Perfil antiparasitario del alsinol, una molécula promisoria frente a hemoparásitos protozoarios

dc.contributor.advisorGaravito Cardenas, Giovanny
dc.contributor.advisorDeharo, Eric
dc.contributor.authorArias Marciales, Maria Helena
dc.contributor.orcid0000-0002-1011-5157spa
dc.contributor.researchgroupFarmacología de la Medicina Tradicional y Popular (FaMeTra)spa
dc.date.accessioned2025-04-23T16:49:09Z
dc.date.available2025-04-23T16:49:09Z
dc.date.issued2024-08
dc.descriptionilustraciones, diagramasspa
dc.description.abstractPerfil antiparasitario del alsinol, una molécula promisoria frente a hemoparásitos protozoarios Las parasitosis afectan la salud de humanos y animales y ponen en riesgo su vida, el control de estas enfermedades se debe en gran medida al uso de medicamentos; sin embargo, la limitada disponibilidad de fármacos y la resistencia parasitaria hace evidente la necesidad de disponer de nuevas alternativas de tratamiento eficaces, seguras, de bajo costo y amplio espectro de actividad. Este trabajo valoró el perfil antiparasitario de alsinol, frente a Plasmodium spp., Babesia divergens y Trypanosoma cruzi. Adicionalmente, evaluamos la actividad residual de alsinol en P. berghei y la viabilidad del método fluorométrico con SGI para evaluar el efecto farmacológico de combinaciones de antimaláricos contra P. falciparum. Frente a P. falciparum alsinol inhibió de forma dosis-dependiente la viabilidad de gametocitos y la gametocitogénesis con CI50 de 1.23 y 3.75 µM, respectivamente; el efecto de la combinación de CQ–AS y MQ–AS frente a la cepa FCR-3 mostró un efecto de tipo antagonismo – aditividad y aditividad – no interacción, respectivamente. Frente a B. divergens y T. cruzi la CI50 de ASN fue de 34 µM y 1.11 µM, respectivamente. En ratones infectados con P. berghei alsinol inhibió la multiplicación parasitaria con una DI50 de 17.4 mg/Kg/día y no mostró actividad residual. Alsinol es un buen candidato en la estrategia de bloqueo de la transmisión de la malaria y para hacer frente a enfermedades tropicales desatendidas. (Texto tomado de la fuente)spa
dc.description.abstractAntiparasitic profile of alsinol, a promising molecule against protozoan hemoparasites. Parasitic diseases affect the health of humans and animals, putting their lives at risk. The control of these diseases is largely due to the use of drugs; however, the limited availability of drugs and parasitic resistance makes evident the need for new effective, safe, low-cost, and broad-spectrum treatment alternatives. This work evaluated the antiparasitic profile of alsinol against Plasmodium spp., Babesia divergens, and Trypanosoma cruzi. Against P. falciparum, alsinol dose-dependently inhibited gametocyte viability and gametocytogenesis with IC50 values of 1.23 and 3.75 µM, respectively. The effect of the combination of chloroquine-artesunate (CQ-AS) and mefloquine-artesunate (MQ-AS) against the FCR-3 strain showed antagonism-additivity and additivity-non-interaction type effects, respectively. Against B. divergens and T. cruzi, the IC50 of alsinol was 34 µM and 1.11 µM, respectively. In mice infected with P. berghei, alsinol inhibited parasite multiplication with an ID50 of 17.4 mg/kg/day and showed no residual activity. Additionally, we evaluated the feasibility of the fluorometric method with SYBR Green I (SGI) to assess the pharmacological effect of antimalarial combinations against P. falciparum. Alsinol is a promising candidate in the strategy to block malaria transmission and to address neglected tropical diseases.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.format.extentxx, 149 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88100
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAbdul-Ghani, R., & Beier, J. C. (2014). Strategic use of antimalarial drugs that block falciparum malaria parasite transmission to mosquitoes to achieve local malaria elimination. Parasitology research, 113(10), 3535–3546. https://doi.org/10.1007/s00436-014-4091-6spa
dc.relation.referencesAbdul-Ghani, R., Basco, L. K., Beier, J. C., & Mahdy, M. A. (2015). Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malaria journal, 14, 413. https://doi.org/10.1186/s12936-015-0936-4spa
dc.relation.referencesAderinto, N., Olatunji, G., Kokori, E., Sikirullahi, S., Aboje, J. E., & Ojabo, R. E. (2024). A perspective on Oxford's R21/Matrix-M™ malaria vaccine and the future of global eradication efforts. Malaria journal, 23(1), 16. https://doi.org/10.1186/s12936-024-04846-wspa
dc.relation.referencesACNUR (2022). Agencia para los refugiados de la Organización de las Naciones Unidas_ONU. Tendencias Globales de desplazamiento forzado, 2022). Recuperado de: https://www.acnur.org/sites/default/files/2023-06/global-trends-2022_esp.pdfspa
dc.relation.referencesAldana, I., Blair, S., Deharo, E., Garavito, G., Mendoza, A., & Pérez-Silanes, S. (2016a). Nouveaux dérivés d'arylaminoalcool possédant une activité antiplasmodiale (Patente Europea Nº EP2970233A1). IDRD: Institut de Recherche pour le Developpement. https://patents.google.com/patent/EP2970233A1/fr.spa
dc.relation.referencesAldana, I., Blair, S., Deharo, E., Garavito, G., Mendoza, A., & Pérez-Silanes, S. (2016b). Substituted piperidines with antiparasitic activity (Patente de los estados Unidos de América Nº US9688633B2). IDRD: Institut de Recherche pour le Developpement. https://patents.google.com/patent/US9688633B2/enspa
dc.relation.referencesAlmazán, C., Tipacamu, G.A., Rodríguez, S., Mosqueda, J., & Pérez de León, A.A. (2018). Immunological control of ticks and tick-borne diseases that impact cattle health and production. Frontiers in bioscience, 23, 1535-1551.spa
dc.relation.referencesAlonso-Padilla, J., Cortés-Serra, N., Pinazo, M. J., Bottazzi, M. E., Abril, M., Barreira, F., … Gascón, J. (2019). Strategies to enhance access to diagnosis and treatment for Chagas disease patients in Latin America. Expert Review of Anti-Infective Therapy. doi:10.1080/14787210.2019.1577731spa
dc.relation.referencesÁlvarez-Hernández, D.-A., Franyuti-Kelly, G.-A., Díaz-López-Silva, R., González-Chávez, A.-M., González-Hermosillo-Cornejo, D., & Vázquez-López, R. (2018). Chagas disease: Current perspectives on a forgotten disease. Revista Médica Del Hospital General de México, 81(3), 154–164. doi:10.1016/j.hgmx.2016.09.010spa
dc.relation.referencesAmoah, L. E., Kakaney, C., Kwansa-Bentum, B., & Kusi, K. A. (2015). Activity of Herbal Medicines on Plasmodium falciparum Gametocytes: Implications for Malaria Transmission in Ghana. PloS one, 10(11), e0142587. https://doi.org/10.1371/journal.pone.0142587spa
dc.relation.referencesArias, M. (2015). Estandarización de un método fluorométrico para la determinación de la densidad parasitaria por plasmodium en modelos farmacológicos de malaria in vivo e in vitro (tesis de maestría). Universidad Nacional de Colombia, Bogotá́, Colombia.spa
dc.relation.referencesArias Marciales, María Helena, Rodríguez Novoa, Yinneth Victoria, & Garavito Cárdenas, Giovanny. (2016). Adaptación y optimización de un método de lectura por fluorometría en el modelo farmacológico in vitro de cultivo de Plasmodium falciparum. Revista Colombiana de Ciencias Químico - Farmacéuticas, 45(1), 127-146. https://doi.org/10.15446/rcciquifa.v45n1.58024spa
dc.relation.referencesArias, M. H., Deharo, E., Valentin, A., & Garavito, G. (2017). Adaptation and optimization of a fluorescence-based assay for in vivo antimalarial drug screening. Parasitology research, 116(7), 1955–1962. https://doi.org/10.1007/s00436-017-5477-zspa
dc.relation.referencesArias, M. H., Quiliano, M., Bourgeade-Delmas, S., Fabing, I., Chantal, I., Berthier, D., Minet, C., Eparvier, V., Sorres, J., Stien, D., Galiano, S., Aldana, I., Valentin, A., Garavito, G., & Deharo, E. (2020). Alsinol, an arylamino alcohol derivative active against Plasmodium, Babesia, Trypanosoma, and Leishmania: past and new outcomes. Parasitology research, 119(10), 3503–3515. https://doi.org/10.1007/s00436-020-06832-yspa
dc.relation.referencesAyres, J., Marcus, R., & Standley, C. J. (2022). The Importance of Screening for Chagas Disease Against the Backdrop of Changing Epidemiology in the USA. Current tropical medicine reports, 9(4), 185–193. https://doi.org/10.1007/s40475-022-00264-7spa
dc.relation.referencesAzagi, T., Hoornstra, D., Kremer, K., Hovius, J. W. R., & Sprong, H. (2020). Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe. Pathogens (Basel, Switzerland), 9(2), 150. https://doi.org/10.3390/pathogens9020150spa
dc.relation.referencesBacon, D. J., Latour, C., Lucas, C., Colina, O., Ringwald, P., & Picot, S. (2007). Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrobial agents and chemotherapy, 51(4), 1172–1178. https://doi.org/10.1128/AAC.01313-06spa
dc.relation.referencesBaker N, de Koning HP, Mäser P, Horn D. (2013). Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. Mar; 29(3):110-8. 110-118. doi: 10.1016/j.pt.2012.12.005. Epub 2013 Enero 30.spa
dc.relation.referencesBarrett, M. P., Kyle, D. E., Sibley, L. D., Radke, J. B., & Tarleton, R. L. (2019). Protozoan persister-like cells and drug treatment failure. Nature reviews. Microbiology, 17(10), 607–620. https://doi.org/10.1038/s41579-019-0238-xspa
dc.relation.referencesBasiri, S. (2024). Interconnected risks: Exploring the nexus of zoonosis and climate change. Journal of Zoonotic Diseases, 8(3), 515-523. doi: 10.22034/jzd.2024.18076spa
dc.relation.referencesBennett, T. N., Paguio, M., Gligorijevic, B., Seudieu, C., Kosar, A. D., Davidson, E., & Roepe, P. D. (2004). Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrobial agents and chemotherapy, 48(5), 1807–1810. https://doi.org/10.1128/AAC.48.5.1807-1810.2004spa
dc.relation.referencesBecerril, M. (2014). Aspectos generales de la parasitología. En: Becerril, M., Editor Bernal, M., Parasitología médica. Cuarta edición (pp. 11-17). México D.F., México. Mc Graw Hill. ISBN 13: 978-607-15-1150-8.spa
dc.relation.referencesBerenbaum M. C. (1977). Synergy, additivism and antagonism in immunosuppression. A critical review. Clinical and experimental immunology, 28(1), 1–18.spa
dc.relation.referencesBerenbaum M. C. (1978). A method for testing for synergy with any number of agents. The Journal of infectious diseases, 137(2), 122–130. https://doi.org/10.1093/infdis/137.2.122spa
dc.relation.referencesBeugnet, F., & Moreau, Y. (2015). Babesiosis. Revue scientifique et technique, 34 2, 627-39.spa
dc.relation.referencesBhattacharjee, A. K., & Karle, J. M. (1996). Molecular electronic properties of a series of 4-quinolinecarbinolamines define antimalarial activity profile. Journal of medicinal chemistry, 39(23), 4622–4629. https://doi.org/10.1021/jm960358zspa
dc.relation.referencesBelaunzarán M. L. (2015). Enfermedad de Chagas: globalización y nuevas esperanzas para su cura [Chagas disease: Globalization and new hope for its cure]. Revista Argentina de microbiologia, 47(2), 85–87. https://doi.org/10.1016/j.ram.2015.04.001spa
dc.relation.referencesBivona, A. E., Sánchez Alberti, A., Matos, M. N., Cerny, N., Cardoso, A. C., Morales, C., González, G., Cazorla, S. I., & Malchiodi, E. L. (2018). Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS neglected tropical diseases, 12(3), e0006384. https://doi.org/10.1371/journal.pntd.0006384spa
dc.relation.referencesBock, R., Jackson, L., De Vos, A., & Jorgensen, W. (2004). Babesiosis of cattle. Parasitology, 129(S1), S247–S269. doi:10.1017/S0031182004005190spa
dc.relation.referencesBotero, D., & Restrepo, M. (2003). Parasitosis Humanas (Cuarta ed.). Medellín, Colombiaspa
dc.relation.referencesCabello, R. R. (2007). Microbiología y Parasitología Humana. Bases etiológicas de las enfermedades infecciosas y parasitarias (Tercera ed.). México: Editorial médica Panamericanaspa
dc.relation.referencesButterworth, A.S., Skinner-Adams, T.S., Gardiner, D.L., & Trenholme, K. (2013). Plasmodium falciparum gametocytes: with a view to a kill. Parasitology, 140, 1718 - 1734spa
dc.relation.referencesCaldas, I. S., Santos, E. G., & Novaes, R. D. (2019). An evaluation of benznidazole as a Chagas disease therapeutic. Expert Opinion on Pharmacotherapy, 20(15), 1797–1807. doi:10.1080/14656566.2019.1650915spa
dc.relation.referencesCampuzano, G. y Blair, S. (2010). Malaria: consideraciones sobre su diagnóstico. Medicina y Laboratorio. 16 (7, 8), 311-354spa
dc.relation.referencesChao, C., Leone, J. L., & Vigliano, C. A. (2020). Chagas disease: Historic perspective. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(5), 165689. doi:10.1016/j.bbadis.2020.165689spa
dc.relation.referencesCanfield, C. J., Pudney, M., & Gutteridge, W. E. (1995). Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Experimental parasitology, 80(3), 373–381. https://doi.org/10.1006/expr.1995.1049spa
dc.relation.referencesCapela, R., Moreira, R., & Lopes, F. (2019). An Overview of Drug Resistance in Protozoal Diseases. International journal of molecular sciences, 20(22), 5748. https://doi.org/10.3390/ijms20225748spa
dc.relation.referencesChatelain E. (2016). Chagas disease research and development: Is there light at the end of the tunnel?. Computational and structural biotechnology journal, 15, 98–103. https://doi.org/10.1016/j.csbj.2016.12.002spa
dc.relation.referencesCerny, N., Bivona, A. E., Sanchez Alberti, A., Trinitario, S. N., Morales, C., Cardoso Landaburu, A., Cazorla, S. I., & Malchiodi, E. L. (2020). Cruzipain and Its Physiological Inhibitor, Chagasin, as a DNA-Based Therapeutic Vaccine Against Trypanosoma cruzi. Frontiers in immunology, 11, 565142. https://doi.org/10.3389/fimmu.2020.565142spa
dc.relation.referencesChauvin, A., Moreau, E., Bonnet, S., Plantard, O., & Malandrin, L. (2009). Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Veterinary research, 40(2), 37. https://doi.org/10.1051/vetres/2009020spa
dc.relation.referencesChevalley, S., Coste, A., Lopez, A., Pipy, B., & Valentin, A. (2010). Flow cytometry for the evaluation of anti-plasmodial activity of drugs on Plasmodium falciparum gametocytes. Malaria journal, 9, 49. https://doi.org/10.1186/1475-2875-9-49spa
dc.relation.referencesCholewiński, M., Derda, M. y Hadaś, E. (2015), Parasitic diseases in humans transmitted by vectors. Annals of Parasitology. 61(3), 137–157. doi: 10.17420/ap6103.01spa
dc.relation.referencesCo, E. M., Dennull, R. A., Reinbold, D. D., Waters, N. C., & Johnson, J. D. (2009). Assessment of malaria in vitro drug combination screening and mixed-strain infections using the malaria Sybr green I-based fluorescence assay. Antimicrobial agents and chemotherapy, 53(6), 2557–2563. https://doi.org/10.1128/AAC.01370-08spa
dc.relation.referencesComisión Económica para América Latina y el Caribe (CEPAL), Panorama Social de América Latina y el Caribe, 2022 (LC/PUB.2022/15-P), Santiago, 2022. Recuperado de: https://www.cepal.org/es/publicaciones/48518-panorama-social-america-latina-caribe-2022-la-transformacion-la-educacion-comospa
dc.relation.referencesConners, E. E., Vinetz, J. M., Weeks, J. R., & Brouwer, K. C. (2016). A global systematic review of Chagas disease prevalence among migrants. Acta tropica, 156, 68–78. https://doi.org/10.1016/j.actatropica.2016.01.002spa
dc.relation.referencesD’Alessandro, S., Corbett, Y., Ilboudo, D. P., Misiano, P., Dahiya, N., Abay, S. M., … Parapini, S. (2015). Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrobial Agents and Chemotherapy, 59(9), 5135-5144. https://doi.org/10.1128/AAC.04332-14spa
dc.relation.referencesDatoo, M. S., Dicko, A., Tinto, H., Ouédraogo, J. B., Hamaluba, M., Olotu, A., Beaumont, E., Ramos Lopez, F., Natama, H. M., Weston, S., Chemba, M., Compaore, Y. D., Issiaka, D., Salou, D., Some, A. M., Omenda, S., Lawrie, A., Bejon, P., Rao, H., Chandramohan, D., … R21/Matrix-M Phase 3 Trial Group (2024). Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet (London, England), 403(10426), 533–544. https://doi.org/10.1016/S0140-6736(23)02511-4spa
dc.relation.referencesDash, M., Sachdeva, S., Bansal, A., & Sinha, A. (2022). Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Frontiers in cellular and infection microbiology, 12, 877907. https://doi.org/10.3389/fcimb.2022.877907spa
dc.relation.referencesDeharo, E, Gautret, P, Muñoz, V, & Sauvain, M. (2000). Técnicas de laboratorio para la selección de sustancias antimaláricas . La Paz, Boliviaspa
dc.relation.referencesDesjardins RE, Canfield CJ, Haynes JD, Chulay JD. (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 16(6): 710-18spa
dc.relation.referencesDuffy, P. E., & Patrick Gorres, J. (2020). Malaria vaccines since 2000: progress, priorities, products. NPJ vaccines, 5(1), 48. https://doi.org/10.1038/s41541-020-0196-3spa
dc.relation.referencesDumonteil, E., & Herrera, C. (2021). The Case for the Development of a Chagas Disease Vaccine: Why? How? When?. Tropical medicine and infectious disease, 6(1), 16. https://doi.org/10.3390/tropicalmed6010016spa
dc.relation.referencesDuran-Rehbein, G.A., Vargas-Zambrano, J.C., Cuéllar, A., Puerta, C.J., & González, J.M. (2014). Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. Parasite, 21spa
dc.relation.referencesel Kouni M. H. (2003). Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacology & therapeutics, 99(3), 283–309. https://doi.org/10.1016/s0163-7258(03)00071-8spa
dc.relation.referencesEl-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental science and pollution research international, 27(18), 22336–22352. https://doi.org/10.1007/s11356-020-08896-wspa
dc.relation.referencesFidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R., & Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature reviews. Drug discovery, 3(6), 509–520. https://doi.org/10.1038/nrd1416spa
dc.relation.referencesFiligheddu, M. T., Górgolas, M., & Ramos, J. M. (2017). Orally-transmitted Chagas disease. Enfermedad de Chagas de transmisión oral. Medicina clinica, 148(3), 125–131. https://doi.org/10.1016/j.medcli.2016.10.038spa
dc.relation.referencesFivelman, Q. L., Walden, J. C., Smith, P. J., Folb, P. I., & Barnes, K. I. (1999). The effect of artesunate combined with standard antimalarials against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93(4), 429–432. https://doi.org/10.1016/s0035-9203(99)90147-5spa
dc.relation.referencesFivelman, Q. L., Adagu, I. S., & Warhurst, D. C. (2004). Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrobial agents and chemotherapy, 48(11), 4097–4102. https://doi.org/10.1128/AAC.48.11.4097-4102.2004spa
dc.relation.referencesFlores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E., & Gourbière, S. (2017). Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evolutionary applications, 11(4), 470–487. https://doi.org/10.1111/eva.12582spa
dc.relation.referencesFood and Agriculture Organization of the United Nations_FAO / OMS (2014). Multicriteria-based ranking for risk management of food-borne parasites. Microbiological risk assessment series, N.º 23. ISSN 1726-5274. Disponible en: https://openknowledge.fao.org/server/api/core/bitstreams/b4f9e339-7e83-4229-b80e-7eeea01c486d/contentspa
dc.relation.referencesFrancisco, A. F., Jayawardhana, S., Olmo, F., Lewis, M. D., Wilkinson, S. R., Taylor, M. C., & Kelly, J. M. (2020). Challenges in Chagas Disease Drug Development. Molecules (Basel, Switzerland), 25(12), 2799. https://doi.org/10.3390/molecules25122799spa
dc.relation.referencesFranco-Paredes, C., Villamil-Gómez, W. E., Schultz, J., Henao-Martínez, A. F., Parra-Henao, G., Rassi, A., Jr, Rodríguez-Morales, A. J., & Suarez, J. A. (2020). A deadly feast: Elucidating the burden of orally acquired acute Chagas disease in Latin America - Public health and travel medicine importance. Travel medicine and infectious disease, 36, 101565. https://doi.org/10.1016/j.tmaid.2020.101565spa
dc.relation.referencesFrenk, J., Gómez-Dantés, O., & Knaul, F. M. (2011). Globalization and infectious diseases. Infectious disease clinics of North America, 25(3), 593–viii. https://doi.org/10.1016/j.idc.2011.05.003spa
dc.relation.referencesFlorin-Christensen, M., Suarez, C. E., Rodriguez, A. E., Flores, D. A., & Schnittger, L. (2014). Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology, 1–30. Advance online publication. https://doi.org/10.1017/S0031182014000961spa
dc.relation.referencesGaravito G., (2003). Estandarización de dos modelos de actividad Antimalárica como herramientas para la evaluación Farmacológica de sustancias o extractos de origen Vegetal (tesis de maestría). Universidad Nacional de Colombiaspa
dc.relation.referencesGaravito, G. (2007). Etude Pharmacologique expérimentale de l´activité antipaludique d´uncomposé de synthèse: le chlorure de methylthioninium (tesis de doctorado). Universidad de Toulouse, Toulouse, Franciaspa
dc.relation.referencesGhose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071spa
dc.relation.referencesGilbert L. (2021). The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annual review of entomology, 66, 373–388. https://doi.org/10.1146/annurev-ento-052720-094533spa
dc.relation.referencesGómez Marín, J. E. (2010). Plasmodium. En J. E. Gomez Marín, Protozoología Médica. Protozoos parásitos en el contexto Latinoamericano (págs. 21-43). Colombia: Manual Modernospa
dc.relation.referencesGómez Marin, Jorge Enrique. (2016). Necesidad de una farmacia nacional: un problema de seguridad nacional. Infectio, 20(1), 1-2. https://doi.org/10.1016/j.infect.2015.08.001spa
dc.relation.referencesGonzalez, J., Echaide, I., Pabón, A., Gabriel Piñeros, J. J., Blair, S., & Tobón-Castaño, A. (2018). Babesiosis prevalence in malaria-endemic regions of Colombia. Journal of vector borne diseases, 55(3), 222–229. https://doi.org/10.4103/0972-9062.249480spa
dc.relation.referencesGonzález-Obando, Juliana, Holguín-Rocha, Andrés F., & Tobón-Castaño, Alberto. (2019). Diagnóstico de Babesia bovis (Babesiidae) y Babesia bigemina (Babesiidae) en garrapatas recolectadas en los municipios Turbo y Necoclí (Antioquia) en 2014. Actualidades Biológicas, 41(111), 65-71. https://doi.org/10.17533/udea.acbi.v41n111a05spa
dc.relation.referencesGoo, Y. K., Terkawi, M. A., Jia, H., Aboge, G. O., Ooka, H., Nelson, B., Kim, S., Sunaga, F., Namikawa, K., Igarashi, I., Nishikawa, Y., & Xuan, X. (2010). Artesunate, a potential drug for treatment of Babesia infection. Parasitology international, 59(3), 481–486. https://doi.org/10.1016/j.parint.2010.06.004spa
dc.relation.referencesGorenflot, A., Brasseur, P., Precigout, E., L'Hostis, M., Marchand, A., & Schrevel, J. (1991). Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitology research, 77(1), 3–12. https://doi.org/10.1007/BF00934377spa
dc.relation.referencesGray, J. S., Estrada-Peña, A., & Zintl, A. (2019). Vectors of Babesiosis. Annual review of entomology, 64, 149–165. https://doi.org/10.1146/annurev-ento-011118-111932spa
dc.relation.referencesGrimberg B. T. (2011). Methodology and application of flow cytometry for investigation of human malaria parasites. Journal of immunological methods, 367(1-2), 1–16. https://doi.org/10.1016/j.jim.2011.01.015spa
dc.relation.referencesGuarner J. (2019). Chagas disease as example of a reemerging parasite. Seminars in diagnostic pathology, 36(3), 164–169. https://doi.org/10.1053/j.semdp.2019.04.008spa
dc.relation.referencesHeller, L. E., & Roepe, P. D. (2019). Artemisinin-Based Antimalarial Drug Therapy: Molecular Pharmacology and Evolving Resistance. Tropical medicine and infectious disease, 4(2), 89. https://doi.org/10.3390/tropicalmed4020089spa
dc.relation.referencesHenry, N. B., Sermé, S. S., Siciliano, G., Sombié, S., Diarra, A., Sagnon, N., Traoré, A. S., Sirima, S. B., Soulama, I., & Alano, P. (2019). Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malaria journal, 18(1), 70. https://doi.org/10.1186/s12936-019-2707-0spa
dc.relation.referencesHoffman, S. L., Nussenzweig, V., Sadoff, J. C., & Nussenzweig, R. S. (1991). Progress toward malaria preerythrocytic vaccines. Science (New York, N.Y.), 252(5005), 520–521. https://doi.org/10.1126/science.2020852spa
dc.relation.referencesHomer, M. J., Aguilar-Delfin, I., Telford, S. R., 3rd, Krause, P. J., & Persing, D. H. (2000). Babesiosis. Clinical microbiology reviews, 13(3), 451–469. https://doi.org/10.1128/CMR.13.3.451spa
dc.relation.referencesHuang, R. Y., Pei, L., Liu, Q., Chen, S., Dou, H., Shu, G., Yuan, Z. X., Lin, J., Peng, G., Zhang, W., & Fu, H. (2019). Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Frontiers in pharmacology, 10, 1222. https://doi.org/10.3389/fphar.2019.01222spa
dc.relation.referencesHunfeld, K. P., Hildebrandt, A., & Gray, J. S. (2008). Babesiosis: recent insights into an ancient disease. International journal for parasitology, 38(11), 1219–1237. https://doi.org/10.1016/j.ijpara.2008.03.001spa
dc.relation.referencesIfediba, T., & Vanderberg, J. P. (1981). Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature, 294(5839), 364–366. https://doi.org/10.1038/294364a0spa
dc.relation.referencesInstituto Colombiano Agropecuario_ICA (2016). Colombia. Boletín Sanidad Animal. Disponible en: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/bol/epi/boletines-anuales/boletin-2016-sanidad-animalspa
dc.relation.referencesInstituto Nacional de Salud_INS (2010). Colombia. Subdirección de Vigilancia y Control en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 52 (25 de diciembre de 2009 a 1 de enero de 2010). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesInstituto Nacional de Salud_INS (2014). Colombia. Dirección de Vigilancia y Análisis del riesgo en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 53 (28 de diciembre de 2014 al 3 de enero de 2015). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesInstituto Nacional de Salud_INS (2015). Colombia. Dirección de Vigilancia y Análisis del riesgo en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 52 (27 de diciembre de 2015 al 2 de enero de 2016). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesInstituto Nacional de Salud_INS (2016). Colombia. Dirección de Vigilancia y Análisis del riesgo en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 52 (25 al 31 de diciembre de 2016). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesInstituto Nacional de Salud_INS (2022). Colombia. Boletín epidemiológico semanal, semana epidemiológica número 52 (25 al 31 de diciembre de 2022). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesInstituto Nacional de Salud_INS (2022a). Colombia. Protocolo de Vigilancia en Salud Pública de Chagas. Versión 4 [Internet]. https://doi.org/10.33610/infoeventos.58spa
dc.relation.referencesJacob, S. S., Sengupta, P. P., Paramanandham, K., Suresh, K. P., Chamuah, J. K., Rudramurthy, G. R., & Roy, P. (2020). Bovine babesiosis: An insight into the global perspective on the disease distribution by systematic review and meta-analysis. Veterinary parasitology, 283, 109136. https://doi.org/10.1016/j.vetpar.2020.109136spa
dc.relation.referencesJaimes-Dueñez, J., Triana-Chávez, O., Holguín-Rocha, A., Tobon-Castaño, A., & Mejía-Jaramillo, A. M. (2018). Molecular surveillance and phylogenetic traits of Babesia bigemina and Babesia bovis in cattle (Bos taurus) and water buffaloes (Bubalus bubalis) from Colombia. Parasites & vectors, 11(1), 510. https://doi.org/10.1186/s13071-018-3091-2spa
dc.relation.referencesJalovecka, M., Hajdusek, O., Sojka, D., Kopacek, P., & Malandrin, L. (2018). The Complexity of Piroplasms Life Cycles. Frontiers in cellular and infection microbiology, 8, 248. https://doi.org/10.3389/fcimb.2018.00248spa
dc.relation.referencesJaramillo Hernández, D. A. (2022). Importancia de la vacunación dentro del manejo integrado de Rhipicephalus microplus en bovinos. Revista Sistemas de Producción Agroecológicos, 13(1), 47-63. https://doi.org/10.22579/22484817.884spa
dc.relation.referencesJohnson, J. D., Dennull, R. A., Gerena, L., Lopez-Sanchez, M., Roncal, N. E., & Waters, N. C. (2007). Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrobial agents and chemotherapy, 51(6), 1926–1933. https://doi.org/10.1128/AAC.01607-06spa
dc.relation.referencesKaneko T. (2011). Drugs for neglected diseases: part I. Future medicinal chemistry, 3(10), 1235–1237. https://doi.org/10.4155/fmc.11.103spa
dc.relation.referencesKaufer, A., Ellis, J., Stark, D., & Barratt, J. (2017). The evolution of trypanosomatid taxonomy. Parasites & vectors, 10(1), 287. https://doi.org/10.1186/s13071-017-2204-7spa
dc.relation.referencesKrause P. J. (2019). Human babesiosis. International journal for parasitology, 49(2), 165–174. https://doi.org/10.1016/j.ijpara.2018.11.007spa
dc.relation.referencesKessler, R. L., Contreras, V. T., Marliére, N. P., Aparecida Guarneri, A., Villamizar Silva, L. H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M. (2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Molecular microbiology, 104(5), 712–736. https://doi.org/10.1111/mmi.13653spa
dc.relation.referencesKumar, A., O'Bryan, J., & Krause, P. J. (2021). The Global Emergence of Human Babesiosis. Pathogens (Basel, Switzerland), 10(11), 1447. https://doi.org/10.3390/pathogens10111447spa
dc.relation.referencesLambros, C., & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. The Journal of parasitology, 65(3), 418–420spa
dc.relation.referencesLemieux, J. E., Tran, A. D., Freimark, L., Schaffner, S. F., Goethert, H., Andersen, K. G., Bazner, S., Li, A., McGrath, G., Sloan, L., Vannier, E., Milner, D., Pritt, B., Rosenberg, E., Telford, S., 3rd, Bailey, J. A., & Sabeti, P. C. (2016). A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nature microbiology, 1(7), 16079. https://doi.org/10.1038/nmicrobiol.2016.79spa
dc.relation.referencesLempereur, L., Beck, R., Fonseca, I., Marques, C., Duarte, A., Santos, M., Zúquete, S., Gomes, J., Walder, G., Domingos, A., Antunes, S., Baneth, G., Silaghi, C., Holman, P., & Zintl, A. (2017). Guidelines for the Detection of Babesia and Theileria Parasites. Vector borne and zoonotic diseases (Larchmont, N.Y.), 17(1), 51–65. https://doi.org/10.1089/vbz.2016.1955spa
dc.relation.referencesLipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0spa
dc.relation.referencesLipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J., (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, Volume 64, Supplement, 2012, Pages 4-17, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2012.09.019spa
dc.relation.referencesLoo, C. S., Lam, N. S., Yu, D., Su, X. Z., & Lu, F. (2017). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological research, 117, 192–217. https://doi.org/10.1016/j.phrs.2016.11.012spa
dc.relation.referencesLopes, Angela & Souto-Padrón, Thaïs & Dias, Felipe & Gomes, Marta & Rodrigues, Giseli & Zimmermann, Luciana & Silva, Thiago Luiz & Vermelho, Alane. (2010). Trypanosomatids: Odd Organisms, Devastating Diseases. The Open Parasitology Journal. 4. 10.2174/1874421401004010030spa
dc.relation.referencesLourenço, A. M., Faccini, C. C., Costa, C. A. J., Mendes, G. B., & Fragata Filho, A. A. (2018). Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Revista da Sociedade Brasileira de Medicina Tropical, 51(1), 52–56. https://doi.org/10.1590/0037-8682-0285-2017spa
dc.relation.referencesMalkin, E. M., Durbin, A. P., Diemert, D. J., Sattabongkot, J., Wu, Y., Miura, K., Long, C. A., Lambert, L., Miles, A. P., Wang, J., Stowers, A., Miller, L. H., & Saul, A. (2005). Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine, 23(24), 3131–3138. https://doi.org/10.1016/j.vaccine.2004.12.019spa
dc.relation.referencesMann, G. S., Francisco, A. F., Jayawardhana, S., Taylor, M. C., Lewis, M. D., Olmo, F., de Freitas, E. O., Leoratti, F. M. S., López-Camacho, C., Reyes-Sandoval, A., & Kelly, J. M. (2020). Drug-cured experimental Trypanosoma cruzi infections confer long-lasting and cross-strain protection. PLoS neglected tropical diseases, 14(4), e0007717. https://doi.org/10.1371/journal.pntd.0007717spa
dc.relation.referencesMariga, S. T., Gil, J. P., Wernsdorfer, W. H., & Björkman, A. (2005). Pharmacodynamic interactions of amodiaquine and its major metabolite desethylamodiaquine with artemisinin, quinine and atovaquone in Plasmodium falciparum in vitro. Acta tropica, 93(3), 221–231. https://doi.org/10.1016/j.actatropica.2005.01.007spa
dc.relation.referencesMartins, André Vianna, Gomes, Andréia Patrícia, Gomes de Mendonça, Eduardo, Lopes Rangel Fietto, Juliana, Santana, Luiz Alberto, de Almeida Oliveira, Maria Goreti, Geller, Mauro, de Freitas Santos, Ramon, Roger Vitorino, Rodrigo, & Siqueira-Batista, Rodrigo. (2012). Biology of Trypanosoma cruzi: An update. Infectio, 16(1), 45-58. Retrieved June 01, 2024, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922012000100008&lng=en&tlng=enspa
dc.relation.referencesMazuz, M. L., Golenser, J., Fish, L., Haynes, R. K., Wollkomirsky, R., Leibovich, B., & Shkap, V. (2013). Artemisone inhibits in vitro and in vivo propagation of Babesia bovis and B. bigemina parasites. Experimental parasitology, 135(4), 690–694. https://doi.org/10.1016/j.exppara.2013.10.006spa
dc.relation.referencesMeliani, P., Khatibi, S., Randazzo, S., Gorenflot, A., & Marchou, B. (2006). Babésioses humaines [Human babesiosis]. Medecine et maladies infectieuses, 36(10), 499–504. https://doi.org/10.1016/j.medmal.2006.07.002spa
dc.relation.referencesMeléndez, R., (2000). Babesiosis : una zoonosis emergente en regiones templadas y tropicales. Una revisión. Revista científica. FCV-LUZ. Vol. X, N° 1, 13-18spa
dc.relation.referencesMehlhorn, H., & Schein, E. (1998). Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitology research, 84(6), 467–475. https://doi.org/10.1007/s004360050431spa
dc.relation.referencesMendoza, A., Pérez-Silanes, S., Quiliano, M., Pabón, A., Galiano, S., González, G., Garavito, G., Zimic, M., Vaisberg, A., Aldana, I., Monge, A., & Deharo, E. (2011). Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure-activity relationships. Experimental parasitology, 128(2), 97–103spa
dc.relation.referencesMishina, Y. V., Krishna, S., Haynes, R. K., & Meade, J. C. (2007). Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrobial agents and chemotherapy, 51(5), 1852–1854. https://doi.org/10.1128/AAC.01544-06spa
dc.relation.referencesMolyneaux, C. A., Krugliak, M., Ginsburg, H., & Chibale, K. (2005). Arylpiperazines displaying preferential potency against chloroquine-resistant strains of the malaria parasite Plasmodium falciparum. Biochemical pharmacology, 71(1-2), 61–68. https://doi.org/10.1016/j.bcp.2005.10.023spa
dc.relation.referencesMontenegro-James S. (1992). Prevalence and control of babesiosis in the Americas. Memorias do Instituto Oswaldo Cruz, 87 Suppl 3, 27–36. https://doi.org/10.1590/s0074-02761992000700003spa
dc.relation.referencesMonzote, L., & Siddiq, A. (2011). Drug development to protozoan diseases. The open medicinal chemistry journal, 5, 1–3. https://doi.org/10.2174/1874104501105010001spa
dc.relation.referencesMoreno, C.J., Oliveira, J.W., Branco, J.C., Araújo, L.V., Queiroz, A.M., Donato, S.T., Júnior, N.J., Rodrigues, E.T., & Silva, M.S. (2019). Cell Culture and Maintenance of the Evolutionary Forms of Trypanosoma cruzi for Studies of Parasitic Biology. Biology of Trypanosoma cruzi. IntechOpen. doi: 10.5772/intechopen.84733spa
dc.relation.referencesMosqueda, J., Olvera-Ramirez, A., Aguilar-Tipacamu, G., & Canto, G. J. (2012). Current advances in detection and treatment of babesiosis. Current medicinal chemistry, 19(10), 1504–1518. https://doi.org/10.2174/092986712799828355spa
dc.relation.referencesMüller Kratz, J. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 105107. doi:10.1016/j.actatropica.2019.105107spa
dc.relation.referencesNaß, J., & Efferth, T. (2019). Development of artemisinin resistance in malaria therapy. Pharmacological research, 146, 104275. https://doi.org/10.1016/j.phrs.2019.104275spa
dc.relation.referencesNa-Bangchang, K., Karbwang, J. (2019). Pharmacology of Antimalarial Drugs, Current Anti-malarials. In: Kremsner, P., Krishna, S. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_149-1spa
dc.relation.referencesNadeem, A. Y., Shehzad, A., Islam, S. U., Al-Suhaimi, E. A., & Lee, Y. S. (2022). Mosquirix™ RTS, S/AS01 Vaccine Development, Immunogenicity, and Efficacy. Vaccines, 10(5), 713. https://doi.org/10.3390/vaccines10050713spa
dc.relation.referencesNagai, A., Yokoyama, N., Matsuo, T., Bork, S., Hirata, H., Xuan, X., Zhu, Y., Claveria, F. G., Fujisaki, K., & Igarashi, I. (2003). Growth-inhibitory effects of artesunate, pyrimethamine, and pamaquine against Babesia equi and Babesia caballi in in vitro cultures. Antimicrobial agents and chemotherapy, 47(2), 800–803. https://doi.org/10.1128/AAC.47.2.800-803.2003spa
dc.relation.referencesNuttall, P.A. Climate change impacts on ticks and tick-borne infections. Biologia 77, 1503–1512 (2022). https://doi.org/10.1007/s11756-021-00927-2spa
dc.relation.referencesObeagu, E. I., & Obeagu, G. U. (2024). Adapting to the shifting landscape: Implications of climate change for malaria control: A review. Medicine, 103(29), e39010. https://doi.org/10.1097/MD.0000000000039010spa
dc.relation.referencesOhrt, C., Willingmyre, G. D., Lee, P., Knirsch, C., & Milhous, W. (2002). Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrobial agents and chemotherapy, 46(8), 2518–2524. https://doi.org/10.1128/AAC.46.8.2518-2524.2002spa
dc.relation.referencesOlivera, G. C., Postan, M., & González, M. N. (2015). Effects of artesunate against Trypanosma cruzi. Experimental parasitology, 156, 26–31. https://doi.org/10.1016/j.exppara.2015.05.014spa
dc.relation.referencesOlivera, M. J., Porras Villamil, J. F., Toquica Gahona, C. C., & Rodríguez Hernández, J. M. (2018). Barriers to Diagnosis Access for Chagas Disease in Colombia. Journal of parasitology research, 2018, 4940796. https://doi.org/10.1155/2018/4940796spa
dc.relation.referencesOlivera, M. J., Fory, J. A., Porras, J. F., & Buitrago, G. (2019). Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. PloS one, 14(1), e0210156. https://doi.org/10.1371/journal.pone.0210156spa
dc.relation.referencesOlivera, M. J., & Buitrago, G. (2020). Economic costs of Chagas disease in Colombia in 2017: A social perspective. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 91, 196–201. https://doi.org/10.1016/j.ijid.2019.11.022spa
dc.relation.referencesOrd, R. L., & Lobo, C. A. (2015). Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment. Current clinical microbiology reports, 2(4), 173–181. https://doi.org/10.1007/s40588-015-0025-zspa
dc.relation.referencesOrganización de las Naciones Unidas (ONU). (2015). Objetivos de Desarrollo del Milenio Informe de 2015. Disponible en: http://www.undp.org/content/undp/es/home/librarypage/mdg/the-millennium-development-goals-report-2015.htmlspa
dc.relation.referencesOrganización Mundial de la Salud_OMS (2021). Poner fin a la desatención para alcanzar los Objetivos de Desarrollo Sostenible: hoja de ruta sobre enfermedades tropicales desatendidas 2021-2030. Recuperado de: https://www.paho.org/es/documentos/poner-fin-desatencion-para-alcanzar-objetivos-desarrollo-sostenible-hoja-ruta-sobrespa
dc.relation.referencesOrganización Mundial de la Salud_OMS (2022). Parte epidemiológico semanal. Nº 9, 2022, 97, 61-80. 4 de marzo de 2022, 97 º año. Vacuna antipalúdica: documento de posición de la OMS – marzo de 2022. Disponible en: https://iris.who.int/bitstream/handle/10665/352332/WER9709-spa.pdf?sequence=17&isAllowed=yspa
dc.relation.referencesOficina Internacional de Epizootias (OIE). Babesiosis bovina. Capítulo 2.3.8 en: Manual de la OIE sobre animales terrestres (2004). Recuperado de: http://web.oie.int/esp/normes/mmanual/pdf_es/2.3.08_Babesiosis_bovina.pdfspa
dc.relation.referencesOrganización Panamericana de la Salud (OPS), Organización Mundial de la Salud (OMS). (2016). Enfermedades Infecciosas Desatendidas en las Américas. Disponible en: http://www.paho.org/hq/index.php?option=com_content&view=article&id=12406%3Aneglected-infectious-diseases-americas-success-stories-innovation-reach-neediest&catid=8876%3Apublications&Itemid=42097&lang=esspa
dc.relation.referencesOrganización Panamericana de la Salud (OPS), Organización Mundial de la Salud (OMS). (2017). Marco para la eliminación de la transmisión materno infantil del VIH, la sífilis, la hepatitis y la enfermedad de Chagas. Disponible en: https://www.paho.org/es/documentos/etmi-plus-marco-para-eliminacion-transmision-maternoinfantil-vih-sifilis-hepatitisspa
dc.relation.referencesOrganización Panamericana de la Salud_OPS (2022). Decálogo para la toma de decisiones sobre la prevención, el control y la atención de la enfermedad de Chagas. Disponible en: https://www.paho.org/es/documentos/decalogo-para-toma-decisiones-sobre-prevencion-control-atencion-enfermedad-chagasspa
dc.relation.referencesPatz, J. A., & Olson, S. H. (2006). Malaria risk and temperature: influences from global climate change and local land use practices. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5635–5636. https://doi.org/10.1073/pnas.0601493103spa
dc.relation.referencesPérez-Silanes, S., Berrade, L., García-Sánchez, R. N., Mendoza, A., Galiano, S., Pérez-Solórzano, B. M., Nogal-Ruiz, J. J., Martínez-Fernández, A. R., Aldana, I., & Monge, A. (2009). New 1-aryl-3-substituted propanol derivatives as antimalarial agents. Molecules (Basel, Switzerland), 14(10), 4120–4135. https://doi.org/10.3390/molecules14104120spa
dc.relation.referencesPeters W and Robinson BL (1999) Malaria. In: Zak O (ed) Handbook of animal models of infection. New York, pp 757–773spa
dc.relation.referencesPeterson, J.K., Hashimoto, K., Yoshioka, K. et al. Chagas Disease in Central America: Recent Findings and Current Challenges in Vector Ecology and Control. Curr Trop Med Rep 6, 76–91 (2019). https://doi.org/10.1007/s40475-019-00175-0spa
dc.relation.referencesPlewes, K., Leopold, S. J., Kingston, H. W. F., & Dondorp, A. M. (2019). Malaria: What's New in the Management of Malaria?. Infectious disease clinics of North America, 33(1), 39–60. https://doi.org/10.1016/j.idc.2018.10.002spa
dc.relation.referencesPoonam, Gupta, Y., Gupta, N., Singh, S., Wu, L., Chhikara, B. S., Rawat, M., & Rathi, B. (2018). Multistage inhibitors of the malaria parasite: Emerging hope for chemoprotection and malaria eradication. Medicinal research reviews, 38(5), 1511–1535. https://doi.org/10.1002/med.21486spa
dc.relation.referencesPortillo, S., Zepeda, B. G., Iniguez, E., Olivas, J. J., Karimi, N. H., Moreira, O. C., Marques, A. F., Michael, K., Maldonado, R. A., & Almeida, I. C. (2019). A prophylactic α-Gal-based glycovaccine effectively protects against murine acute Chagas disease. NPJ vaccines, 4, 13. https://doi.org/10.1038/s41541-019-0107-7spa
dc.relation.referencesPramanik, P. K., Alam, M. N., Roy Chowdhury, D., & Chakraborti, T. (2019). Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. Journal of global antimicrobial resistance, 18, 1–11. https://doi.org/10.1016/j.jgar.2019.01.023spa
dc.relation.referencesPubChem. (s/f). PubChem. Nih.gov. Recuperado el 26 de junio de 2024, de https://pubchem.ncbi.nlm.nih.gov/spa
dc.relation.referencesQuijano-Hernandez, I., & Dumonteil, E. (2011). Advances and challenges towards a vaccine against Chagas disease. Human vaccines, 7(11), 1184–1191. https://doi.org/10.4161/hv.7.11.17016spa
dc.relation.referencesQuiliano, Miguel & Aldana, Ignacio. (2013). Quinoxaline and Arylaminoalcohol Derivatives as Antiplasmodial and Leishmanicidal Agents: A Review of our First Ten Years in the Field. Revista Virtual de Química. 5. 1120-1133. 10.5935/1984-6835.20130081spa
dc.relation.referencesQuiliano, M., Mendoza, A., Fong, K. Y., Pabón, A., Goldfarb, N. E., Fabing, I., Vettorazzi, A., López de Cerain, A., Dunn, B. M., Garavito, G., Wright, D. W., Deharo, E., Pérez-Silanes, S., Aldana, I., & Galiano, S. (2016). Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. International journal for parasitology. Drugs and drug resistance, 6(3), 184–198. https://doi.org/10.1016/j.ijpddr.2016.09.004spa
dc.relation.referencesQuiliano, M., Pabón, A., Moles, E., Bonilla-Ramirez, L., Fabing, I., Fong, K. Y., Nieto-Aco, D. A., Wright, D. W., Pizarro, J. C., Vettorazzi, A., López de Cerain, A., Deharo, E., Fernández-Busquets, X., Garavito, G., Aldana, I., & Galiano, S. (2018). Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. European journal of medicinal chemistry, 152, 489–514. https://doi.org/10.1016/j.ejmech.2018.04.038spa
dc.relation.referencesRenard, I., & Ben Mamoun, C. (2021). Treatment of Human Babesiosis: Then and Now. Pathogens (Basel, Switzerland), 10(9), 1120. https://doi.org/10.3390/pathogens10091120spa
dc.relation.referencesRingwald, P., Eboumbou, E. C., Bickii, J., & Basco, L. K. (1999). In vitro activities of pyronaridine, alone and in combination with other antimalarial drugs, against Plasmodium falciparum. Antimicrobial agents and chemotherapy, 43(6), 1525–1527. https://doi.org/10.1128/AAC.43.6.1525spa
dc.relation.referencesRibeiro, A. R., Lima, L., de Almeida, L. A., Monteiro, J., Moreno, C. J. G., Nascimento, J. D., de Araújo, R. F., Mello, F., Martins, L. P. A., Graminha, M. A. S., Teixeira, M. M. G., Silva, M. S., Steindel, M., & da Rosa, J. A. (2018). Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. The American journal of tropical medicine and hygiene, 98(2), 453–463. https://doi.org/10.4269/ajtmh.16-0200spa
dc.relation.referencesRibeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International journal for parasitology. Drugs and drug resistance, 12, 7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004spa
dc.relation.referencesRizk, M. A., El-Sayed, S. A., AbouLaila, M., Tuvshintulga, B., Yokoyama, N., & Igarashi, I. (2016). Large-scale drug screening against Babesia divergens parasite using a fluorescence-based high-throughput screening assay. Veterinary parasitology, 227, 93–97. https://doi.org/10.1016/j.vetpar.2016.07.032spa
dc.relation.referencesRobertson, L. J., Havelaar, A. H., Keddy, K. H., Devleesschauwer, B., Sripa, B., & Torgerson, P. R. (2024). The importance of estimating the burden of disease from foodborne transmission of Trypanosoma cruzi. PLoS neglected tropical diseases, 18(2), e0011898. https://doi.org/10.1371/journal.pntd.0011898spa
dc.relation.referencesRodríguez, E. (2013). Generalidades de protozoarios. En Rodríguez, E. Editor Mendoza, C., Parasitología médica (pp. 10-12). México D.F., México. Manuel moderno. ISBN 9786074483529spa
dc.relation.referencesRodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of ethnopharmacology, 222, 288–294. https://doi.org/10.1016/j.jep.2018.04.008spa
dc.relation.referencesRomero (2007). Plasmodium. En R. Romero (3ra. Ed.) Microbiología y Parasitología Humana. Bases etiológicas de las enfermedades infecciosas y parasitarias (p. 1440- 1454). México: Editorial médica Panamericanaspa
dc.relation.referencesRożej-Bielicka, W., Stypułkowska-Misiurewicz, H., & Gołąb, E. (2015). Human babesiosis. Przeglad epidemiologiczny, 69(3), 489–608spa
dc.relation.referencesSaccoliti, F., Madia, V. N., Tudino, V., De Leo, A., Pescatori, L., Messore, A., De Vita, D., Scipione, L., Brun, R., Kaiser, M., Mäser, P., Calvet, C. M., Jennings, G. K., Podust, L. M., Costi, R., & Di Santo, R. (2018). Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. European journal of medicinal chemistry, 156, 53–60. https://doi.org/10.1016/j.ejmech.2018.06.063spa
dc.relation.referencesSales Junior, P. A., Molina, I., Fonseca Murta, S. M., Sánchez-Montalvá, A., Salvador, F., Corrêa-Oliveira, R., & Carneiro, C. M. (2017). Experimental and Clinical Treatment of Chagas Disease: A Review. The American journal of tropical medicine and hygiene, 97(5), 1289–1303. https://doi.org/10.4269/ajtmh.16-0761spa
dc.relation.referencesSaliba, K. S., & Jacobs-Lorena, M. (2013). Production of Plasmodium falciparum gametocytes in vitro. Methods in molecular biology (Clifton, N.J.), 923, 17–25. https://doi.org/10.1007/978-1-62703-026-7_2spa
dc.relation.referencesSall, C., Yapi, A. D., Desbois, N., Chevalley, S., Chezal, J. M., Tan, K., Teulade, J. C., Valentin, A., & Blache, Y. (2008). Design, synthesis, and biological activities of conformationally restricted analogs of primaquine with a 1,10-phenanthroline framework. Bioorganic & medicinal chemistry letters, 18(16), 4666–4669. https://doi.org/10.1016/j.bmcl.2008.07.013spa
dc.relation.referencesSanchez Alberti, A., Bivona, A. E., Cerny, N., Schulze, K., Weißmann, S., Ebensen, T., Morales, C., Padilla, A. M., Cazorla, S. I., Tarleton, R. L., Guzmán, C. A., & Malchiodi, E. L. (2017). Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection. NPJ vaccines, 2, 9. https://doi.org/10.1038/s41541-017-0010-zspa
dc.relation.referencesSangenito, L. S., Branquinha, M. H., & Santos, A. L. S. (2020). Funding for Chagas Disease: A 10-Year (2009-2018) Survey. Tropical medicine and infectious disease, 5(2), 88. https://doi.org/10.3390/tropicalmed5020088spa
dc.relation.referencesSaxena, A.K., Singh, K., Long, C.A. and Garboczi, D.N. (2004), Preparation, crystallization and preliminary X-ray analysis of a complex between the Plasmodium vivax sexual stage 25 kDa protein Pvs25 and a malaria transmission-blocking antibody Fab fragment. Acta Cryst. D, 60: 2054-2057. https://doi.org/10.1107/S0907444904021584spa
dc.relation.referencesScarim, C. B., Jornada, D. H., Chelucci, R. C., de Almeida, L., Dos Santos, J. L., & Chung, M. C. (2018). Current advances in drug discovery for Chagas disease. European journal of medicinal chemistry, 155, 824–838. https://doi.org/10.1016/j.ejmech.2018.06.040spa
dc.relation.referencesSchnittger, L., Rodriguez, A. E., Florin-Christensen, M., & Morrison, D. A. (2012). Babesia: a world emerging. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 12(8), 1788–1809. https://doi.org/10.1016/j.meegid.2012.07.004spa
dc.relation.referencesShah, N. M., Patel, M. P., & Patel, R. G. (2012). New N-arylamino biquinoline derivatives: synthesis, antimicrobial, antituberculosis, and antimalarial evaluation. European journal of medicinal chemistry, 54, 239–247. https://doi.org/10.1016/j.ejmech.2012.05.004spa
dc.relation.referencesSimon, M. S., Westblade, L. F., Dziedziech, A., Visone, J. E., Furman, R. R., Jenkins, S. G., Schuetz, A. N., & Kirkman, L. A. (2017). Clinical and Molecular Evidence of Atovaquone and Azithromycin Resistance in Relapsed Babesia microti Infection Associated With Rituximab and Chronic Lymphocytic Leukemia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 65(7), 1222–1225. https://doi.org/10.1093/cid/cix477spa
dc.relation.referencesSmeijsters, L. J., Zijlstra, N. M., Franssen, F. F., & Overdulve, J. P. (1996). Simple, fast, and accurate fluorometric method to determine drug susceptibility of Plasmodium falciparum in 24-well suspension cultures. Antimicrobial agents and chemotherapy, 40(4), 835–838. https://doi.org/10.1128/AAC.40.4.835spa
dc.relation.referencesSmilkstein, M., Sriwilaijaroen, N., Kelly, J. X., Wilairat, P., & Riscoe, M. (2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrobial agents and chemotherapy, 48(5), 1803–1806. https://doi.org/10.1128/AAC.48.5.1803-1806.2004spa
dc.relation.referencesSmith, R. P., Hunfeld, K. P., & Krause, P. J. (2020). Management strategies for human babesiosis. Expert review of anti-infective therapy, 18(7), 625–636. https://doi.org/10.1080/14787210.2020.1752193spa
dc.relation.referencesStuart, K., Brun, R., Croft, S., Fairlamb, A., Gürtler, R. E., McKerrow, J., Reed, S., & Tarleton, R. (2008). Kinetoplastids: related protozoan pathogens, different diseases. The Journal of clinical investigation, 118(4), 1301–1310. https://doi.org/10.1172/JCI33945spa
dc.relation.referencesTacon, C., Guantai, E. M., Smith, P. J., & Chibale, K. (2012). Synthesis, biological evaluation and mechanistic studies of totarol amino alcohol derivatives as potential antimalarial agents. Bioorganic & medicinal chemistry, 20(2), 893–902. https://doi.org/10.1016/j.bmc.2011.11.060spa
dc.relation.referencesTalapko, J., Škrlec, I., Alebić, T., Jukić, M., & Včev, A. (2019). Malaria: The Past and the Present. Microorganisms, 7(6), 179. https://doi.org/10.3390/microorganisms7060179spa
dc.relation.referencesTamayo, L. D., Guhl, F., Vallejo, G. A., & Ramírez, J. D. (2018). The effect of temperature increases on the development of Rhodnius prolixus and the course of Trypanosoma cruzi metacyclogenesis. PLoS neglected tropical diseases, 12(8), e0006735. https://doi.org/10.1371/journal.pntd.0006735spa
dc.relation.referencesTarleton R. L. (2016). Chagas Disease: A Solvable Problem, Ignored. Trends in molecular medicine, 22(10), 835–838. https://doi.org/10.1016/j.molmed.2016.07.008spa
dc.relation.referencesThomson, M. C., & Stanberry, L. R. (2022). Climate Change and Vectorborne Diseases. The New England journal of medicine, 387(21), 1969–1978. https://doi.org/10.1056/NEJMra2200092spa
dc.relation.referencesTrager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675spa
dc.relation.referencesTse, E. G., Korsik, M., & Todd, M. H. (2019). The past, present and future of anti-malarial medicines. Malaria journal, 18(1), 93. https://doi.org/10.1186/s12936-019-2724-zspa
dc.relation.referencesTukulula, M., Sharma, R. K., Meurillon, M., Mahajan, A., Naran, K., Warner, D., Huang, J., Mekonnen, B., & Chibale, K. (2012). Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS medicinal chemistry letters, 4(1), 128–131. https://doi.org/10.1021/ml300362aspa
dc.relation.referencesTuvshintulga, B., Sivakumar, T., Yokoyama, N., & Igarashi, I. (2019). Development of unstable resistance to diminazene aceturate in Babesia bovis. International journal for parasitology. Drugs and drug resistance, 9, 87–92. https://doi.org/10.1016/j.ijpddr.2019.02.001spa
dc.relation.referencesTyler, K. M., Olson, C. L., & Engman, D. M. (2003). The Life Cycle Of Trypanosoma Cruzi. American Trypanosomiasis, 1–11. doi:10.1007/978-1-4419-9206-2_1spa
dc.relation.referencesUsui, M., & Williamson, K. C. (2021). Stressed Out About Plasmodium falciparum Gametocytogenesis. Frontiers in cellular and infection microbiology, 11, 790067. https://doi.org/10.3389/fcimb.2021.790067spa
dc.relation.referencesVaidya, A. B., & Mather, M. W. (2000). Atovaquone resistance in malaria parasites. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 3(5), 283–287. https://doi.org/10.1054/drup.2000.0157spa
dc.relation.referencesVial, H. J., & Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary parasitology, 138(1-2), 147–160. https://doi.org/10.1016/j.vetpar.2006.01.048spa
dc.relation.referencesVannier, E., & Krause, P. J. (2012). Human babesiosis. The New England journal of medicine, 366(25), 2397–2407. https://doi.org/10.1056/NEJMra1202018spa
dc.relation.referencesVelásquez-Ortiz, N., & Ramírez, J. D. (2020). Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Research in veterinary science, 132, 448–461. https://doi.org/10.1016/j.rvsc.2020.07.024spa
dc.relation.referencesVesga, O., Vélez, L., Leiderman, E., & Restrepo, A. (2015). Enfermedades infecciosas de Homo sapiens (Primera edición). https://books.google.com.co/books?id=aJfGDwAAQBAJ&pg=PT752&lpg=PT752&dq=arilaminoalcoholes+y+malaria&source=bl&ots=P0sQuM8AiR&sig=ACfU3U18XZEQ6fyO1PTEdsKrXCB6clB5EQ&hl=en&sa=X&ved=2ahUKEwjyq9_8teuGAxU0RzABHVokC2c4MhDoAXoECAIQAw#v=onepage&q=arilaminoalcoholes%20y%20malaria&f=falsespa
dc.relation.referencesVuitika, L., Prates-Syed, W. A., Silva, J. D. Q., Crema, K. P., Côrtes, N., Lira, A., Lima, J. B. M., Camara, N. O. S., Schimke, L. F., Cabral-Marques, O., Sadraeian, M., Chaves, L. C. S., & Cabral-Miranda, G. (2022). Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines, 10(9), 1385. https://doi.org/10.3390/vaccines10091385spa
dc.relation.referencesVivas, L., Rattray, L., Stewart, L. B., Robinson, B. L., Fugmann, B., Haynes, R. K., Peters, W., & Croft, S. L. (2007). Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. The Journal of antimicrobial chemotherapy, 59(4), 658–665. https://doi.org/10.1093/jac/dkl563spa
dc.relation.referencesWalker, D. M., Oghumu, S., Gupta, G., McGwire, B. S., Drew, M. E., & Satoskar, A. R. (2013). Mechanisms of cellular invasion by intracellular parasites. Cellular and Molecular Life Sciences, 71(7), 1245–1263. doi:10.1007/s00018-013-1491-1spa
dc.relation.referencesWorld Bank (2022). Poverty and Shared Prosperity 2022: Correcting Course. Washington, DC: World Bank. doi:10.1596/978-1-4648-1893-6. Recuperado de: https://www.worldbank.org/en/publication/poverty-and-shared-prosperityspa
dc.relation.referencesWorld Health Organization (WHO), (2010). Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected tropical diseases. Disponible en: http://apps.who.int/iris/bitstream/10665/44440/1/9789241564090_eng.pdfspa
dc.relation.referencesWorld Health Organization (WHO, 2014). Global Malaria Programme. 2014. World Malaria Report 2014. Recuperado de http://www.who.int/malaria/publications/world_malaria_report_2014/en/spa
dc.relation.referencesWorld Health Organization (WHO), (2017). World Malaria Report. Disponible en: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/spa
dc.relation.referencesWorld Health Organization (WHO), (2019). World Malaria Report. Disponible en: https://www.who.int/publications-detail-redirect/9789241565721spa
dc.relation.referencesWorld Health Organization (WHO)_World malaria report 2021. Recuperado de: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021spa
dc.relation.referencesWorld Health Organization (WHO)_World malaria report 2022. Recuperado de: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022spa
dc.relation.referencesWorld Health Organization__WHO. (2023a) Guidelines for malaria, 14 March 2023. Recuperado de: https://www.mmv.org/sites/default/files/content/document/WHO-UCN-GMP-2023.01-eng.pdfspa
dc.relation.referencesWorld Health Organization_WHO (2023b). World malaria report 2023. Recuperado de: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023spa
dc.relation.referencesWorld Health Organization. (‎2023c)‎. WHO guidelines for malaria, 14 March 2023. World Health Organization. https://iris.who.int/handle/10665/366432. Licencia: CC BY-NC-SA 3.0 IGOspa
dc.relation.referencesXie, S. C., Dogovski, C., Hanssen, E., Chiu, F., Yang, T., Crespo, M. P., Stafford, C., Batinovic, S., Teguh, S., Charman, S., Klonis, N., & Tilley, L. (2016). Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. Journal of cell science, 129(2), 406–416. https://doi.org/10.1242/jcs.178830spa
dc.relation.referencesYabsley, M. J., & Shock, B. C. (2012). Natural history of Zoonotic Babesia: Role of wildlife reservoirs. International journal for parasitology. Parasites and wildlife, 2, 18–31. https://doi.org/10.1016/j.ijppaw.2012.11.003spa
dc.relation.referencesYao, J. M., Zhang, H. B., Liu, C. S., Tao, Y., & Yin, M. (2015). Inhibitory effects of 19 antiprotozoal drugs and antibiotics on Babesia microti infection in BALB/c mice. Journal of infection in developing countries, 9(9), 1004–1010. https://doi.org/10.3855/jidc.5500spa
dc.relation.referencesYoung, K. M., Corrin, T., Wilhelm, B., Uhland, C., Greig, J., Mascarenhas, M., & Waddell, L. A. (2019). Zoonotic Babesia: A scoping review of the global evidence. PloS one, 14(12), e0226781. https://doi.org/10.1371/journal.pone.0226781spa
dc.relation.referencesZhang, Li & Lv, Chenrui & Guo, Wenqiang & Li, Zhenzhuo. (2024). Temperature and humidity as drivers for the transmission of zoonotic diseases. Animal Research and One Health. 2. n/a-n/a. 10.1002/aro2.75spa
dc.relation.referencesZintl, A., Mulcahy, G., Skerrett, H. E., Taylor, S. M., & Gray, J. S. (2003). Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clinical microbiology reviews, 16(4), 622–636. https://doi.org/10.1128/CMR.16.4.622-636.2003spa
dc.relation.referencesZofou, D., Nyasa, R. B., Nsagha, D. S., Ntie-Kang, F., Meriki, H. D., Assob, J. C., & Kuete, V. (2014). Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements. Infectious diseases of poverty, 3(1), 1. https://doi.org/10.1186/2049-9957-3-1spa
dc.relation.referencesZucca, M., & Savoia, D. (2011). Current developments in the therapy of protozoan infections. The open medicinal chemistry journal, 5, 4–10. https://doi.org/10.2174/1874104501105010004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembMalariaspa
dc.subject.lembEnfermedad de Chagasspa
dc.subject.proposalAntiparasiticeng
dc.subject.proposalAntiparasitariospa
dc.subject.proposalMalariaspa
dc.subject.proposalBabesiaspa
dc.subject.proposalEnfermedad de Chagasspa
dc.subject.proposalBabesia divergenseng
dc.subject.proposalTrypanosoma cruzieng
dc.subject.proposalPlasmodiumeng
dc.subject.wikidataAntiparasitariospa
dc.subject.wikidataBabesiaspa
dc.titlePerfil antiparasitario del alsinol, una molécula promisoria frente a hemoparásitos protozoariosspa
dc.title.translatedAntiparasitic profile of alsinol, a promising molecule against protozoan hemoparasiteseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52530717.2024.pdf
Tamaño:
3.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: