Caracterización del infiltrado inmune tumoral en pacientes con cáncer de mama

dc.contributor.advisorParra López, Carlos Alberto
dc.contributor.authorLlano León, Manuela
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000126438spa
dc.contributor.orcidhttps://orcid.org/0000-0002-6436-1556spa
dc.contributor.researchgroupLaboratorio de Inmunología y Medicina Traslacionalspa
dc.date.accessioned2023-03-29T16:58:50Z
dc.date.available2023-03-29T16:58:50Z
dc.date.issued2023-03-27
dc.descriptionilustraciones, fotografía a color
dc.description.abstractEn Colombia, el cáncer de mama es el tipo de cáncer con mayor incidencia y prevalencia en la mujer, ocupando el tercer puesto en mortalidad a nivel nacional. La vigilancia del tumor en pacientes con cáncer de mama por las células del sistema inmune -inmunovigilancia- es importante para el control del desarrollo tumoral. Reportes en la literatura sugieren que el esquema de quimioterapia neoadyuvante con Doxorrubicina y Ciclofosfamida induce un tipo especial de muerte en las células tumorales conocida como muerte celular inmunogénica, activando las poblaciones inmunes intratumorales y favoreciendo la inmunovigilancia de este tumor, lo cual, probablemente contribuye a una mejor respuesta clínica al tratamiento antitumoral. Estudios demuestran que el microambiente tumoral es un factor determinante en el pronóstico de los pacientes con cáncer. Aunque en los tumores de cáncer de mama se ha descrito la importancia de analizar el infiltrado inmune para evaluar la presencia de poblaciones efectoras y de poblaciones reguladoras, este tipo de análisis para proponer marcadores pronósticos de evolución y de respuesta al tratamiento han sido limitados. En este trabajo estandarizamos una metodología de inmunohistoquímica secuencial sobre lámina única para la caracterización de poblaciones del sistema inmune innato y adaptativo como: i) Leucocitos totales CD45+ ii) Macrófagos CD68+ III). Linfocitos B CD20+ iv). Linfocitos T totales CD3+ y v). Linfocitos T Citotóxicos CD8+, con relación a las células tumorales evaluadas con el marcador Pankeratinas. Se demostró que esta técnica representa una alternativa costo-efectiva para mapear el microambiente tumoral, que permite monitorear la infiltración de estas poblaciones antes y después de la quimioterapia y que en este trabajo nos permitió evidenciar un aumento significativo de la infiltración de células CD45 positivas después del tratamiento neoadyuvante. Adicionalmente, utilizamos la herramienta CIBERSORTx para medir 22 subpoblaciones inmunes, con datos disponibles en el Genome European Archive por medio del análisis del transcriptoma tumoral. Se encontraron cambios significativos en diferentes poblaciones: primero, un aumento después de un ciclo de quimioterapia de las fracciones relativas de Linfocitos T CD8, Linfocitos T CD4 quiescentes y de Linfocitos T reguladores, las cuales disminuyeron al terminar el esquema de neoadyuvancia. Segundo, las fracciones relativas de Linfocitos B de memoria, Macrófagos M1, y Linfocitos T Foliculares disminuyeron después de un ciclo y al final del tratamiento. Por último, las Células Dendríticas activadas, los Macrófagos M2 y los Mastocitos aumentaron después de un ciclo, y al finalizar el tratamiento. Por otra parte, se realizó una revisión sistemática que nos permitió incluir 32 artículos para una síntesis cualitativa de la evidencia y 9 artículos, para una síntesis cuantitativa por medio de meta-análisis, en los cuales encontramos una disminución significativa de la infiltración de TILs (T Infiltrating Lymphocytes) evaluados morfológicamente en láminas de hematoxilina & eosina y del marcador FoxP3 medido por inmunohistoquímica tradicional, lo que sugiere una disminución de las poblaciones de linfocitos T reguladores en respuesta a la NAC (neoadyuvant chemotherapy). Las poblaciones de Linfocitos T totales CD3+, Linfocitos T colaboradores CD4+ y Linfocitos T citotóxicos CD8+ no cambiaron significativamente en respuesta al tratamiento. Por último, y con la intención de evaluar el impacto de los marcadores evaluados en la pCR (Pathological Clinical Response), se realizó un análisis PCA (Principal Component Analysis) con las variables correspondientes a la información clínica de las pacientes y los puntajes de las marcaciones de inmunohistoquímica de las cinco poblaciones inmunes evaluadas. En este análisis las variables fueron procesadas de forma directa y posteriormente optimizadas filtrando las variables de mayor peso. Sin embargo, ninguno de estos análisis nos permitió establecer correlaciones entre los marcadores evaluados y el pronóstico clínico de las pacientes. Sin embargo, realizando un análisis con dos variables seleccionadas: i) infiltrado de células CD45+ el cual aumentó significativamente pos-NAC; ii) infiltración de células CD68+ que mostró una tendencia al aumento, y las variables de tamaño y grado de reducción tumoral, fue posible evidenciar una segregación diferencial de las muestras pre y pos-NAC. (Texto tomado de la fuente)spa
dc.description.abstractBreast cancer is the third deadliest cancer in Colombia, having the highest incidence and prevalence in women. Tumor surveillance in breast cancer patients by immune system cells -immunosurveillance- it’s a key factor to control tumor growth. A growing body of evidence suggest that a neoadjuvant chemotherapy scheme with Doxorubicin and Cyclophosphamide induces a special type of tumor cell death known as immunogenic cell death, which activates intratumoral immune populations and favours immunosurveillance of this tumor, probably contributing to a better clinical response to antitumor treatment. Studies show that the tumor microenvironment is a determining factor in the prognosis of cancer patients. Although in breast cancer tumors the importance of analyzing the immune infiltrate to evaluate the presence of effector and regulatory populations has been described, the discovery and validation of prognostic biomarkers in response to treatment is still limited. In this work we standardized a sequential immunohistochemistry methodology for the characterization of innate and adaptive immune system populations such as: i) Total CD45+ leukocytes ii) CD68+ macrophages iii). CD20+ B cells iv). CD3+ total T cells and v).CD8+ cytotoxic T cells, in relation to tumor cells evaluated with the Pankeratin marker. Our results showed that this technique represents a cost-effective alternative to map the tumor microenvironment, which allowed us to evaluate the infiltration of these populations before and after chemotherapy, finding a significant increase in the infiltration of CD45 positive cells after neoadjuvant treatment. Additionally, we used the CIBERSORTx tool to measure twenty-two immune subpopulations, with data available in the genome European archive, by analyzing the tumor transcriptome. Significant changes were found in different populations: first, an increase after one cycle of NAC of the relative fractions of: CD8 T cells, quiescent CD4 T cells and regulatory T lymphocytes; decreasing at the end of the treatment. Second, the relative fractions of memory B lymphocytes, M1 macrophages, and follicular T cells decreased after one cycle and at the end of treatment. Finally, activated Dendritic Cells, M2 Macrophages, and Mast Cells increased after one cycle, and also at the end of treatment. On the other hand, we performed a systematic review that allowed us to include 32 articles for a qualitative synthesis of the evidence, and 9 articles, for a quantitative synthesis by meta-analysis, in which we found a significant decrease in the infiltration of TILs, evaluated morphologically on hematoxylin and eosin slides, as well as the reduction FoxP3+ cells, measured by traditional immunohistochemistry, suggesting a decrease in the populations of regulatory T lymphocytes in response to NAC. Total CD3+ T lymphocyte, CD4+ helper T lymphocyte and CD8+ cytotoxic T lymphocyte populations did not change significantly in response to treatment. Finally with the intention of correlate the evaluated markers and pCR (Pathological Clinical Response), a PCA (Principal Component Analysis) analysis was performed with the variables corresponding to the clinical information of the patients and the scores of the immunohistochemical results of the five immune populations evaluated. In the first analysis, the variables were processed directly, and in the second the variables were optimized by filtering the ones with the greatest weight. However, none of these analyzes allowed us to establish correlations between the markers evaluated and the clinical prognosis of the patients. Lastly, analysis with two selected variables: i) CD45+ cell infiltrate which increased significantly post-NAC; ii) infiltration of CD68+ cells that showed an increasing trend, was performed, among with the variables of size and degree of tumor reduction, showing a differential segregation of the pre- and post-NAC samples.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Bioquímicaspa
dc.format.extent120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83670
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.references1. Laplane, L., et al., The Multiple Layers of the Tumor Environment. Trends in cancer, 2018. 4(12).spa
dc.relation.references2. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome, in Nat Rev Cancer. 2012: England. p. 298-306.spa
dc.relation.references3. Pages, F., et al., International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 2018. 391(10135): p. 2128-2139.spa
dc.relation.references4. F, Pager., et al., The consensus Immunoscore in phase 3 clinical trials; potential impact on patient management decisions. Oncoimmunology, 2020. 9(1).spa
dc.relation.references5. Ali., et al., Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast cancer research : BCR, 2016. 18(1).spa
dc.relation.references6. Burugu, S., K. Asleh-Aburaya, and T.O. Nielsen, Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer, 2017. 24(1): p. 3-15.spa
dc.relation.references7. Alexe., et al., High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer research, 2007. 67(22).spa
dc.relation.references8. Teschendorff., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC cancer, 2010. 10.spa
dc.relation.references10. Liu, W.M., et al., Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer, 2010. 102(1): p. 115-23.spa
dc.relation.references11. Albert, M.L., B. Sauter, and N. Bhardwaj, Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998. 392(6671): p. 86-9.spa
dc.relation.references12. Apetoh, L., et al., Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res, 2008. 68(11): p. 4026-30.spa
dc.relation.references13. Casares, N., et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med, 2005. 202(12): p. 1691-701.spa
dc.relation.references14. Zitvogel, L., O. Kepp, and G. Kroemer, Decoding cell death signals in inflammation and immunity. Cell, 2010. 140(6): p. 798-804.spa
dc.relation.references15. Bernal.-E., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.spa
dc.relation.references16. Sistigu, A., et al., Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med, 2014. 20(11): p. 1301-9.spa
dc.relation.references17. Zhang, B., et al., Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med, 2007. 204(1): p. 49-55.spa
dc.relation.references18. Reits, E.A., et al., Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med, 2006. 203(5): p. 1259-71.spa
dc.relation.references19. Apetoh, L., et al., The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev, 2007. 220: p. 47-59.spa
dc.relation.references20. Tesniere., et al., Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010. 29(4).spa
dc.relation.references21. Bernal Estévez, D.A.P.L., Carlos Alberto., Evaluación de la capacidad inmuno-estimulante de la terapia neo-adyuvante con Doxorrubicina y Ciclofosfamida en pacientes con cáncer de mama. 2017.spa
dc.relation.references22. Rodríguez Rodríguez, I.J.P.L., Carlos Alberto., Estudio celular de la inmunosenescencia en adultos mayores vacunados y en pacientes con cáncer de mama. 2021.spa
dc.relation.references23. Remark, R., et al., In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol, 2016. 1(1): p. aaf6925.spa
dc.relation.references24. Akturk., et al., Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS): Multiplexed Chromogenic IHC Assay for High-Dimensional Tissue Analysis. . 2020: Methods Mol Biol. . p. 497-519.spa
dc.relation.references25. Steen, C., et al., Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. MIMB. Vol. 2117. 2020, Springer Link: Methods Mol Biol. 135-157.spa
dc.relation.references26. Newman., et al., Robust enumeration of cell subsets from tissue expression profiles. Nature methods, 2015. 12(5).spa
dc.relation.references27. INC. Estadísticas para Colombia 2020. International Agency for Cancer Research. 2020, G.. 2021; Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf.spa
dc.relation.references28. (INC)., Anuario estadístico 2020. Vol. 18. 2021.spa
dc.relation.references29. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8.spa
dc.relation.references30. Zhu, S., et al., Differential regulation and function of tumor-infiltrating T cells in different stages of breast cancer patients. Tumour Biol, 2015. 36(10): p. 7907-13spa
dc.relation.references31. Crespo, J., et al., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol, 2013. 25(2): p. 214-21.spa
dc.relation.references32. Denkert, C., et al., Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol, 2018. 19(1): p. 40-50.spa
dc.relation.references33. Ali, H.R., et al., Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol, 2014. 25(8): p. 1536-43.spa
dc.relation.references34. Gu-Trantien, C., et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest, 2013. 123(7): p. 2873-92.spa
dc.relation.references35. van Vloten, J.P., et al., Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. J Immunol, 2018. 200(2): p. 450-458.spa
dc.relation.references36. Ghiringhelli, F., et al., Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother, 2007. 56(5): p. 641-8.spa
dc.relation.references37. Hortobagyi, G.C., J. D´Orsi, S. Edge, E. Mittendorf H. Rugo, L. Solin, D. Weaver, D. Winchester, D. Giuliano A., Breast Cancer Staging System AJCC 8th Edition. 2017. p. 589-636.spa
dc.relation.references38. Akram, M., et al., Awareness and current knowledge of breast cancer. Biol Res, 2017. 50(1): p. 33.spa
dc.relation.references39. Burnet, M., Cancer; a biological approach. I. The processes of control. Br Med J, 1957. 1(5022): p. 779-86.spa
dc.relation.references40. Shankaran, V., et al., IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 2001. 410(6832): p. 1107-11.spa
dc.relation.references41. Vesely, M.D., et al., Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 2011. 29: p. 235-71.spa
dc.relation.references42. Mittal, D., et al., New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol, 2014. 27: p. 16-25.spa
dc.relation.references43. Halama, N., et al., Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res, 2011. 71(17): p. 5670-7.spa
dc.relation.references44. Dieu-Nosjean, M.C., et al., Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol, 2008. 26(27): p. 4410-7.spa
dc.relation.references45. García Martínez., et al., Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast cancer research : BCR, 2014. 16(6).spa
dc.relation.references46. Abdelrahman, A.E., et al., Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol, 2021. 51: p. 151676.spa
dc.relation.references47. Demir, L., et al., Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral FOXP3+ Tregs. Clinical & experimental metastasis, 2013. 30(8).spa
dc.relation.references48. Kaewkangsadan, V., et al., Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. Journal of immunology research, 2016. 2016.spa
dc.relation.references49. Ladoire, S., et al., In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol, 2011. 224(3): p. 389-400.spa
dc.relation.references50. Lee, J., D. Kim, and A. Lee, Prognostic Role and Clinical Association of Tumor-Infiltrating Lymphocyte, Programmed Death Ligand-1 Expression with Neutrophil-Lymphocyte Ratio in Locally Advanced Triple-Negative Breast Cancer. Cancer research and treatment, 2019. 51(2).spa
dc.relation.references51. Vanguri, R., et al., Tumor Immune Microenvironment and Response to Neoadjuvant Chemotherapy in Hormone Receptor/HER2+ Early Stage Breast Cancer. Clinical breast cancer, 2022. 22(6).spa
dc.relation.references52. Oda, N., et al., Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast cancer research and treatment, 2012. 136(1).spa
dc.relation.references53. Waks, A., et al., The Immune Microenvironment in Hormone Receptor-Positive Breast Cancer Before and After Preoperative Chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 2019. 25(15).spa
dc.relation.references54. Zhang, L., et al., The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer. Annals of diagnostic pathology, 2019. 40.spa
dc.relation.references55. García-Martínez, E., et al., Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast cancer research : BCR, 2014. 16(6).spa
dc.relation.references56. Hornychova, H., et al., Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer investigation, 2008. 26(10).spa
dc.relation.references57. Shou, J., et al., Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs : a systematic review and meta-analysis. BMC Cancer, 2016. 16: p. 687.spa
dc.relation.references58. Mendes, F., et al., The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta, 2016. 1865(2): p. 168-75.spa
dc.relation.references59. Jiang, Y., Y. Li, and B. Zhu, T-cell exhaustion in the tumor microenvironment. Cell Death Dis, 2015. 6: p. e1792.spa
dc.relation.references60. Prado-Garcia, H., S. Romero-Garcia, and J.S. Lopez-Gonzalez, The role of exhaustion in tumor-induced T cell dysfunction in cancer, in Cancer Immunology. 2015, Springer. p. 61-75.spa
dc.relation.references61. Okoye, I.S., et al., Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8(+) T Cell Responses to Chronic Viral Infections and Cancer. Front Immunol, 2017. 8: p. 1215.spa
dc.relation.references62. Sun, S., et al., PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother, 2014. 63(4): p. 395-406.spa
dc.relation.references63. Alcover, A. and B. Alarcon, Internalization and intracellular fate of TCR-CD3 complexes. Crit Rev Immunol, 2000. 20(4): p. 325-46.spa
dc.relation.references64. Gonzalez-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.spa
dc.relation.references65. Alexe, G., et al., High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res, 2007. 67(22): p. 10669-76.spa
dc.relation.references66. Teschendorff, A.E., et al., Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer, 2010. 10: p. 604.spa
dc.relation.references67. Mahmoud, S.M., et al., An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat, 2011. 127(1): p. 99-108.spa
dc.relation.references68. Granados, D.P., et al., MHC I-associated peptides preferentially derive from transcripts bearing miRNA response elements. Blood, 2012. 119(26): p. e181-91.spa
dc.relation.references69. Tongu, M., et al., Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunol Immunother, 2010. 59(5): p. 769-77.spa
dc.relation.references70. Tesniere, A., et al., Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010. 29(4): p. 482-91.spa
dc.relation.references71. Viaud, S., et al., Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res, 2010. 70(4): p. 1281-5.spa
dc.relation.references72. Blachere, N.E., R.B. Darnell, and M.L. Albert, Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol, 2005. 3(6): p. e185.spa
dc.relation.references73. Nowak, A.K., R.A. Lake, and B.W. Robinson, Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev, 2006. 58(8): p. 975-90.spa
dc.relation.references74. Groenendyk, J., J. Lynch, and M. Michalak, Calreticulin, Ca2+, and calcineurin - signaling from the endoplasmic reticulum. Mol Cells, 2004. 17(3): p. 383-9.spa
dc.relation.references75. Chaput, N., et al., Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med, 2007. 85(10): p. 1069-76.spa
dc.relation.references76. Panaretakis, T., et al., The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ, 2008. 15(9): p. 1499-509.spa
dc.relation.references77. Gardai, S.J., et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005. 123(2): p. 321-34.spa
dc.relation.references78. Sebbag, G., et al., Colon carcinoma in the adolescent. Pediatr Surg Int, 1997. 12(5-6): p. 446-8.spa
dc.relation.references79. Faget, J., et al., Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res, 2011. 71(19): p. 6143-52.spa
dc.relation.references80. Senovilla, L., et al., An immunosurveillance mechanism controls cancer cell ploidy. Science, 2012. 337(6102): p. 1678-84.spa
dc.relation.references81. Miyashita, M., et al., Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res, 2015. 17: p. 124.spa
dc.relation.references82. DeNardo, D.G., et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov, 2011. 1(1): p. 54-67.spa
dc.relation.references84. Loi, S., et al., Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol, 2013. 31(7): p. 860-7.spa
dc.relation.references85. Saper, C.B., Neurobiological basis of fever. Ann N Y Acad Sci, 1998. 856: p. 90-4.spa
dc.relation.references86. Ruffell, B., et al., Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences, 2012. 109(8): p. 2796-2801.spa
dc.relation.references87. Stoll, G., et al., Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. Oncoimmunology, 2014. 3(1): p. e27884.spa
dc.relation.references88. Disis, M.L., Immune regulation of cancer. J Clin Oncol, 2010. 28(29): p. 4531-8.spa
dc.relation.references89. Pages, F., et al., Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 2010. 29(8): p. 1093-102.spa
dc.relation.references90. Ali, H.R., et al., Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res, 2016. 18(1): p. 21.spa
dc.relation.references91. Giesen, C., et al., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods, 2014. 11(4): p. 417-22.spa
dc.relation.references92. Gobert, M., et al., Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res, 2009. 69(5): p. 2000-9.spa
dc.relation.references93. Jung, Y.Y., et al., Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. J Breast Cancer, 2016. 19(3): p. 261-267.spa
dc.relation.references95. JS, M., V.d.H. JA, and V.d.V. CJ, Neoadjuvant chemotherapy for operable breast cancer. The British journal of surgery, 2007. 94(10).spa
dc.relation.references94. Takada. and M.-T. SL, Neoadjuvant treatment of breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology, 2012. 23 Suppl 10(Suppl 10).spa
dc.relation.references95. Mieog, V.d.H. JA, and V.d.V. CJ, Neoadjuvant chemotherapy for operable breast cancer. The British journal of surgery, 2007. 94(10).spa
dc.relation.references96. Huober., et al., Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast cancer research and treatment, 2010. 124(1).spa
dc.relation.references97. Park, Y.H., et al., Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun, 2020. 11(1): p. 6175.spa
dc.relation.references98. Ringnér, M., What is principal component analysis? Nature biotechnology, 2008. 26(3).spa
dc.relation.references99. Eisenhauer, E.A., et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45(2): p. 228-47.spa
dc.relation.references100. Thurstone, L.L., Multiple factor analysis: A development and expansion of vectors of the mind. 1947: University of Chicago Press, Chicago.spa
dc.relation.references101. Tabachnick, B.F., L., Principal components and factor analysis. Using multivariate statistics,. 2001. p. 582-633.spa
dc.relation.references102. Dako. EnVision Systems | Agilent. 2022; Available from: https://www.agilent.com/en/product/immunohistochemistry/visualization-systems/envision-flex-systems.spa
dc.relation.references103. Abdel-Fatah, T.M., et al., HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer, 2014. 110(10): p. 2450-61.spa
dc.relation.references104. Alhesa, A., et al., PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. International journal of immunopathology and pharmacology, 2022. 36.spa
dc.relation.references105. Chan, M., et al., Correlation of tumor-infiltrative lymphocyte subtypes alteration with neoangiogenesis before and after neoadjuvant chemotherapy treatment in breast cancer patients. The International journal of biological markers, 2014. 29(3).spa
dc.relation.references106. Dieci, M., et al., Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. European journal of cancer (Oxford, England : 1990), 2020. 136.spa
dc.relation.references107. Graeser, M., et al., Immune cell composition and functional marker dynamics from multiplexed immunohistochemistry to predict response to neoadjuvant chemotherapy in the WSG-ADAPT-TN trial. Journal for immunotherapy of cancer, 2021. 9(5).spa
dc.relation.references108. Hoffmann, L.G., et al., Evaluation of PD-L1 and tumor infiltrating lymphocytes in paired pretreatment biopsies and post neoadjuvant chemotherapy surgical specimens of breast carcinoma. Sci Rep, 2021. 11(1): p. 22478.spa
dc.relation.references109. Kaewkangsadan, V., et al., The Differential Contribution of the Innate Immune System to a Good Pathological Response in the Breast and Axillary Lymph Nodes Induced by Neoadjuvant Chemotherapy in Women with Large and Locally Advanced Breast Cancers. Journal of immunology research, 2017. 2017.spa
dc.relation.references110. Ladoire, S., et al., Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 2008. 14(8).spa
dc.relation.references111. Li, X., et al., Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial. Journal for immunotherapy of cancer, 2019. 7(1).spa
dc.relation.references112. Liang, H., et al., TMB and TCR Are Correlated Indicators Predictive of the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. Frontiers in oncology, 2021. 11.spa
dc.relation.references113. Nadin, S., et al., Prognostic implication of HSPA (HSP70) in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Cell stress & chaperones, 2014. 19(4).spa
dc.relation.references114. Pelekanou, V., et al., Tumor-Infiltrating Lymphocytes and PD-L1 Expression in Pre- and Posttreatment Breast Cancers in the SWOG S0800 Phase II Neoadjuvant Chemotherapy Trial. Molecular cancer therapeutics, 2018. 17(6).spa
dc.relation.references115. Sarradin, V., et al., Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: the MIMOSA-1 study. Breast cancer research : BCR, 2021. 23(1).spa
dc.relation.references116. Urueña, C., et al., The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Scientific reports, 2022. 12(1).spa
dc.relation.references117. Varadan, V., et al., Immune Signatures Following Single Dose Trastuzumab Predict Pathologic Response to PreoperativeTrastuzumab and Chemotherapy in HER2-Positive Early Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2016. 22(13).spa
dc.relation.references118. Verma, C., et al., Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery. Journal of translational medicine, 2015. 13.spa
dc.relation.references119. Wang, Y., et al., Lymphocyte-Activation Gene-3 Expression and Prognostic Value in Neoadjuvant-Treated Triple-Negative Breast Cancer. Journal of breast cancer, 2018. 21(2).spa
dc.relation.references120. Wesolowski, R., et al., Exploratory analysis of immune checkpoint receptor expression by circulating T cells and tumor specimens in patients receiving neo-adjuvant chemotherapy for operable breast cancer. BMC Cancer, 2020. 20(1): p. 445.spa
dc.relation.references121. Prado-Garcia, H.R.-G., Susana. Lopez-Gonzalez, Jose Sullivan, The Role of Exhaustion in Tumor-Induced T Cell Dysfunction in Cancer | SpringerLink. Cancer Immunology, 2014.spa
dc.relation.references122. Matkowsk, i.R., et al., The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer research, 2009. 29(7).spa
dc.relation.references123. Stovgaard, E.S., et al., Triple negative breast cancer - prognostic role of immune-related factors: a systematic review. Acta Oncol, 2018. 57(1): p. 74-82.spa
dc.relation.references124. Laplane, L., et al., The Multiple Layers of the Tumor Environment. Trends in cancer, 2018. 4(12).spa
dc.relation.references125. McAllister, S. and R. Weinberg, The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature cell biology, 2014. 16(8).spa
dc.relation.references126. Nalio Ramos, R., et al., Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell, 2022. 185(7): p. 1189-1207 e25.spa
dc.relation.references127. Laplane, L., et al., Beyond the tumour microenvironment. International journal of cancer, 2019. 145(10).spa
dc.relation.references128. Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy, in BMC Cancer. 2018.spa
dc.relation.references129. Bunt, S.K., et al., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res, 2007. 67(20): p. 10019-26.spa
dc.relation.references130. Solito, S., et al., Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci, 2014. 1319: p. 47-65.spa
dc.relation.references131. DG, D., et al., Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer discovery, 2011. 1(1).spa
dc.relation.references132. Ceprnja, T., et al., Prognostic Significance of Lymphocyte Infiltrate Localization in Triple-Negative Breast Cancer. J Pers Med, 2022. 12(6).spa
dc.relation.references133. Gu-Trantien, C., et al., CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI insight, 2017. 2(11).spa
dc.relation.references134. Buisseret, L., et al., Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology, 2017. 6(1): p. e1257452.spa
dc.relation.references135. Salgado, R., et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Annals of oncology : official journal of the European Society for Medical Oncology, 2015. 26(2).spa
dc.relation.references136. Shiroo, M., et al., CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. The EMBO journal, 1992. 11(13).spa
dc.relation.references137. Liu, J., et al., New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int, 2021. 21(1): p. 389.spa
dc.relation.references138. Hwang, I., et al., Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med, 2020. 18(1): p. 443.spa
dc.relation.references139. Pan, Y., et al., Tumor-Associated Macrophages in Tumor Immunity. Frontiers in immunology, 2020. 11.spa
dc.relation.references141. Li, Y.W., et al., Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol, 2011. 54(3): p. 497-505.spa
dc.relation.references142. Sznurkowski, J.J., A. Zawrocki, and W. Biernat, Subtypes of cytotoxic lymphocytes and natural killer cells infiltrating cancer nests correlate with prognosis in patients with vulvar squamous cell carcinoma. Cancer Immunol Immunother, 2014. 63(3): p. 297-303.spa
dc.relation.references143. Roberti, M.P., J. Mordoh, and E.M. Levy, Biological role of NK cells and immunotherapeutic approaches in breast cancer. Front Immunol, 2012. 3: p. 375.spa
dc.relation.references144. Rajjoub, S., et al., Prognostic significance of tumor-infiltrating lymphocytes in oropharyngeal cancer. Ear Nose Throat J, 2007. 86(8): p. 506-11.spa
dc.relation.references145. Ancuta, E., et al., Predictive value of cellular immune response in cervical cancer. Rom J Morphol Embryol, 2009. 50(4): p. 651-5.spa
dc.relation.references146. Sinicrope, F.A., et al., Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology, 2009. 137(4): p. 1270-9.spa
dc.relation.references147. Matsumoto, H., et al., Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat, 2016. 156(2): p. 237-47.spa
dc.relation.references148. Sato, E., et al., Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18538-43.spa
dc.relation.references149. Zeestraten, E.C., et al., FoxP3- and CD8-positive Infiltrating Immune Cells Together Determine Clinical Outcome in Colorectal Cancer. Cancer Microenviron, 2013. 6(1): p. 31-9.spa
dc.relation.references150. Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC cancer, 2016. 16.spa
dc.relation.references151. Bernal-Estévez, D., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.spa
dc.relation.references152. Bernal-Estévez, D., et al., Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Frontiers in immunology, 2021. 12.spa
dc.relation.references153. Kallies, A., D. Zehn, and D.T. Utzschneider, Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol, 2020. 20(2): p. 128-136.spa
dc.relation.references154. Teft, W.A., M.G. Kirchhof, and J. Madrenas, A molecular perspective of CTLA-4 function. Annu Rev Immunol, 2006. 24: p. 65-97.spa
dc.relation.references155. Ostrand.-R., H. LA, and H. ST, The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. Journal of immunology (Baltimore, Md. : 1950), 2014. 193(8).spa
dc.relation.references156. Dong, H., et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002. 8(8): p. 793-800.spa
dc.relation.references157. Flemming, A., Cancer: PD1 makes waves in anticancer immunotherapy. Nat Rev Drug Discov, 2012. 11(8): p. 601.spa
dc.relation.references158. Woo, S.R., et al., Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res, 2012. 72(4): p. 917-27.spa
dc.relation.references159. Foy, S.P., et al., Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS One, 2016. 11(2): p. e0150084.spa
dc.relation.references160. Chan, J.D., et al., Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol, 2021. 21(12): p. 769-784.spa
dc.relation.references161. Li, L., et al., Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol, 2020. 88: p. 106939.spa
dc.relation.references162. King, J., H. Mir, and S. Singh, Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. Prog Mol Biol Transl Sci, 2017. 151: p. 113-136.spa
dc.relation.references163. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017. 17(9): p. 559-572spa
dc.relation.references164. Pillemer, B.B., et al., STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells. J Immunol, 2009. 183(1): p. 155-63.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.decsNeoplasias de la Mamaspa
dc.subject.decsAcciones Terapéuticasspa
dc.subject.proposalMicroambiente inmune tumoralspa
dc.subject.proposalCáncer de mamaspa
dc.subject.proposalInmunovigilanciaspa
dc.subject.proposalQuimioterapia neoadyuvantespa
dc.subject.proposalTumor immune microenvironmenteng
dc.subject.proposalImmunosurveillanceeng
dc.subject.proposalNeoadjuvant chemotherapyeng
dc.subject.proposalBreast Cancereng
dc.titleCaracterización del infiltrado inmune tumoral en pacientes con cáncer de mamaspa
dc.title.translatedTumor immune infiltrate characterization in breast cancer patientseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098311523.2023.pdf
Tamaño:
4.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: