Perfil antiparasitario del alsinol, una molécula promisoria frente a hemoparásitos protozoarios
dc.contributor.advisor | Garavito Cardenas, Giovanny | |
dc.contributor.advisor | Deharo, Eric | |
dc.contributor.author | Arias Marciales, Maria Helena | |
dc.contributor.orcid | 0000-0002-1011-5157 | spa |
dc.contributor.researchgroup | Farmacología de la Medicina Tradicional y Popular (FaMeTra) | spa |
dc.date.accessioned | 2025-04-23T16:49:09Z | |
dc.date.available | 2025-04-23T16:49:09Z | |
dc.date.issued | 2024-08 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Perfil antiparasitario del alsinol, una molécula promisoria frente a hemoparásitos protozoarios Las parasitosis afectan la salud de humanos y animales y ponen en riesgo su vida, el control de estas enfermedades se debe en gran medida al uso de medicamentos; sin embargo, la limitada disponibilidad de fármacos y la resistencia parasitaria hace evidente la necesidad de disponer de nuevas alternativas de tratamiento eficaces, seguras, de bajo costo y amplio espectro de actividad. Este trabajo valoró el perfil antiparasitario de alsinol, frente a Plasmodium spp., Babesia divergens y Trypanosoma cruzi. Adicionalmente, evaluamos la actividad residual de alsinol en P. berghei y la viabilidad del método fluorométrico con SGI para evaluar el efecto farmacológico de combinaciones de antimaláricos contra P. falciparum. Frente a P. falciparum alsinol inhibió de forma dosis-dependiente la viabilidad de gametocitos y la gametocitogénesis con CI50 de 1.23 y 3.75 µM, respectivamente; el efecto de la combinación de CQ–AS y MQ–AS frente a la cepa FCR-3 mostró un efecto de tipo antagonismo – aditividad y aditividad – no interacción, respectivamente. Frente a B. divergens y T. cruzi la CI50 de ASN fue de 34 µM y 1.11 µM, respectivamente. En ratones infectados con P. berghei alsinol inhibió la multiplicación parasitaria con una DI50 de 17.4 mg/Kg/día y no mostró actividad residual. Alsinol es un buen candidato en la estrategia de bloqueo de la transmisión de la malaria y para hacer frente a enfermedades tropicales desatendidas. (Texto tomado de la fuente) | spa |
dc.description.abstract | Antiparasitic profile of alsinol, a promising molecule against protozoan hemoparasites. Parasitic diseases affect the health of humans and animals, putting their lives at risk. The control of these diseases is largely due to the use of drugs; however, the limited availability of drugs and parasitic resistance makes evident the need for new effective, safe, low-cost, and broad-spectrum treatment alternatives. This work evaluated the antiparasitic profile of alsinol against Plasmodium spp., Babesia divergens, and Trypanosoma cruzi. Against P. falciparum, alsinol dose-dependently inhibited gametocyte viability and gametocytogenesis with IC50 values of 1.23 and 3.75 µM, respectively. The effect of the combination of chloroquine-artesunate (CQ-AS) and mefloquine-artesunate (MQ-AS) against the FCR-3 strain showed antagonism-additivity and additivity-non-interaction type effects, respectively. Against B. divergens and T. cruzi, the IC50 of alsinol was 34 µM and 1.11 µM, respectively. In mice infected with P. berghei, alsinol inhibited parasite multiplication with an ID50 of 17.4 mg/kg/day and showed no residual activity. Additionally, we evaluated the feasibility of the fluorometric method with SYBR Green I (SGI) to assess the pharmacological effect of antimalarial combinations against P. falciparum. Alsinol is a promising candidate in the strategy to block malaria transmission and to address neglected tropical diseases. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias Farmacéuticas | spa |
dc.format.extent | xx, 149 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88100 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias Farmacéuticas | spa |
dc.relation.references | Abdul-Ghani, R., & Beier, J. C. (2014). Strategic use of antimalarial drugs that block falciparum malaria parasite transmission to mosquitoes to achieve local malaria elimination. Parasitology research, 113(10), 3535–3546. https://doi.org/10.1007/s00436-014-4091-6 | spa |
dc.relation.references | Abdul-Ghani, R., Basco, L. K., Beier, J. C., & Mahdy, M. A. (2015). Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malaria journal, 14, 413. https://doi.org/10.1186/s12936-015-0936-4 | spa |
dc.relation.references | Aderinto, N., Olatunji, G., Kokori, E., Sikirullahi, S., Aboje, J. E., & Ojabo, R. E. (2024). A perspective on Oxford's R21/Matrix-M™ malaria vaccine and the future of global eradication efforts. Malaria journal, 23(1), 16. https://doi.org/10.1186/s12936-024-04846-w | spa |
dc.relation.references | ACNUR (2022). Agencia para los refugiados de la Organización de las Naciones Unidas_ONU. Tendencias Globales de desplazamiento forzado, 2022). Recuperado de: https://www.acnur.org/sites/default/files/2023-06/global-trends-2022_esp.pdf | spa |
dc.relation.references | Aldana, I., Blair, S., Deharo, E., Garavito, G., Mendoza, A., & Pérez-Silanes, S. (2016a). Nouveaux dérivés d'arylaminoalcool possédant une activité antiplasmodiale (Patente Europea Nº EP2970233A1). IDRD: Institut de Recherche pour le Developpement. https://patents.google.com/patent/EP2970233A1/fr. | spa |
dc.relation.references | Aldana, I., Blair, S., Deharo, E., Garavito, G., Mendoza, A., & Pérez-Silanes, S. (2016b). Substituted piperidines with antiparasitic activity (Patente de los estados Unidos de América Nº US9688633B2). IDRD: Institut de Recherche pour le Developpement. https://patents.google.com/patent/US9688633B2/en | spa |
dc.relation.references | Almazán, C., Tipacamu, G.A., Rodríguez, S., Mosqueda, J., & Pérez de León, A.A. (2018). Immunological control of ticks and tick-borne diseases that impact cattle health and production. Frontiers in bioscience, 23, 1535-1551. | spa |
dc.relation.references | Alonso-Padilla, J., Cortés-Serra, N., Pinazo, M. J., Bottazzi, M. E., Abril, M., Barreira, F., … Gascón, J. (2019). Strategies to enhance access to diagnosis and treatment for Chagas disease patients in Latin America. Expert Review of Anti-Infective Therapy. doi:10.1080/14787210.2019.1577731 | spa |
dc.relation.references | Álvarez-Hernández, D.-A., Franyuti-Kelly, G.-A., Díaz-López-Silva, R., González-Chávez, A.-M., González-Hermosillo-Cornejo, D., & Vázquez-López, R. (2018). Chagas disease: Current perspectives on a forgotten disease. Revista Médica Del Hospital General de México, 81(3), 154–164. doi:10.1016/j.hgmx.2016.09.010 | spa |
dc.relation.references | Amoah, L. E., Kakaney, C., Kwansa-Bentum, B., & Kusi, K. A. (2015). Activity of Herbal Medicines on Plasmodium falciparum Gametocytes: Implications for Malaria Transmission in Ghana. PloS one, 10(11), e0142587. https://doi.org/10.1371/journal.pone.0142587 | spa |
dc.relation.references | Arias, M. (2015). Estandarización de un método fluorométrico para la determinación de la densidad parasitaria por plasmodium en modelos farmacológicos de malaria in vivo e in vitro (tesis de maestría). Universidad Nacional de Colombia, Bogotá́, Colombia. | spa |
dc.relation.references | Arias Marciales, María Helena, Rodríguez Novoa, Yinneth Victoria, & Garavito Cárdenas, Giovanny. (2016). Adaptación y optimización de un método de lectura por fluorometría en el modelo farmacológico in vitro de cultivo de Plasmodium falciparum. Revista Colombiana de Ciencias Químico - Farmacéuticas, 45(1), 127-146. https://doi.org/10.15446/rcciquifa.v45n1.58024 | spa |
dc.relation.references | Arias, M. H., Deharo, E., Valentin, A., & Garavito, G. (2017). Adaptation and optimization of a fluorescence-based assay for in vivo antimalarial drug screening. Parasitology research, 116(7), 1955–1962. https://doi.org/10.1007/s00436-017-5477-z | spa |
dc.relation.references | Arias, M. H., Quiliano, M., Bourgeade-Delmas, S., Fabing, I., Chantal, I., Berthier, D., Minet, C., Eparvier, V., Sorres, J., Stien, D., Galiano, S., Aldana, I., Valentin, A., Garavito, G., & Deharo, E. (2020). Alsinol, an arylamino alcohol derivative active against Plasmodium, Babesia, Trypanosoma, and Leishmania: past and new outcomes. Parasitology research, 119(10), 3503–3515. https://doi.org/10.1007/s00436-020-06832-y | spa |
dc.relation.references | Ayres, J., Marcus, R., & Standley, C. J. (2022). The Importance of Screening for Chagas Disease Against the Backdrop of Changing Epidemiology in the USA. Current tropical medicine reports, 9(4), 185–193. https://doi.org/10.1007/s40475-022-00264-7 | spa |
dc.relation.references | Azagi, T., Hoornstra, D., Kremer, K., Hovius, J. W. R., & Sprong, H. (2020). Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe. Pathogens (Basel, Switzerland), 9(2), 150. https://doi.org/10.3390/pathogens9020150 | spa |
dc.relation.references | Bacon, D. J., Latour, C., Lucas, C., Colina, O., Ringwald, P., & Picot, S. (2007). Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrobial agents and chemotherapy, 51(4), 1172–1178. https://doi.org/10.1128/AAC.01313-06 | spa |
dc.relation.references | Baker N, de Koning HP, Mäser P, Horn D. (2013). Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. Mar; 29(3):110-8. 110-118. doi: 10.1016/j.pt.2012.12.005. Epub 2013 Enero 30. | spa |
dc.relation.references | Barrett, M. P., Kyle, D. E., Sibley, L. D., Radke, J. B., & Tarleton, R. L. (2019). Protozoan persister-like cells and drug treatment failure. Nature reviews. Microbiology, 17(10), 607–620. https://doi.org/10.1038/s41579-019-0238-x | spa |
dc.relation.references | Basiri, S. (2024). Interconnected risks: Exploring the nexus of zoonosis and climate change. Journal of Zoonotic Diseases, 8(3), 515-523. doi: 10.22034/jzd.2024.18076 | spa |
dc.relation.references | Bennett, T. N., Paguio, M., Gligorijevic, B., Seudieu, C., Kosar, A. D., Davidson, E., & Roepe, P. D. (2004). Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrobial agents and chemotherapy, 48(5), 1807–1810. https://doi.org/10.1128/AAC.48.5.1807-1810.2004 | spa |
dc.relation.references | Becerril, M. (2014). Aspectos generales de la parasitología. En: Becerril, M., Editor Bernal, M., Parasitología médica. Cuarta edición (pp. 11-17). México D.F., México. Mc Graw Hill. ISBN 13: 978-607-15-1150-8. | spa |
dc.relation.references | Berenbaum M. C. (1977). Synergy, additivism and antagonism in immunosuppression. A critical review. Clinical and experimental immunology, 28(1), 1–18. | spa |
dc.relation.references | Berenbaum M. C. (1978). A method for testing for synergy with any number of agents. The Journal of infectious diseases, 137(2), 122–130. https://doi.org/10.1093/infdis/137.2.122 | spa |
dc.relation.references | Beugnet, F., & Moreau, Y. (2015). Babesiosis. Revue scientifique et technique, 34 2, 627-39. | spa |
dc.relation.references | Bhattacharjee, A. K., & Karle, J. M. (1996). Molecular electronic properties of a series of 4-quinolinecarbinolamines define antimalarial activity profile. Journal of medicinal chemistry, 39(23), 4622–4629. https://doi.org/10.1021/jm960358z | spa |
dc.relation.references | Belaunzarán M. L. (2015). Enfermedad de Chagas: globalización y nuevas esperanzas para su cura [Chagas disease: Globalization and new hope for its cure]. Revista Argentina de microbiologia, 47(2), 85–87. https://doi.org/10.1016/j.ram.2015.04.001 | spa |
dc.relation.references | Bivona, A. E., Sánchez Alberti, A., Matos, M. N., Cerny, N., Cardoso, A. C., Morales, C., González, G., Cazorla, S. I., & Malchiodi, E. L. (2018). Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS neglected tropical diseases, 12(3), e0006384. https://doi.org/10.1371/journal.pntd.0006384 | spa |
dc.relation.references | Bock, R., Jackson, L., De Vos, A., & Jorgensen, W. (2004). Babesiosis of cattle. Parasitology, 129(S1), S247–S269. doi:10.1017/S0031182004005190 | spa |
dc.relation.references | Botero, D., & Restrepo, M. (2003). Parasitosis Humanas (Cuarta ed.). Medellín, Colombia | spa |
dc.relation.references | Cabello, R. R. (2007). Microbiología y Parasitología Humana. Bases etiológicas de las enfermedades infecciosas y parasitarias (Tercera ed.). México: Editorial médica Panamericana | spa |
dc.relation.references | Butterworth, A.S., Skinner-Adams, T.S., Gardiner, D.L., & Trenholme, K. (2013). Plasmodium falciparum gametocytes: with a view to a kill. Parasitology, 140, 1718 - 1734 | spa |
dc.relation.references | Caldas, I. S., Santos, E. G., & Novaes, R. D. (2019). An evaluation of benznidazole as a Chagas disease therapeutic. Expert Opinion on Pharmacotherapy, 20(15), 1797–1807. doi:10.1080/14656566.2019.1650915 | spa |
dc.relation.references | Campuzano, G. y Blair, S. (2010). Malaria: consideraciones sobre su diagnóstico. Medicina y Laboratorio. 16 (7, 8), 311-354 | spa |
dc.relation.references | Chao, C., Leone, J. L., & Vigliano, C. A. (2020). Chagas disease: Historic perspective. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(5), 165689. doi:10.1016/j.bbadis.2020.165689 | spa |
dc.relation.references | Canfield, C. J., Pudney, M., & Gutteridge, W. E. (1995). Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Experimental parasitology, 80(3), 373–381. https://doi.org/10.1006/expr.1995.1049 | spa |
dc.relation.references | Capela, R., Moreira, R., & Lopes, F. (2019). An Overview of Drug Resistance in Protozoal Diseases. International journal of molecular sciences, 20(22), 5748. https://doi.org/10.3390/ijms20225748 | spa |
dc.relation.references | Chatelain E. (2016). Chagas disease research and development: Is there light at the end of the tunnel?. Computational and structural biotechnology journal, 15, 98–103. https://doi.org/10.1016/j.csbj.2016.12.002 | spa |
dc.relation.references | Cerny, N., Bivona, A. E., Sanchez Alberti, A., Trinitario, S. N., Morales, C., Cardoso Landaburu, A., Cazorla, S. I., & Malchiodi, E. L. (2020). Cruzipain and Its Physiological Inhibitor, Chagasin, as a DNA-Based Therapeutic Vaccine Against Trypanosoma cruzi. Frontiers in immunology, 11, 565142. https://doi.org/10.3389/fimmu.2020.565142 | spa |
dc.relation.references | Chauvin, A., Moreau, E., Bonnet, S., Plantard, O., & Malandrin, L. (2009). Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Veterinary research, 40(2), 37. https://doi.org/10.1051/vetres/2009020 | spa |
dc.relation.references | Chevalley, S., Coste, A., Lopez, A., Pipy, B., & Valentin, A. (2010). Flow cytometry for the evaluation of anti-plasmodial activity of drugs on Plasmodium falciparum gametocytes. Malaria journal, 9, 49. https://doi.org/10.1186/1475-2875-9-49 | spa |
dc.relation.references | Cholewiński, M., Derda, M. y Hadaś, E. (2015), Parasitic diseases in humans transmitted by vectors. Annals of Parasitology. 61(3), 137–157. doi: 10.17420/ap6103.01 | spa |
dc.relation.references | Co, E. M., Dennull, R. A., Reinbold, D. D., Waters, N. C., & Johnson, J. D. (2009). Assessment of malaria in vitro drug combination screening and mixed-strain infections using the malaria Sybr green I-based fluorescence assay. Antimicrobial agents and chemotherapy, 53(6), 2557–2563. https://doi.org/10.1128/AAC.01370-08 | spa |
dc.relation.references | Comisión Económica para América Latina y el Caribe (CEPAL), Panorama Social de América Latina y el Caribe, 2022 (LC/PUB.2022/15-P), Santiago, 2022. Recuperado de: https://www.cepal.org/es/publicaciones/48518-panorama-social-america-latina-caribe-2022-la-transformacion-la-educacion-como | spa |
dc.relation.references | Conners, E. E., Vinetz, J. M., Weeks, J. R., & Brouwer, K. C. (2016). A global systematic review of Chagas disease prevalence among migrants. Acta tropica, 156, 68–78. https://doi.org/10.1016/j.actatropica.2016.01.002 | spa |
dc.relation.references | D’Alessandro, S., Corbett, Y., Ilboudo, D. P., Misiano, P., Dahiya, N., Abay, S. M., … Parapini, S. (2015). Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrobial Agents and Chemotherapy, 59(9), 5135-5144. https://doi.org/10.1128/AAC.04332-14 | spa |
dc.relation.references | Datoo, M. S., Dicko, A., Tinto, H., Ouédraogo, J. B., Hamaluba, M., Olotu, A., Beaumont, E., Ramos Lopez, F., Natama, H. M., Weston, S., Chemba, M., Compaore, Y. D., Issiaka, D., Salou, D., Some, A. M., Omenda, S., Lawrie, A., Bejon, P., Rao, H., Chandramohan, D., … R21/Matrix-M Phase 3 Trial Group (2024). Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet (London, England), 403(10426), 533–544. https://doi.org/10.1016/S0140-6736(23)02511-4 | spa |
dc.relation.references | Dash, M., Sachdeva, S., Bansal, A., & Sinha, A. (2022). Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Frontiers in cellular and infection microbiology, 12, 877907. https://doi.org/10.3389/fcimb.2022.877907 | spa |
dc.relation.references | Deharo, E, Gautret, P, Muñoz, V, & Sauvain, M. (2000). Técnicas de laboratorio para la selección de sustancias antimaláricas . La Paz, Bolivia | spa |
dc.relation.references | Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 16(6): 710-18 | spa |
dc.relation.references | Duffy, P. E., & Patrick Gorres, J. (2020). Malaria vaccines since 2000: progress, priorities, products. NPJ vaccines, 5(1), 48. https://doi.org/10.1038/s41541-020-0196-3 | spa |
dc.relation.references | Dumonteil, E., & Herrera, C. (2021). The Case for the Development of a Chagas Disease Vaccine: Why? How? When?. Tropical medicine and infectious disease, 6(1), 16. https://doi.org/10.3390/tropicalmed6010016 | spa |
dc.relation.references | Duran-Rehbein, G.A., Vargas-Zambrano, J.C., Cuéllar, A., Puerta, C.J., & González, J.M. (2014). Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. Parasite, 21 | spa |
dc.relation.references | el Kouni M. H. (2003). Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacology & therapeutics, 99(3), 283–309. https://doi.org/10.1016/s0163-7258(03)00071-8 | spa |
dc.relation.references | El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. Environmental science and pollution research international, 27(18), 22336–22352. https://doi.org/10.1007/s11356-020-08896-w | spa |
dc.relation.references | Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R., & Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature reviews. Drug discovery, 3(6), 509–520. https://doi.org/10.1038/nrd1416 | spa |
dc.relation.references | Filigheddu, M. T., Górgolas, M., & Ramos, J. M. (2017). Orally-transmitted Chagas disease. Enfermedad de Chagas de transmisión oral. Medicina clinica, 148(3), 125–131. https://doi.org/10.1016/j.medcli.2016.10.038 | spa |
dc.relation.references | Fivelman, Q. L., Walden, J. C., Smith, P. J., Folb, P. I., & Barnes, K. I. (1999). The effect of artesunate combined with standard antimalarials against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93(4), 429–432. https://doi.org/10.1016/s0035-9203(99)90147-5 | spa |
dc.relation.references | Fivelman, Q. L., Adagu, I. S., & Warhurst, D. C. (2004). Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrobial agents and chemotherapy, 48(11), 4097–4102. https://doi.org/10.1128/AAC.48.11.4097-4102.2004 | spa |
dc.relation.references | Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E., & Gourbière, S. (2017). Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evolutionary applications, 11(4), 470–487. https://doi.org/10.1111/eva.12582 | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations_FAO / OMS (2014). Multicriteria-based ranking for risk management of food-borne parasites. Microbiological risk assessment series, N.º 23. ISSN 1726-5274. Disponible en: https://openknowledge.fao.org/server/api/core/bitstreams/b4f9e339-7e83-4229-b80e-7eeea01c486d/content | spa |
dc.relation.references | Francisco, A. F., Jayawardhana, S., Olmo, F., Lewis, M. D., Wilkinson, S. R., Taylor, M. C., & Kelly, J. M. (2020). Challenges in Chagas Disease Drug Development. Molecules (Basel, Switzerland), 25(12), 2799. https://doi.org/10.3390/molecules25122799 | spa |
dc.relation.references | Franco-Paredes, C., Villamil-Gómez, W. E., Schultz, J., Henao-Martínez, A. F., Parra-Henao, G., Rassi, A., Jr, Rodríguez-Morales, A. J., & Suarez, J. A. (2020). A deadly feast: Elucidating the burden of orally acquired acute Chagas disease in Latin America - Public health and travel medicine importance. Travel medicine and infectious disease, 36, 101565. https://doi.org/10.1016/j.tmaid.2020.101565 | spa |
dc.relation.references | Frenk, J., Gómez-Dantés, O., & Knaul, F. M. (2011). Globalization and infectious diseases. Infectious disease clinics of North America, 25(3), 593–viii. https://doi.org/10.1016/j.idc.2011.05.003 | spa |
dc.relation.references | Florin-Christensen, M., Suarez, C. E., Rodriguez, A. E., Flores, D. A., & Schnittger, L. (2014). Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology, 1–30. Advance online publication. https://doi.org/10.1017/S0031182014000961 | spa |
dc.relation.references | Garavito G., (2003). Estandarización de dos modelos de actividad Antimalárica como herramientas para la evaluación Farmacológica de sustancias o extractos de origen Vegetal (tesis de maestría). Universidad Nacional de Colombia | spa |
dc.relation.references | Garavito, G. (2007). Etude Pharmacologique expérimentale de l´activité antipaludique d´uncomposé de synthèse: le chlorure de methylthioninium (tesis de doctorado). Universidad de Toulouse, Toulouse, Francia | spa |
dc.relation.references | Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071 | spa |
dc.relation.references | Gilbert L. (2021). The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annual review of entomology, 66, 373–388. https://doi.org/10.1146/annurev-ento-052720-094533 | spa |
dc.relation.references | Gómez Marín, J. E. (2010). Plasmodium. En J. E. Gomez Marín, Protozoología Médica. Protozoos parásitos en el contexto Latinoamericano (págs. 21-43). Colombia: Manual Moderno | spa |
dc.relation.references | Gómez Marin, Jorge Enrique. (2016). Necesidad de una farmacia nacional: un problema de seguridad nacional. Infectio, 20(1), 1-2. https://doi.org/10.1016/j.infect.2015.08.001 | spa |
dc.relation.references | Gonzalez, J., Echaide, I., Pabón, A., Gabriel Piñeros, J. J., Blair, S., & Tobón-Castaño, A. (2018). Babesiosis prevalence in malaria-endemic regions of Colombia. Journal of vector borne diseases, 55(3), 222–229. https://doi.org/10.4103/0972-9062.249480 | spa |
dc.relation.references | González-Obando, Juliana, Holguín-Rocha, Andrés F., & Tobón-Castaño, Alberto. (2019). Diagnóstico de Babesia bovis (Babesiidae) y Babesia bigemina (Babesiidae) en garrapatas recolectadas en los municipios Turbo y Necoclí (Antioquia) en 2014. Actualidades Biológicas, 41(111), 65-71. https://doi.org/10.17533/udea.acbi.v41n111a05 | spa |
dc.relation.references | Goo, Y. K., Terkawi, M. A., Jia, H., Aboge, G. O., Ooka, H., Nelson, B., Kim, S., Sunaga, F., Namikawa, K., Igarashi, I., Nishikawa, Y., & Xuan, X. (2010). Artesunate, a potential drug for treatment of Babesia infection. Parasitology international, 59(3), 481–486. https://doi.org/10.1016/j.parint.2010.06.004 | spa |
dc.relation.references | Gorenflot, A., Brasseur, P., Precigout, E., L'Hostis, M., Marchand, A., & Schrevel, J. (1991). Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitology research, 77(1), 3–12. https://doi.org/10.1007/BF00934377 | spa |
dc.relation.references | Gray, J. S., Estrada-Peña, A., & Zintl, A. (2019). Vectors of Babesiosis. Annual review of entomology, 64, 149–165. https://doi.org/10.1146/annurev-ento-011118-111932 | spa |
dc.relation.references | Grimberg B. T. (2011). Methodology and application of flow cytometry for investigation of human malaria parasites. Journal of immunological methods, 367(1-2), 1–16. https://doi.org/10.1016/j.jim.2011.01.015 | spa |
dc.relation.references | Guarner J. (2019). Chagas disease as example of a reemerging parasite. Seminars in diagnostic pathology, 36(3), 164–169. https://doi.org/10.1053/j.semdp.2019.04.008 | spa |
dc.relation.references | Heller, L. E., & Roepe, P. D. (2019). Artemisinin-Based Antimalarial Drug Therapy: Molecular Pharmacology and Evolving Resistance. Tropical medicine and infectious disease, 4(2), 89. https://doi.org/10.3390/tropicalmed4020089 | spa |
dc.relation.references | Henry, N. B., Sermé, S. S., Siciliano, G., Sombié, S., Diarra, A., Sagnon, N., Traoré, A. S., Sirima, S. B., Soulama, I., & Alano, P. (2019). Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malaria journal, 18(1), 70. https://doi.org/10.1186/s12936-019-2707-0 | spa |
dc.relation.references | Hoffman, S. L., Nussenzweig, V., Sadoff, J. C., & Nussenzweig, R. S. (1991). Progress toward malaria preerythrocytic vaccines. Science (New York, N.Y.), 252(5005), 520–521. https://doi.org/10.1126/science.2020852 | spa |
dc.relation.references | Homer, M. J., Aguilar-Delfin, I., Telford, S. R., 3rd, Krause, P. J., & Persing, D. H. (2000). Babesiosis. Clinical microbiology reviews, 13(3), 451–469. https://doi.org/10.1128/CMR.13.3.451 | spa |
dc.relation.references | Huang, R. Y., Pei, L., Liu, Q., Chen, S., Dou, H., Shu, G., Yuan, Z. X., Lin, J., Peng, G., Zhang, W., & Fu, H. (2019). Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Frontiers in pharmacology, 10, 1222. https://doi.org/10.3389/fphar.2019.01222 | spa |
dc.relation.references | Hunfeld, K. P., Hildebrandt, A., & Gray, J. S. (2008). Babesiosis: recent insights into an ancient disease. International journal for parasitology, 38(11), 1219–1237. https://doi.org/10.1016/j.ijpara.2008.03.001 | spa |
dc.relation.references | Ifediba, T., & Vanderberg, J. P. (1981). Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature, 294(5839), 364–366. https://doi.org/10.1038/294364a0 | spa |
dc.relation.references | Instituto Colombiano Agropecuario_ICA (2016). Colombia. Boletín Sanidad Animal. Disponible en: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/bol/epi/boletines-anuales/boletin-2016-sanidad-animal | spa |
dc.relation.references | Instituto Nacional de Salud_INS (2010). Colombia. Subdirección de Vigilancia y Control en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 52 (25 de diciembre de 2009 a 1 de enero de 2010). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Instituto Nacional de Salud_INS (2014). Colombia. Dirección de Vigilancia y Análisis del riesgo en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 53 (28 de diciembre de 2014 al 3 de enero de 2015). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Instituto Nacional de Salud_INS (2015). Colombia. Dirección de Vigilancia y Análisis del riesgo en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 52 (27 de diciembre de 2015 al 2 de enero de 2016). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Instituto Nacional de Salud_INS (2016). Colombia. Dirección de Vigilancia y Análisis del riesgo en Salud Pública. Boletín epidemiológico semanal, semana epidemiológica número 52 (25 al 31 de diciembre de 2016). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Instituto Nacional de Salud_INS (2022). Colombia. Boletín epidemiológico semanal, semana epidemiológica número 52 (25 al 31 de diciembre de 2022). Disponible en: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Instituto Nacional de Salud_INS (2022a). Colombia. Protocolo de Vigilancia en Salud Pública de Chagas. Versión 4 [Internet]. https://doi.org/10.33610/infoeventos.58 | spa |
dc.relation.references | Jacob, S. S., Sengupta, P. P., Paramanandham, K., Suresh, K. P., Chamuah, J. K., Rudramurthy, G. R., & Roy, P. (2020). Bovine babesiosis: An insight into the global perspective on the disease distribution by systematic review and meta-analysis. Veterinary parasitology, 283, 109136. https://doi.org/10.1016/j.vetpar.2020.109136 | spa |
dc.relation.references | Jaimes-Dueñez, J., Triana-Chávez, O., Holguín-Rocha, A., Tobon-Castaño, A., & Mejía-Jaramillo, A. M. (2018). Molecular surveillance and phylogenetic traits of Babesia bigemina and Babesia bovis in cattle (Bos taurus) and water buffaloes (Bubalus bubalis) from Colombia. Parasites & vectors, 11(1), 510. https://doi.org/10.1186/s13071-018-3091-2 | spa |
dc.relation.references | Jalovecka, M., Hajdusek, O., Sojka, D., Kopacek, P., & Malandrin, L. (2018). The Complexity of Piroplasms Life Cycles. Frontiers in cellular and infection microbiology, 8, 248. https://doi.org/10.3389/fcimb.2018.00248 | spa |
dc.relation.references | Jaramillo Hernández, D. A. (2022). Importancia de la vacunación dentro del manejo integrado de Rhipicephalus microplus en bovinos. Revista Sistemas de Producción Agroecológicos, 13(1), 47-63. https://doi.org/10.22579/22484817.884 | spa |
dc.relation.references | Johnson, J. D., Dennull, R. A., Gerena, L., Lopez-Sanchez, M., Roncal, N. E., & Waters, N. C. (2007). Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrobial agents and chemotherapy, 51(6), 1926–1933. https://doi.org/10.1128/AAC.01607-06 | spa |
dc.relation.references | Kaneko T. (2011). Drugs for neglected diseases: part I. Future medicinal chemistry, 3(10), 1235–1237. https://doi.org/10.4155/fmc.11.103 | spa |
dc.relation.references | Kaufer, A., Ellis, J., Stark, D., & Barratt, J. (2017). The evolution of trypanosomatid taxonomy. Parasites & vectors, 10(1), 287. https://doi.org/10.1186/s13071-017-2204-7 | spa |
dc.relation.references | Krause P. J. (2019). Human babesiosis. International journal for parasitology, 49(2), 165–174. https://doi.org/10.1016/j.ijpara.2018.11.007 | spa |
dc.relation.references | Kessler, R. L., Contreras, V. T., Marliére, N. P., Aparecida Guarneri, A., Villamizar Silva, L. H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M. (2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Molecular microbiology, 104(5), 712–736. https://doi.org/10.1111/mmi.13653 | spa |
dc.relation.references | Kumar, A., O'Bryan, J., & Krause, P. J. (2021). The Global Emergence of Human Babesiosis. Pathogens (Basel, Switzerland), 10(11), 1447. https://doi.org/10.3390/pathogens10111447 | spa |
dc.relation.references | Lambros, C., & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. The Journal of parasitology, 65(3), 418–420 | spa |
dc.relation.references | Lemieux, J. E., Tran, A. D., Freimark, L., Schaffner, S. F., Goethert, H., Andersen, K. G., Bazner, S., Li, A., McGrath, G., Sloan, L., Vannier, E., Milner, D., Pritt, B., Rosenberg, E., Telford, S., 3rd, Bailey, J. A., & Sabeti, P. C. (2016). A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nature microbiology, 1(7), 16079. https://doi.org/10.1038/nmicrobiol.2016.79 | spa |
dc.relation.references | Lempereur, L., Beck, R., Fonseca, I., Marques, C., Duarte, A., Santos, M., Zúquete, S., Gomes, J., Walder, G., Domingos, A., Antunes, S., Baneth, G., Silaghi, C., Holman, P., & Zintl, A. (2017). Guidelines for the Detection of Babesia and Theileria Parasites. Vector borne and zoonotic diseases (Larchmont, N.Y.), 17(1), 51–65. https://doi.org/10.1089/vbz.2016.1955 | spa |
dc.relation.references | Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0 | spa |
dc.relation.references | Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J., (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, Volume 64, Supplement, 2012, Pages 4-17, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2012.09.019 | spa |
dc.relation.references | Loo, C. S., Lam, N. S., Yu, D., Su, X. Z., & Lu, F. (2017). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological research, 117, 192–217. https://doi.org/10.1016/j.phrs.2016.11.012 | spa |
dc.relation.references | Lopes, Angela & Souto-Padrón, Thaïs & Dias, Felipe & Gomes, Marta & Rodrigues, Giseli & Zimmermann, Luciana & Silva, Thiago Luiz & Vermelho, Alane. (2010). Trypanosomatids: Odd Organisms, Devastating Diseases. The Open Parasitology Journal. 4. 10.2174/1874421401004010030 | spa |
dc.relation.references | Lourenço, A. M., Faccini, C. C., Costa, C. A. J., Mendes, G. B., & Fragata Filho, A. A. (2018). Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Revista da Sociedade Brasileira de Medicina Tropical, 51(1), 52–56. https://doi.org/10.1590/0037-8682-0285-2017 | spa |
dc.relation.references | Malkin, E. M., Durbin, A. P., Diemert, D. J., Sattabongkot, J., Wu, Y., Miura, K., Long, C. A., Lambert, L., Miles, A. P., Wang, J., Stowers, A., Miller, L. H., & Saul, A. (2005). Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine, 23(24), 3131–3138. https://doi.org/10.1016/j.vaccine.2004.12.019 | spa |
dc.relation.references | Mann, G. S., Francisco, A. F., Jayawardhana, S., Taylor, M. C., Lewis, M. D., Olmo, F., de Freitas, E. O., Leoratti, F. M. S., López-Camacho, C., Reyes-Sandoval, A., & Kelly, J. M. (2020). Drug-cured experimental Trypanosoma cruzi infections confer long-lasting and cross-strain protection. PLoS neglected tropical diseases, 14(4), e0007717. https://doi.org/10.1371/journal.pntd.0007717 | spa |
dc.relation.references | Mariga, S. T., Gil, J. P., Wernsdorfer, W. H., & Björkman, A. (2005). Pharmacodynamic interactions of amodiaquine and its major metabolite desethylamodiaquine with artemisinin, quinine and atovaquone in Plasmodium falciparum in vitro. Acta tropica, 93(3), 221–231. https://doi.org/10.1016/j.actatropica.2005.01.007 | spa |
dc.relation.references | Martins, André Vianna, Gomes, Andréia Patrícia, Gomes de Mendonça, Eduardo, Lopes Rangel Fietto, Juliana, Santana, Luiz Alberto, de Almeida Oliveira, Maria Goreti, Geller, Mauro, de Freitas Santos, Ramon, Roger Vitorino, Rodrigo, & Siqueira-Batista, Rodrigo. (2012). Biology of Trypanosoma cruzi: An update. Infectio, 16(1), 45-58. Retrieved June 01, 2024, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922012000100008&lng=en&tlng=en | spa |
dc.relation.references | Mazuz, M. L., Golenser, J., Fish, L., Haynes, R. K., Wollkomirsky, R., Leibovich, B., & Shkap, V. (2013). Artemisone inhibits in vitro and in vivo propagation of Babesia bovis and B. bigemina parasites. Experimental parasitology, 135(4), 690–694. https://doi.org/10.1016/j.exppara.2013.10.006 | spa |
dc.relation.references | Meliani, P., Khatibi, S., Randazzo, S., Gorenflot, A., & Marchou, B. (2006). Babésioses humaines [Human babesiosis]. Medecine et maladies infectieuses, 36(10), 499–504. https://doi.org/10.1016/j.medmal.2006.07.002 | spa |
dc.relation.references | Meléndez, R., (2000). Babesiosis : una zoonosis emergente en regiones templadas y tropicales. Una revisión. Revista científica. FCV-LUZ. Vol. X, N° 1, 13-18 | spa |
dc.relation.references | Mehlhorn, H., & Schein, E. (1998). Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitology research, 84(6), 467–475. https://doi.org/10.1007/s004360050431 | spa |
dc.relation.references | Mendoza, A., Pérez-Silanes, S., Quiliano, M., Pabón, A., Galiano, S., González, G., Garavito, G., Zimic, M., Vaisberg, A., Aldana, I., Monge, A., & Deharo, E. (2011). Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure-activity relationships. Experimental parasitology, 128(2), 97–103 | spa |
dc.relation.references | Mishina, Y. V., Krishna, S., Haynes, R. K., & Meade, J. C. (2007). Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrobial agents and chemotherapy, 51(5), 1852–1854. https://doi.org/10.1128/AAC.01544-06 | spa |
dc.relation.references | Molyneaux, C. A., Krugliak, M., Ginsburg, H., & Chibale, K. (2005). Arylpiperazines displaying preferential potency against chloroquine-resistant strains of the malaria parasite Plasmodium falciparum. Biochemical pharmacology, 71(1-2), 61–68. https://doi.org/10.1016/j.bcp.2005.10.023 | spa |
dc.relation.references | Montenegro-James S. (1992). Prevalence and control of babesiosis in the Americas. Memorias do Instituto Oswaldo Cruz, 87 Suppl 3, 27–36. https://doi.org/10.1590/s0074-02761992000700003 | spa |
dc.relation.references | Monzote, L., & Siddiq, A. (2011). Drug development to protozoan diseases. The open medicinal chemistry journal, 5, 1–3. https://doi.org/10.2174/1874104501105010001 | spa |
dc.relation.references | Moreno, C.J., Oliveira, J.W., Branco, J.C., Araújo, L.V., Queiroz, A.M., Donato, S.T., Júnior, N.J., Rodrigues, E.T., & Silva, M.S. (2019). Cell Culture and Maintenance of the Evolutionary Forms of Trypanosoma cruzi for Studies of Parasitic Biology. Biology of Trypanosoma cruzi. IntechOpen. doi: 10.5772/intechopen.84733 | spa |
dc.relation.references | Mosqueda, J., Olvera-Ramirez, A., Aguilar-Tipacamu, G., & Canto, G. J. (2012). Current advances in detection and treatment of babesiosis. Current medicinal chemistry, 19(10), 1504–1518. https://doi.org/10.2174/092986712799828355 | spa |
dc.relation.references | Müller Kratz, J. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 105107. doi:10.1016/j.actatropica.2019.105107 | spa |
dc.relation.references | Naß, J., & Efferth, T. (2019). Development of artemisinin resistance in malaria therapy. Pharmacological research, 146, 104275. https://doi.org/10.1016/j.phrs.2019.104275 | spa |
dc.relation.references | Na-Bangchang, K., Karbwang, J. (2019). Pharmacology of Antimalarial Drugs, Current Anti-malarials. In: Kremsner, P., Krishna, S. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_149-1 | spa |
dc.relation.references | Nadeem, A. Y., Shehzad, A., Islam, S. U., Al-Suhaimi, E. A., & Lee, Y. S. (2022). Mosquirix™ RTS, S/AS01 Vaccine Development, Immunogenicity, and Efficacy. Vaccines, 10(5), 713. https://doi.org/10.3390/vaccines10050713 | spa |
dc.relation.references | Nagai, A., Yokoyama, N., Matsuo, T., Bork, S., Hirata, H., Xuan, X., Zhu, Y., Claveria, F. G., Fujisaki, K., & Igarashi, I. (2003). Growth-inhibitory effects of artesunate, pyrimethamine, and pamaquine against Babesia equi and Babesia caballi in in vitro cultures. Antimicrobial agents and chemotherapy, 47(2), 800–803. https://doi.org/10.1128/AAC.47.2.800-803.2003 | spa |
dc.relation.references | Nuttall, P.A. Climate change impacts on ticks and tick-borne infections. Biologia 77, 1503–1512 (2022). https://doi.org/10.1007/s11756-021-00927-2 | spa |
dc.relation.references | Obeagu, E. I., & Obeagu, G. U. (2024). Adapting to the shifting landscape: Implications of climate change for malaria control: A review. Medicine, 103(29), e39010. https://doi.org/10.1097/MD.0000000000039010 | spa |
dc.relation.references | Ohrt, C., Willingmyre, G. D., Lee, P., Knirsch, C., & Milhous, W. (2002). Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrobial agents and chemotherapy, 46(8), 2518–2524. https://doi.org/10.1128/AAC.46.8.2518-2524.2002 | spa |
dc.relation.references | Olivera, G. C., Postan, M., & González, M. N. (2015). Effects of artesunate against Trypanosma cruzi. Experimental parasitology, 156, 26–31. https://doi.org/10.1016/j.exppara.2015.05.014 | spa |
dc.relation.references | Olivera, M. J., Porras Villamil, J. F., Toquica Gahona, C. C., & Rodríguez Hernández, J. M. (2018). Barriers to Diagnosis Access for Chagas Disease in Colombia. Journal of parasitology research, 2018, 4940796. https://doi.org/10.1155/2018/4940796 | spa |
dc.relation.references | Olivera, M. J., Fory, J. A., Porras, J. F., & Buitrago, G. (2019). Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. PloS one, 14(1), e0210156. https://doi.org/10.1371/journal.pone.0210156 | spa |
dc.relation.references | Olivera, M. J., & Buitrago, G. (2020). Economic costs of Chagas disease in Colombia in 2017: A social perspective. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 91, 196–201. https://doi.org/10.1016/j.ijid.2019.11.022 | spa |
dc.relation.references | Ord, R. L., & Lobo, C. A. (2015). Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment. Current clinical microbiology reports, 2(4), 173–181. https://doi.org/10.1007/s40588-015-0025-z | spa |
dc.relation.references | Organización de las Naciones Unidas (ONU). (2015). Objetivos de Desarrollo del Milenio Informe de 2015. Disponible en: http://www.undp.org/content/undp/es/home/librarypage/mdg/the-millennium-development-goals-report-2015.html | spa |
dc.relation.references | Organización Mundial de la Salud_OMS (2021). Poner fin a la desatención para alcanzar los Objetivos de Desarrollo Sostenible: hoja de ruta sobre enfermedades tropicales desatendidas 2021-2030. Recuperado de: https://www.paho.org/es/documentos/poner-fin-desatencion-para-alcanzar-objetivos-desarrollo-sostenible-hoja-ruta-sobre | spa |
dc.relation.references | Organización Mundial de la Salud_OMS (2022). Parte epidemiológico semanal. Nº 9, 2022, 97, 61-80. 4 de marzo de 2022, 97 º año. Vacuna antipalúdica: documento de posición de la OMS – marzo de 2022. Disponible en: https://iris.who.int/bitstream/handle/10665/352332/WER9709-spa.pdf?sequence=17&isAllowed=y | spa |
dc.relation.references | Oficina Internacional de Epizootias (OIE). Babesiosis bovina. Capítulo 2.3.8 en: Manual de la OIE sobre animales terrestres (2004). Recuperado de: http://web.oie.int/esp/normes/mmanual/pdf_es/2.3.08_Babesiosis_bovina.pdf | spa |
dc.relation.references | Organización Panamericana de la Salud (OPS), Organización Mundial de la Salud (OMS). (2016). Enfermedades Infecciosas Desatendidas en las Américas. Disponible en: http://www.paho.org/hq/index.php?option=com_content&view=article&id=12406%3Aneglected-infectious-diseases-americas-success-stories-innovation-reach-neediest&catid=8876%3Apublications&Itemid=42097&lang=es | spa |
dc.relation.references | Organización Panamericana de la Salud (OPS), Organización Mundial de la Salud (OMS). (2017). Marco para la eliminación de la transmisión materno infantil del VIH, la sífilis, la hepatitis y la enfermedad de Chagas. Disponible en: https://www.paho.org/es/documentos/etmi-plus-marco-para-eliminacion-transmision-maternoinfantil-vih-sifilis-hepatitis | spa |
dc.relation.references | Organización Panamericana de la Salud_OPS (2022). Decálogo para la toma de decisiones sobre la prevención, el control y la atención de la enfermedad de Chagas. Disponible en: https://www.paho.org/es/documentos/decalogo-para-toma-decisiones-sobre-prevencion-control-atencion-enfermedad-chagas | spa |
dc.relation.references | Patz, J. A., & Olson, S. H. (2006). Malaria risk and temperature: influences from global climate change and local land use practices. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5635–5636. https://doi.org/10.1073/pnas.0601493103 | spa |
dc.relation.references | Pérez-Silanes, S., Berrade, L., García-Sánchez, R. N., Mendoza, A., Galiano, S., Pérez-Solórzano, B. M., Nogal-Ruiz, J. J., Martínez-Fernández, A. R., Aldana, I., & Monge, A. (2009). New 1-aryl-3-substituted propanol derivatives as antimalarial agents. Molecules (Basel, Switzerland), 14(10), 4120–4135. https://doi.org/10.3390/molecules14104120 | spa |
dc.relation.references | Peters W and Robinson BL (1999) Malaria. In: Zak O (ed) Handbook of animal models of infection. New York, pp 757–773 | spa |
dc.relation.references | Peterson, J.K., Hashimoto, K., Yoshioka, K. et al. Chagas Disease in Central America: Recent Findings and Current Challenges in Vector Ecology and Control. Curr Trop Med Rep 6, 76–91 (2019). https://doi.org/10.1007/s40475-019-00175-0 | spa |
dc.relation.references | Plewes, K., Leopold, S. J., Kingston, H. W. F., & Dondorp, A. M. (2019). Malaria: What's New in the Management of Malaria?. Infectious disease clinics of North America, 33(1), 39–60. https://doi.org/10.1016/j.idc.2018.10.002 | spa |
dc.relation.references | Poonam, Gupta, Y., Gupta, N., Singh, S., Wu, L., Chhikara, B. S., Rawat, M., & Rathi, B. (2018). Multistage inhibitors of the malaria parasite: Emerging hope for chemoprotection and malaria eradication. Medicinal research reviews, 38(5), 1511–1535. https://doi.org/10.1002/med.21486 | spa |
dc.relation.references | Portillo, S., Zepeda, B. G., Iniguez, E., Olivas, J. J., Karimi, N. H., Moreira, O. C., Marques, A. F., Michael, K., Maldonado, R. A., & Almeida, I. C. (2019). A prophylactic α-Gal-based glycovaccine effectively protects against murine acute Chagas disease. NPJ vaccines, 4, 13. https://doi.org/10.1038/s41541-019-0107-7 | spa |
dc.relation.references | Pramanik, P. K., Alam, M. N., Roy Chowdhury, D., & Chakraborti, T. (2019). Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. Journal of global antimicrobial resistance, 18, 1–11. https://doi.org/10.1016/j.jgar.2019.01.023 | spa |
dc.relation.references | PubChem. (s/f). PubChem. Nih.gov. Recuperado el 26 de junio de 2024, de https://pubchem.ncbi.nlm.nih.gov/ | spa |
dc.relation.references | Quijano-Hernandez, I., & Dumonteil, E. (2011). Advances and challenges towards a vaccine against Chagas disease. Human vaccines, 7(11), 1184–1191. https://doi.org/10.4161/hv.7.11.17016 | spa |
dc.relation.references | Quiliano, Miguel & Aldana, Ignacio. (2013). Quinoxaline and Arylaminoalcohol Derivatives as Antiplasmodial and Leishmanicidal Agents: A Review of our First Ten Years in the Field. Revista Virtual de Química. 5. 1120-1133. 10.5935/1984-6835.20130081 | spa |
dc.relation.references | Quiliano, M., Mendoza, A., Fong, K. Y., Pabón, A., Goldfarb, N. E., Fabing, I., Vettorazzi, A., López de Cerain, A., Dunn, B. M., Garavito, G., Wright, D. W., Deharo, E., Pérez-Silanes, S., Aldana, I., & Galiano, S. (2016). Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. International journal for parasitology. Drugs and drug resistance, 6(3), 184–198. https://doi.org/10.1016/j.ijpddr.2016.09.004 | spa |
dc.relation.references | Quiliano, M., Pabón, A., Moles, E., Bonilla-Ramirez, L., Fabing, I., Fong, K. Y., Nieto-Aco, D. A., Wright, D. W., Pizarro, J. C., Vettorazzi, A., López de Cerain, A., Deharo, E., Fernández-Busquets, X., Garavito, G., Aldana, I., & Galiano, S. (2018). Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. European journal of medicinal chemistry, 152, 489–514. https://doi.org/10.1016/j.ejmech.2018.04.038 | spa |
dc.relation.references | Renard, I., & Ben Mamoun, C. (2021). Treatment of Human Babesiosis: Then and Now. Pathogens (Basel, Switzerland), 10(9), 1120. https://doi.org/10.3390/pathogens10091120 | spa |
dc.relation.references | Ringwald, P., Eboumbou, E. C., Bickii, J., & Basco, L. K. (1999). In vitro activities of pyronaridine, alone and in combination with other antimalarial drugs, against Plasmodium falciparum. Antimicrobial agents and chemotherapy, 43(6), 1525–1527. https://doi.org/10.1128/AAC.43.6.1525 | spa |
dc.relation.references | Ribeiro, A. R., Lima, L., de Almeida, L. A., Monteiro, J., Moreno, C. J. G., Nascimento, J. D., de Araújo, R. F., Mello, F., Martins, L. P. A., Graminha, M. A. S., Teixeira, M. M. G., Silva, M. S., Steindel, M., & da Rosa, J. A. (2018). Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. The American journal of tropical medicine and hygiene, 98(2), 453–463. https://doi.org/10.4269/ajtmh.16-0200 | spa |
dc.relation.references | Ribeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International journal for parasitology. Drugs and drug resistance, 12, 7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004 | spa |
dc.relation.references | Rizk, M. A., El-Sayed, S. A., AbouLaila, M., Tuvshintulga, B., Yokoyama, N., & Igarashi, I. (2016). Large-scale drug screening against Babesia divergens parasite using a fluorescence-based high-throughput screening assay. Veterinary parasitology, 227, 93–97. https://doi.org/10.1016/j.vetpar.2016.07.032 | spa |
dc.relation.references | Robertson, L. J., Havelaar, A. H., Keddy, K. H., Devleesschauwer, B., Sripa, B., & Torgerson, P. R. (2024). The importance of estimating the burden of disease from foodborne transmission of Trypanosoma cruzi. PLoS neglected tropical diseases, 18(2), e0011898. https://doi.org/10.1371/journal.pntd.0011898 | spa |
dc.relation.references | Rodríguez, E. (2013). Generalidades de protozoarios. En Rodríguez, E. Editor Mendoza, C., Parasitología médica (pp. 10-12). México D.F., México. Manuel moderno. ISBN 9786074483529 | spa |
dc.relation.references | Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of ethnopharmacology, 222, 288–294. https://doi.org/10.1016/j.jep.2018.04.008 | spa |
dc.relation.references | Romero (2007). Plasmodium. En R. Romero (3ra. Ed.) Microbiología y Parasitología Humana. Bases etiológicas de las enfermedades infecciosas y parasitarias (p. 1440- 1454). México: Editorial médica Panamericana | spa |
dc.relation.references | Rożej-Bielicka, W., Stypułkowska-Misiurewicz, H., & Gołąb, E. (2015). Human babesiosis. Przeglad epidemiologiczny, 69(3), 489–608 | spa |
dc.relation.references | Saccoliti, F., Madia, V. N., Tudino, V., De Leo, A., Pescatori, L., Messore, A., De Vita, D., Scipione, L., Brun, R., Kaiser, M., Mäser, P., Calvet, C. M., Jennings, G. K., Podust, L. M., Costi, R., & Di Santo, R. (2018). Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. European journal of medicinal chemistry, 156, 53–60. https://doi.org/10.1016/j.ejmech.2018.06.063 | spa |
dc.relation.references | Sales Junior, P. A., Molina, I., Fonseca Murta, S. M., Sánchez-Montalvá, A., Salvador, F., Corrêa-Oliveira, R., & Carneiro, C. M. (2017). Experimental and Clinical Treatment of Chagas Disease: A Review. The American journal of tropical medicine and hygiene, 97(5), 1289–1303. https://doi.org/10.4269/ajtmh.16-0761 | spa |
dc.relation.references | Saliba, K. S., & Jacobs-Lorena, M. (2013). Production of Plasmodium falciparum gametocytes in vitro. Methods in molecular biology (Clifton, N.J.), 923, 17–25. https://doi.org/10.1007/978-1-62703-026-7_2 | spa |
dc.relation.references | Sall, C., Yapi, A. D., Desbois, N., Chevalley, S., Chezal, J. M., Tan, K., Teulade, J. C., Valentin, A., & Blache, Y. (2008). Design, synthesis, and biological activities of conformationally restricted analogs of primaquine with a 1,10-phenanthroline framework. Bioorganic & medicinal chemistry letters, 18(16), 4666–4669. https://doi.org/10.1016/j.bmcl.2008.07.013 | spa |
dc.relation.references | Sanchez Alberti, A., Bivona, A. E., Cerny, N., Schulze, K., Weißmann, S., Ebensen, T., Morales, C., Padilla, A. M., Cazorla, S. I., Tarleton, R. L., Guzmán, C. A., & Malchiodi, E. L. (2017). Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection. NPJ vaccines, 2, 9. https://doi.org/10.1038/s41541-017-0010-z | spa |
dc.relation.references | Sangenito, L. S., Branquinha, M. H., & Santos, A. L. S. (2020). Funding for Chagas Disease: A 10-Year (2009-2018) Survey. Tropical medicine and infectious disease, 5(2), 88. https://doi.org/10.3390/tropicalmed5020088 | spa |
dc.relation.references | Saxena, A.K., Singh, K., Long, C.A. and Garboczi, D.N. (2004), Preparation, crystallization and preliminary X-ray analysis of a complex between the Plasmodium vivax sexual stage 25 kDa protein Pvs25 and a malaria transmission-blocking antibody Fab fragment. Acta Cryst. D, 60: 2054-2057. https://doi.org/10.1107/S0907444904021584 | spa |
dc.relation.references | Scarim, C. B., Jornada, D. H., Chelucci, R. C., de Almeida, L., Dos Santos, J. L., & Chung, M. C. (2018). Current advances in drug discovery for Chagas disease. European journal of medicinal chemistry, 155, 824–838. https://doi.org/10.1016/j.ejmech.2018.06.040 | spa |
dc.relation.references | Schnittger, L., Rodriguez, A. E., Florin-Christensen, M., & Morrison, D. A. (2012). Babesia: a world emerging. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 12(8), 1788–1809. https://doi.org/10.1016/j.meegid.2012.07.004 | spa |
dc.relation.references | Shah, N. M., Patel, M. P., & Patel, R. G. (2012). New N-arylamino biquinoline derivatives: synthesis, antimicrobial, antituberculosis, and antimalarial evaluation. European journal of medicinal chemistry, 54, 239–247. https://doi.org/10.1016/j.ejmech.2012.05.004 | spa |
dc.relation.references | Simon, M. S., Westblade, L. F., Dziedziech, A., Visone, J. E., Furman, R. R., Jenkins, S. G., Schuetz, A. N., & Kirkman, L. A. (2017). Clinical and Molecular Evidence of Atovaquone and Azithromycin Resistance in Relapsed Babesia microti Infection Associated With Rituximab and Chronic Lymphocytic Leukemia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 65(7), 1222–1225. https://doi.org/10.1093/cid/cix477 | spa |
dc.relation.references | Smeijsters, L. J., Zijlstra, N. M., Franssen, F. F., & Overdulve, J. P. (1996). Simple, fast, and accurate fluorometric method to determine drug susceptibility of Plasmodium falciparum in 24-well suspension cultures. Antimicrobial agents and chemotherapy, 40(4), 835–838. https://doi.org/10.1128/AAC.40.4.835 | spa |
dc.relation.references | Smilkstein, M., Sriwilaijaroen, N., Kelly, J. X., Wilairat, P., & Riscoe, M. (2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrobial agents and chemotherapy, 48(5), 1803–1806. https://doi.org/10.1128/AAC.48.5.1803-1806.2004 | spa |
dc.relation.references | Smith, R. P., Hunfeld, K. P., & Krause, P. J. (2020). Management strategies for human babesiosis. Expert review of anti-infective therapy, 18(7), 625–636. https://doi.org/10.1080/14787210.2020.1752193 | spa |
dc.relation.references | Stuart, K., Brun, R., Croft, S., Fairlamb, A., Gürtler, R. E., McKerrow, J., Reed, S., & Tarleton, R. (2008). Kinetoplastids: related protozoan pathogens, different diseases. The Journal of clinical investigation, 118(4), 1301–1310. https://doi.org/10.1172/JCI33945 | spa |
dc.relation.references | Tacon, C., Guantai, E. M., Smith, P. J., & Chibale, K. (2012). Synthesis, biological evaluation and mechanistic studies of totarol amino alcohol derivatives as potential antimalarial agents. Bioorganic & medicinal chemistry, 20(2), 893–902. https://doi.org/10.1016/j.bmc.2011.11.060 | spa |
dc.relation.references | Talapko, J., Škrlec, I., Alebić, T., Jukić, M., & Včev, A. (2019). Malaria: The Past and the Present. Microorganisms, 7(6), 179. https://doi.org/10.3390/microorganisms7060179 | spa |
dc.relation.references | Tamayo, L. D., Guhl, F., Vallejo, G. A., & Ramírez, J. D. (2018). The effect of temperature increases on the development of Rhodnius prolixus and the course of Trypanosoma cruzi metacyclogenesis. PLoS neglected tropical diseases, 12(8), e0006735. https://doi.org/10.1371/journal.pntd.0006735 | spa |
dc.relation.references | Tarleton R. L. (2016). Chagas Disease: A Solvable Problem, Ignored. Trends in molecular medicine, 22(10), 835–838. https://doi.org/10.1016/j.molmed.2016.07.008 | spa |
dc.relation.references | Thomson, M. C., & Stanberry, L. R. (2022). Climate Change and Vectorborne Diseases. The New England journal of medicine, 387(21), 1969–1978. https://doi.org/10.1056/NEJMra2200092 | spa |
dc.relation.references | Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675 | spa |
dc.relation.references | Tse, E. G., Korsik, M., & Todd, M. H. (2019). The past, present and future of anti-malarial medicines. Malaria journal, 18(1), 93. https://doi.org/10.1186/s12936-019-2724-z | spa |
dc.relation.references | Tukulula, M., Sharma, R. K., Meurillon, M., Mahajan, A., Naran, K., Warner, D., Huang, J., Mekonnen, B., & Chibale, K. (2012). Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS medicinal chemistry letters, 4(1), 128–131. https://doi.org/10.1021/ml300362a | spa |
dc.relation.references | Tuvshintulga, B., Sivakumar, T., Yokoyama, N., & Igarashi, I. (2019). Development of unstable resistance to diminazene aceturate in Babesia bovis. International journal for parasitology. Drugs and drug resistance, 9, 87–92. https://doi.org/10.1016/j.ijpddr.2019.02.001 | spa |
dc.relation.references | Tyler, K. M., Olson, C. L., & Engman, D. M. (2003). The Life Cycle Of Trypanosoma Cruzi. American Trypanosomiasis, 1–11. doi:10.1007/978-1-4419-9206-2_1 | spa |
dc.relation.references | Usui, M., & Williamson, K. C. (2021). Stressed Out About Plasmodium falciparum Gametocytogenesis. Frontiers in cellular and infection microbiology, 11, 790067. https://doi.org/10.3389/fcimb.2021.790067 | spa |
dc.relation.references | Vaidya, A. B., & Mather, M. W. (2000). Atovaquone resistance in malaria parasites. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 3(5), 283–287. https://doi.org/10.1054/drup.2000.0157 | spa |
dc.relation.references | Vial, H. J., & Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary parasitology, 138(1-2), 147–160. https://doi.org/10.1016/j.vetpar.2006.01.048 | spa |
dc.relation.references | Vannier, E., & Krause, P. J. (2012). Human babesiosis. The New England journal of medicine, 366(25), 2397–2407. https://doi.org/10.1056/NEJMra1202018 | spa |
dc.relation.references | Velásquez-Ortiz, N., & Ramírez, J. D. (2020). Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Research in veterinary science, 132, 448–461. https://doi.org/10.1016/j.rvsc.2020.07.024 | spa |
dc.relation.references | Vesga, O., Vélez, L., Leiderman, E., & Restrepo, A. (2015). Enfermedades infecciosas de Homo sapiens (Primera edición). https://books.google.com.co/books?id=aJfGDwAAQBAJ&pg=PT752&lpg=PT752&dq=arilaminoalcoholes+y+malaria&source=bl&ots=P0sQuM8AiR&sig=ACfU3U18XZEQ6fyO1PTEdsKrXCB6clB5EQ&hl=en&sa=X&ved=2ahUKEwjyq9_8teuGAxU0RzABHVokC2c4MhDoAXoECAIQAw#v=onepage&q=arilaminoalcoholes%20y%20malaria&f=false | spa |
dc.relation.references | Vuitika, L., Prates-Syed, W. A., Silva, J. D. Q., Crema, K. P., Côrtes, N., Lira, A., Lima, J. B. M., Camara, N. O. S., Schimke, L. F., Cabral-Marques, O., Sadraeian, M., Chaves, L. C. S., & Cabral-Miranda, G. (2022). Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines, 10(9), 1385. https://doi.org/10.3390/vaccines10091385 | spa |
dc.relation.references | Vivas, L., Rattray, L., Stewart, L. B., Robinson, B. L., Fugmann, B., Haynes, R. K., Peters, W., & Croft, S. L. (2007). Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. The Journal of antimicrobial chemotherapy, 59(4), 658–665. https://doi.org/10.1093/jac/dkl563 | spa |
dc.relation.references | Walker, D. M., Oghumu, S., Gupta, G., McGwire, B. S., Drew, M. E., & Satoskar, A. R. (2013). Mechanisms of cellular invasion by intracellular parasites. Cellular and Molecular Life Sciences, 71(7), 1245–1263. doi:10.1007/s00018-013-1491-1 | spa |
dc.relation.references | World Bank (2022). Poverty and Shared Prosperity 2022: Correcting Course. Washington, DC: World Bank. doi:10.1596/978-1-4648-1893-6. Recuperado de: https://www.worldbank.org/en/publication/poverty-and-shared-prosperity | spa |
dc.relation.references | World Health Organization (WHO), (2010). Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected tropical diseases. Disponible en: http://apps.who.int/iris/bitstream/10665/44440/1/9789241564090_eng.pdf | spa |
dc.relation.references | World Health Organization (WHO, 2014). Global Malaria Programme. 2014. World Malaria Report 2014. Recuperado de http://www.who.int/malaria/publications/world_malaria_report_2014/en/ | spa |
dc.relation.references | World Health Organization (WHO), (2017). World Malaria Report. Disponible en: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/ | spa |
dc.relation.references | World Health Organization (WHO), (2019). World Malaria Report. Disponible en: https://www.who.int/publications-detail-redirect/9789241565721 | spa |
dc.relation.references | World Health Organization (WHO)_World malaria report 2021. Recuperado de: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 | spa |
dc.relation.references | World Health Organization (WHO)_World malaria report 2022. Recuperado de: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 | spa |
dc.relation.references | World Health Organization__WHO. (2023a) Guidelines for malaria, 14 March 2023. Recuperado de: https://www.mmv.org/sites/default/files/content/document/WHO-UCN-GMP-2023.01-eng.pdf | spa |
dc.relation.references | World Health Organization_WHO (2023b). World malaria report 2023. Recuperado de: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 | spa |
dc.relation.references | World Health Organization. (2023c). WHO guidelines for malaria, 14 March 2023. World Health Organization. https://iris.who.int/handle/10665/366432. Licencia: CC BY-NC-SA 3.0 IGO | spa |
dc.relation.references | Xie, S. C., Dogovski, C., Hanssen, E., Chiu, F., Yang, T., Crespo, M. P., Stafford, C., Batinovic, S., Teguh, S., Charman, S., Klonis, N., & Tilley, L. (2016). Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. Journal of cell science, 129(2), 406–416. https://doi.org/10.1242/jcs.178830 | spa |
dc.relation.references | Yabsley, M. J., & Shock, B. C. (2012). Natural history of Zoonotic Babesia: Role of wildlife reservoirs. International journal for parasitology. Parasites and wildlife, 2, 18–31. https://doi.org/10.1016/j.ijppaw.2012.11.003 | spa |
dc.relation.references | Yao, J. M., Zhang, H. B., Liu, C. S., Tao, Y., & Yin, M. (2015). Inhibitory effects of 19 antiprotozoal drugs and antibiotics on Babesia microti infection in BALB/c mice. Journal of infection in developing countries, 9(9), 1004–1010. https://doi.org/10.3855/jidc.5500 | spa |
dc.relation.references | Young, K. M., Corrin, T., Wilhelm, B., Uhland, C., Greig, J., Mascarenhas, M., & Waddell, L. A. (2019). Zoonotic Babesia: A scoping review of the global evidence. PloS one, 14(12), e0226781. https://doi.org/10.1371/journal.pone.0226781 | spa |
dc.relation.references | Zhang, Li & Lv, Chenrui & Guo, Wenqiang & Li, Zhenzhuo. (2024). Temperature and humidity as drivers for the transmission of zoonotic diseases. Animal Research and One Health. 2. n/a-n/a. 10.1002/aro2.75 | spa |
dc.relation.references | Zintl, A., Mulcahy, G., Skerrett, H. E., Taylor, S. M., & Gray, J. S. (2003). Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clinical microbiology reviews, 16(4), 622–636. https://doi.org/10.1128/CMR.16.4.622-636.2003 | spa |
dc.relation.references | Zofou, D., Nyasa, R. B., Nsagha, D. S., Ntie-Kang, F., Meriki, H. D., Assob, J. C., & Kuete, V. (2014). Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements. Infectious diseases of poverty, 3(1), 1. https://doi.org/10.1186/2049-9957-3-1 | spa |
dc.relation.references | Zucca, M., & Savoia, D. (2011). Current developments in the therapy of protozoan infections. The open medicinal chemistry journal, 5, 4–10. https://doi.org/10.2174/1874104501105010004 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.lemb | Malaria | spa |
dc.subject.lemb | Enfermedad de Chagas | spa |
dc.subject.proposal | Antiparasitic | eng |
dc.subject.proposal | Antiparasitario | spa |
dc.subject.proposal | Malaria | spa |
dc.subject.proposal | Babesia | spa |
dc.subject.proposal | Enfermedad de Chagas | spa |
dc.subject.proposal | Babesia divergens | eng |
dc.subject.proposal | Trypanosoma cruzi | eng |
dc.subject.proposal | Plasmodium | eng |
dc.subject.wikidata | Antiparasitario | spa |
dc.subject.wikidata | Babesia | spa |
dc.title | Perfil antiparasitario del alsinol, una molécula promisoria frente a hemoparásitos protozoarios | spa |
dc.title.translated | Antiparasitic profile of alsinol, a promising molecule against protozoan hemoparasites | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 52530717.2024.pdf
- Tamaño:
- 3.54 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias Farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: