyl-3,9,9-trimethyl-1,2,3,4,4a,9,9a,10-octahydroacridine. Journal of Molecular Structure 2020, 1215, 128222.spa
dc.relation.referencesNascimento, J. E.; Barcellos, A. M.; Sachini, M.; Perin, G.; Lenardão, E. J.; Alves, D.; Jacob, R. G.; Missau, F., Catalyst-free synthesis of octahydroacridines using glycerol as recyclable solvent. Tetrahedron letters 2011, 52 (20), 2571-2574.spa
dc.relation.referencesSakane, S.; Matsumura, Y.; Yamamura, Y.; Ishida, Y.; Maruoka, K.; Yamamoto, H., Olefinic cyclizations promoted by Beckmann rearrangement of oxime sulfonate. Journal of the American Chemical Society 1983, 105 (3), 672-674spa
dc.relation.referencesKouznetsov, V.; Palma, A.; Rozo, W.; Stashenko, E.; Bahsas, A.; Amaro Luis, J., A facile Brønsted acidic-mediated cyclisation of 2-allyl-1-arylaminocyclohexanes to octahydroacridine derivatives. Tetrahedron Letters 2000, 41 (36), 6985-6988.spa
dc.relation.referencesAnastas, P. T. W. J. C., Green chemistry : theory and practice. Oxford University Press: Oxford [England]; New York, 1998.spa
dc.relation.references(EPA), E. P. A. Basics of Green Chemistry. https://www.epa.gov/greenchemistry/basics-green-chemistryspa
dc.relation.referencesŘebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P., Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Plant Foods for Human Nutrition 2020, 75 (4), 495-504spa
dc.relation.referencesBarcena, H.; Chen, P., An anesthetic drug demonstration and an introductory antioxidant activity experiment with “Eugene, the sleepy fish”. Journal of Chemical Education 2016, 93 (1), 202-205.spa
dc.relation.referencesJust, J.; Bunton, G. L.; Deans, B. J.; Murray, N. L.; Bissember, A. C.; Smith, J. A., Extraction of eugenol from cloves using an unmodified household espresso machine: an alternative to traditional steam-distillation. Journal of Chemical Education 2016, 93 (1), 213-216.spa
dc.relation.referencesErdoğan, M.; Daştan, A., Synthesis of N-substituted dibenzoazepine– pyridazine derivatives as potential neurologically active drugs. Synthetic Communications 2020, 50 (24), 3845-3853.spa
dc.relation.referencesTafurt, G.; Martinez, J.; Stashenko, E.; Gómez, S.; Palma, A., Reactividad química en la alquilación intramolecular de friedel-crafts de orto-alilanilinas N bencilo sustituidas. Revista Colombiana de Química 2009, 38 (3), 409-423spa
dc.relation.referencesVan der Burg, W.; Bonta, I.; Delobelle, J.; Ramon, C.; Vargaftig, B., Novel type of substituted piperazine with high antiserotonin potency. Journal of Medicinal Chemistry 1970, 13 (1), 35-39spa
dc.relation.referencesMoriconi, E. J.; Maniscalco, I. A., .pi.-Equivalent heterocyclic congeners of tropone. Azatropones. The Journal of Organic Chemistry 1972, 37 (2), 208-215spa
dc.relation.referencesSasakura, K.; Sugasawa, T., Synthesis of 11‐phenyl‐5,6‐dihydro‐11H‐ dibenz(b,e)azepine derivatives. Chemischer Informationsdienst 1981, 12 (21), no no.spa
dc.relation.referencesTsvelikhovsky, D.; Buchwald, S. L., Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl) aniline: preparation of carbazoles, indoles, dibenzazepines, and acridines. Journal of the American Chemical Society 2010, 132 (40), 14048-14051spa
dc.relation.referencesDella Ca', N.; Maestri, G.; Malacria, M.; Derat, E.; Catellani, M., Palladium‐ Catalyzed Reaction of Aryl Iodides with ortho‐Bromoanilines and Norbornene/Norbornadiene: Unexpected Formation of Dibenzoazepine Derivatives. Angewandte Chemie International Edition 2011, 50 (51), 12257-12261spa
dc.relation.referencesHilt, G.; Galbiati, F.; Harms, K., A modular approach for the synthesis of dibenzoazepine derivatives. Synthesis 2006, 2006 (21), 3575-3584spa
dc.relation.referencesPalma, A.; Barajas, J. J.; Kouznetsov, V. V.; Stashenko, E.; Bahsas, A., New and Efficient Synthesis of 6,11-Dihydro-11-ethyl-5H-dibenz[b,e]azepine Derivatives Starting from N-Benzylanilines via Amino-Claisen and Friedel Crafts Methodologies. Synlett 2004.spa
dc.relation.referencesLeón Méndez, G.; Osorio Fortich, M. d. R.; Martínez Useche, S. R., Comparación de dos métodos de extracción del aceite esencial de Citrus sinensis L. Revista Cubana de Farmacia 2015, 49 (4), 0-0spa
dc.relation.referencesMuñiz, O. D. M.; Hernández, M. V.; Cruz, I. M., Chemical composition and antioxidant activity of the essential oil of Piper auritum kunth related to the type of soil at Veracruz, Mexico. Academic Journal of Science 2016spa
dc.relation.referencesChacón, C.; Granados, J. M.; Lau, N. R.; Rivera, S. L.; Valdiviezo, V. M. R.; Miceli, F. A. G., Actividad antifúngica de extractos de hierba santa (Piper auritum) y jarilla (baccharis glutinosa) contra fusarium spp. Agrociencia 2020, 54 (4), 531-538spa
dc.relation.referencesCruz, G.; Morales, S.; López, M., Extracción asistida con microondas de aceite esencial de acuyo (Piper auritum) y evaluación de su efecto antifúngico contra Penicillium expansum. Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos 2016, 1 (1), 173-178.spa
dc.relation.referencesEspinoza Catalán, L.; Madrid Villegas, A.; Taborga Liber, L.; Villena García, J. C. F., Mauricio; Carrasco Altamirano, H., Synthesis of nine safrole derivatives and their antiproliferative activity towards human cancer cells. Journal of the Chilean Chemical Society 2010, 55, 219-222.spa
dc.relation.referencesBehzad Zeynizadeh; Zahmatkesh, K., First and Efficient Method for Reduction of Aliphatic and Aromatic Nitro Compounds with Zinc Borohydride as Pyridine Zinc Tetrahydroborato Complex: A New Stable Ligand‐Metal Borohydride. Journal of the Chinese Chemical Society 2003, 50 (2), 267-271spa
dc.relation.referencesSung-eun Yoo, S.-h. L., Reduction of organic compounds with sodium borohydride-copper (II) sulfate system. Synlett 1990, 1990 (07), 419-420spa
dc.relation.referencesD Gowda, B. M., Shankare Gowda, Zinc-catalyzed ammonium formate reductions: rapid and selective reduction of aliphatic and aromatic nitro compounds. Indian Journal of Chemistry 2001, 40B, 75-77.spa
dc.relation.referencesFD Bellamy, K. O., Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Letters 1984, 25 (8), 839-842.spa
dc.relation.referencesKorich, A. L.; Hughes, T. S., A facile, one-pot procedure for forming diarylimines from nitroarenes and benzaldehydes. Synlett 2007, 2007 (16), 2602- 2604.spa
dc.relation.referencesRoa, D. A.; Urbina, J. M., Obtención de 2-Fenil lepidinas durante la alquilación de Friedel-Crafts asistida por microondas de N-(α-alilbencil) anilinas soportadas en sílica-ácido sulfúrico. Ingeniería y competitividad 2013, 15 (1), 71-77.spa
dc.relation.referencesFlores, K. P.; Omega, J. L. O.; Cabatingan, L. K.; Go, A. W.; Agapay, R. C.; Ju, Y.-H., Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renewable energy 2019, 130, 510-523.spa
dc.relation.referencesAzevedo-Barbosa, H.; Ferreira-Silva, G. Á.; Silva, C. F.; de Souza, T. B.; Dias, D. F.; Chagas de Paula, A. C.; Ionta, M.; Carvalho, D. T., Phenylpropanoid based sulfonamide promotes cyclin D1 and cyclin E down-regulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line. Toxicology in Vitro 2019, 59, 150-160spa
dc.relation.referencesWąsińska, M.; Korczewska, A.; Giurg, M.; Skarżewski, J., Improved protocol for mononitration of phenols with bismuth (III) and iron (III) nitrates. Synthetic Communications 2015, 45 (1), 143-150spa
dc.relation.referencesCanales, L.; Bandyopadhyay, D.; Banik, B. K., Bismuth nitrate pentahydrate-induced novel nitration of Eugenol. Organic medicinal chemistry letters 2011, 1 (1), 1-3.spa
dc.relation.referencesVizcaíno-Páez, S.; Pineda, R.; García, C.; Gil, J.; Durango, D., Metabolism and anti fungal activity of saffrole, dillapiole, and derivatives against Botryodliplodia theobromae and Colletotrichum acutatum. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2016, 15 (1), 1-17.spa
dc.relation.referencesGamble, A. B.; Garner, J.; Gordon, C. P.; O'Conner, S. M.; Keller, P. A., Aryl nitro reduction with iron powder or stannous chloride under ultrasonic irradiation. Synthetic Communications 2007, 37 (16), 2777-2786spa
dc.relation.referencesBaghernejad, B., Application of p-toluenesulfonic Acid (PTSA) in Organic Synthesis. Current Organic Chemistry 2011, 15 (17), 3091-3097.spa
dc.relation.referencesSutharchanadevi, M.; Murugan, R., Eight-membered Rings with One Nitrogen Atom. Comprehensive Heterocyclic Chemistry II 1996, 403–428.spa
dc.relation.referencesStashenko, E. E.; Martínez, J. R.; Tafurt-García, G.; Palma, A.; Bofill, J. M., A computational study and valence bond approach to the intramolecular electrophilic aromatic substitution mechanism of ortho-allyl-N-benzylanilines. Tetrahedron Letters 2008, 64 (30-31), 7407-7418.spa
dc.relation.referencesAcosta Quintero, L. M.; Palma, A.; Cobo, J.; Glidewell, C., Diastereoisomeric forms of 11-ethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxamide: syntheses and the molecular and supramolecular structure of the minor form (6RS,11RS)-11-ethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxamide. Acta Crystallographica Section C: Structural Chemistry 2016, 72 (7), 549-554.spa
dc.relation.referencesCheng, D.; Yan, X.; Shen, J.; Pu, Y.; Xu, X.; Yan, J., Synthesis of 2,4- diarylquinoline Derivatives via Chloranil-Promoted Oxidative Annulation and One Pot Reaction. Synthesis 2020, 52 (12), 1833-1840.spa
dc.relation.referencesNallagonda, R.; Rehan, M.; Ghorai, P., Synthesis of functionalized indoles via palladium-catalyzed aerobic oxidative cycloisomerization of o-allylanilines. Organic letters 2014, 16 (18), 4786-4789.spa
dc.relation.referencesAcosta, L. M.; Palma, A.; Bahsas, A., Rational use of substituted N-allyl and N,N-diallylanilines in the stereoselective synthesis of novel 2-alkenyltetrahydro-1-benzazepines. Tetrahedron Letters 2010, 66 (43), 8392-8401spa
dc.relation.referencesAcosta, L. M.; Bahsas, A.; Palma, A.; Cobo, J.; Low, J. N.; Glidewell, C., Three styryl-substituted tetrahydro-1,4-epoxy-1-benzazepines: configurations, conformations and hydrogen-bonded chains. Acta Crystallographica Section C: Crystal Structure Communications 2008, 64 (9), o514-o518spa
dc.relation.referencesMurahashi, S.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S., Tungstate catalyzed oxidation of secondary amines to nitrones. alpha-Substitution of secondary amines via nitrones. The Journal of Organic Chemistry 1990, 55 (6), 1736-1744spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.decsPlants, Medicinaleng
dc.subject.decsPlantas medicinalesspa
dc.subject.decsExtractos vegetalesspa
dc.subject.decsPlant Extractseng
dc.subject.proposalAceite esencialspa
dc.subject.proposalPiper auritumspa
dc.subject.proposalSafrolspa
dc.subject.proposalAminosafrolspa
dc.subject.proposaldibenz[b,e]azocinaspa
dc.subject.proposalBenzazepinaspa
dc.subject.proposalEssential oileng
dc.subject.proposalPiper auritumeng
dc.subject.proposalSafroleeng
dc.subject.proposalAminosafroleeng
dc.subject.proposalDibenzo[b,e]azozineeng
dc.subject.proposalBenzazepineeng
dc.titleSíntesis alternativa de derivados dibenzazepínicos empleando aceite esencial de hierba santa (Piper auritum)spa
dc.title.translatedAlternative synthesis of dibenzazepine derivatives using essential oil of yerba santa (Piper auritum)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032493703.2023.pdf
Tamaño:
6.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: