Evaluación de un marcador molecular asociado al lento oscurecimiento de la testa de la semilla de frijol (Phaseolus vulgaris).
dc.contributor.advisor | Rincón Flórez, Juan Carlos | |
dc.contributor.advisor | Lobatón Garcés, Juan David | |
dc.contributor.author | Cantor Saavedra, Juan Pablo | |
dc.contributor.educationalvalidator | Conejo Rodríguez, Diego Felipe | |
dc.contributor.educationalvalidator | Cruz Carvajal, Sergio Andrés | |
dc.contributor.orcid | Cantor Saavedra, Juan [0009-0003-5212-3934] | spa |
dc.contributor.researchgroup | Genética de Rasgos de Interés Agronómico | spa |
dc.date.accessioned | 2024-10-30T21:10:57Z | |
dc.date.available | 2024-10-30T21:10:57Z | |
dc.date.issued | 2024-10-27 | |
dc.description | Ilustraciones, tablas | spa |
dc.description.abstract | La selección asistida por marcadores (MAS) ha sido efectiva para identificar distintos rasgos como la resistencia a enfermedades. En el caso del frijol común, se ha tenido éxito en la resistencia a enfermedades y algunos insectos, aunque hay avances incipientes en el estudio de rasgos cuantitativos como rendimiento y tolerancia a sequía. En el presente estudio, se identificó y se diseñó un marcador molecular tipo SNP en el gen bHLH que interviene en rutas metabólicas de algunos flavonoides asociados al oscurecimiento de la testa del frijol al interactuar con el gen Pigment, responsable del color de semilla y comúnmente asociado al tamaño de semilla. Las poblaciones de estudio se obtuvieron mediante el cruzamiento simple de una línea desarrollada para el rasgo de lento oscurecimiento (ND-Palomino) como fuente del marcador, con dos líneas locales de los acervos Andino y Mesoamericano. Se hizo una extracción fenólica en la fase de diseño de los cebadores y la validación en las generaciones F1 y F2 con la extracción alcalina de ADN. Se aceleró el oscurecimiento de las semillas mediante exposición a luz ultravioleta durante diferentes periodos de tiempo (0, 24, 48 y 72 horas) en genotipos seleccionados con datos de genotipado en poblaciones F3 de fríjol. Se tomaron fotografías en formato RGB dentro de una plataforma de fenotipado denominada ImagingCrop, que luego se ajustaron para el análisis y se transformaron al espectro L*a*b. Se encontraron diferencias significativas entre los genotipos basados en el marcador snpPv00135, con el valor medio de L, espacio que explica el 0.4414 de la variación asociada a este rasgo, con valores de 64.12 para el alelo positivo y 58.73 para el alelo negativo, con un valor de p inferior a 0.001. (Texto tomado de la fuente) | spa |
dc.description.abstract | Marker-assisted selection (MAS) has been effective in identifying various traits, such as disease resistance. In the case of common beans, success has been achieved in resistance to diseases and some insects, although there have been only initial advances in the study of quantitative traits such as yield and drought tolerance. In this study, a molecular SNP marker was identified and designed within the bHLH gene, which is involved in metabolic pathways of certain flavonoids associated with seed coat darkening by interacting with the Pigment gene, responsible for seed color and commonly linked to seed size. The study populations were obtained through a simple cross between a line developed for the slow darkening trait (ND-Palomino) as a source of the marker and two local lines from the Andean and Mesoamerican gene pools. Phenolic extraction was performed during the primer design phase, and validation was carried out in F1 and F2 generations using alkaline DNA extraction. Seed darkening was accelerated by exposure to ultraviolet light for different periods (0, 24, 48, and 72 hours) in genotypes selected with genotyping data in F3 bean populations. RGBformat photographs were taken within a phenotyping platform called ImagingCrop, which were then adjusted for analysis and transformed into the L*a*b spectrum. Significant differences were found between genotypes based on the snpPv00135 marker, with the mean value of L, explaining 0.4414 of the variation associated to this trait, with values of 64.12 for the positive genotypes and 58.73 for the negatives, with a p-value less than 0.001. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias Agrarias | spa |
dc.description.methods | En el presente estudio, se identificó y se diseñó un marcador molecular tipo SNP en el gen bHLH que interviene en rutas metabólicas de algunos flavonoides asociados al oscurecimiento de la testa del frijol al interactuar con el gen Pigment, responsable del color de semilla y comúnmente asociado al tamaño de semilla. Las poblaciones de estudio se obtuvieron mediante el cruzamiento simple de una línea desarrollada para el rasgo de lento oscurecimiento (ND-Palomino) como fuente del marcador, con dos líneas locales de los acervos Andino y Mesoamericano. Se hizo una extracción fenólica en la fase de diseño de los cebadores y la validación en las generaciones F1 y F2 con la extracción alcalina de ADN. Se aceleró el oscurecimiento de las semillas mediante exposición a luz ultravioleta durante diferentes periodos de tiempo (0, 24, 48 y 72 horas) en genotipos seleccionados con datos de genotipado en poblaciones F3 de fríjol. Se tomaron fotografías en formato RGB dentro de una plataforma de fenotipado denominada ImagingCrop, que luego se ajustaron para el análisis y se transformaron al espectro L*a*b. | spa |
dc.description.researcharea | Fitomejoramiento | spa |
dc.description.sponsorship | El proyecto se financió principalmente a través de una combinación de fondos provenientes de donantes internacionales, fondos gubernamentales, y colaboraciones con universidades y centros de investigación. Algunos de los principales donantes han sido agencias como El consorcio Internacional CGIAR, USAID y la fundación Bill & Melinda Gates, el monto asignado para el presente proyecto fue de aproximadamente USD 6.500. | spa |
dc.description.technicalinfo | Diseño GLM para análisis de imágenes y Técnica de genotipado TM-Shift y técnicas de fenotipado de alto rendimiento, así como uso de software para la segmentación de imágenes | spa |
dc.description.technicalinfo | GLM design for image analysis and TM-Shift genotyping technique and high-throughput phenotyping techniques, as well as use of software for image segmentation. | eng |
dc.format.extent | xxi, 78 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87116 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias | spa |
dc.relation.references | Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences, 19(2), 164–174. | spa |
dc.relation.references | Adak, A., Kang, M., Anderson, S. L., Murray, S. C., Jarquin, D., Wong, R. K., & Katzfuß, M. (2023). Phenomic data-driven biological prediction of maize through field-based high throughput phenotyping integration with genomic data. Journal of Experimental Botany, 74(15), erad216. | spa |
dc.relation.references | Adams, M. W., & Bedford, C. L. (1972). Improvement of food legumes for enhanced processing properties and consumer acceptance. In M. Milner (Ed.), Nutritional improvement of food legumes by genetic improvement (pp. 299–309). Proceedings of the Symposium sponsored by PAG, Rome, Italy, July 1972. Protein Advisory Group of the United Nations, New York. | spa |
dc.relation.references | Aguiar, C. (2014). Arquitetura de plantas. Instituto Politécnico de Bragança, Escola Superior Agrária. | spa |
dc.relation.references | Alvares, R. C., Stonehouse, R., Souza, T. L. P. O., Melo, P. G. S., Miklas, P. N., Bett, K. E., Melo, L. C., Rodriguez, L. A., Souza, L. L., & Pereira, H. S. (2019). Generation and validation of genetic markers for the selection of carioca dry bean genotypes with the slow-darkening seed coat trait. Euphytica, 215(8), 1–11. https://doi.org/10.1007/s10681-019-2461-y | spa |
dc.relation.references | Álvarez, M. D. L. S. S., & Estrella, A. H. H. (2015). El frijol en la era genómica. Revista Digital Universitaria, 16(2), 3–10. Universidad Autónoma de México. Disponible en: http://www.revista.unam.mx/vol.16/num2/art11/index.html | spa |
dc.relation.references | Álvarez-Fernández, R. (2013). Explanatory chapter: PCR primer design. In Methods in Enzymology (Vol. 529, pp. 1–21). Academic Press. | spa |
dc.relation.references | Andrews, C. (2010). The Hardy-Weinberg principle. Nature Education Knowledge, 3(10), 65. | spa |
dc.relation.references | Assefa, T., Assibi Mahama, A., Brown, A. V., et al. (2019). A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Molecular Breeding, 39(1), 20. https://doi.org/10.1007/s11032-018-0920-0 | spa |
dc.relation.references | Araus, J. L., & Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Current Opinion in Plant Biology, 45, 237–247. | spa |
dc.relation.references | Baek, J., Lee, E., Kim, N., Kim, S. L., Choi, I., Ji, H., ... & Kim, K. H. (2020). High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors, 20(1), 248. https://doi.org/10.3390/s20010248 | spa |
dc.relation.references | Bassett, M. J., & McClean, P. E. (2000). Una breve revisión de la genética de cubiertas de semillas parcialmente coloreadas en frijol común. Annual Report of the Bean Improvement Cooperative, 43, 99–101. | spa |
dc.relation.references | Bassett, M. J., Shearon, C., & McClean, P. E. (1999). Allelism between two common bean genes, hilum color (D) and partially colored seed coat pattern (z), previously thought to be independent. Journal of the American Society for Horticultural Science, 124(6), 649–653. | spa |
dc.relation.references | Bassett, M. J. (1996b). The margo (mar) seed coat color gene is a synonym for the Joker (j) locus in common bean. Journal of the American Society for Horticultural Science, 121(6), 1028–1031. | spa |
dc.relation.references | Bassett, M. J. M. (2007). Genetics of seed coat color and pattern in common bean. In Plant Breeding Reviews (pp. 239–315). Wiley. | spa |
dc.relation.references | Barrón, J. M., Cota, A. G., Anduaga, R., & Rentería, T. R. (1996). Influence of the hard-to-cook defect in pinto beans on the germination capacity, cookability, and hardness of newly harvested grains. Tropical Science, 36(1), 1–5. | spa |
dc.relation.references | Beaver, J. S., & Osorno, J. M. (2009). Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica, 168(2), 145–175. https://doi.org/10.1007/s10681-009-9911-x | spa |
dc.relation.references | Beebe, S., & Pedraza, F. (1998). Perspectivas para el uso de marcadores moleculares en el mejoramiento del frijol. Revista de Ciencias Agropecuarias, 15(2), 123–135. | spa |
dc.relation.references | Beebe, S., Ramirez, J., Jarvis, A., Rao, I. M., Mosquera, G., Bueno, J. M., & Blair, M. W. (2011). Genetic improvement of common beans and the challenges of climate change. In Crop adaptation to climate change (pp. 356–369). CABI. | spa |
dc.relation.references | Beebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, 35. https://doi.org/10.3389/fphys.2013.00035 | spa |
dc.relation.references | Beebe, S., Rengifo, J., Gaitan, E., Duque, M. C., & Tohme, J. (2001). Diversity and origin of Andean landraces of common bean. Crop Science, 41(3), 854–859. https://doi.org/10.2135/cropsci2001.413854x | spa |
dc.relation.references | Beninger, C. W., Gu, L., Prior, R. L., Junk, D. C., Vandenberg, A., & Bett, K. E. (2005). Changes in polyphenols of the seed coat during the after-darkening process in pinto bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 53(20), 7777–7782. https://doi.org/10.1021/jf050051l | spa |
dc.relation.references | Beninger, C. W., Hosfield, G. L., & Bassett, M. J. (1999). Composición de flavonoides de tres genotipos de frijol seco (Phaseolus vulgaris L.) que difieren en el color de la cubierta de la semilla. Journal of the American Society for Horticultural Science, 124(4), 514–518. | spa |
dc.relation.references | Beninger, C. W., Hosfield, G. L., & Nair, M. G. (1998). Flavonol glycosides of a new Manteca-type dry bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 46(7), 2906–2910. https://doi.org/10.1021/jf980190m | spa |
dc.relation.references | Beshir, H. M., Walley, F. L., Bueckert, R., & Tar’an, B. (2015). Response of snap bean cultivars to Rhizobium inoculation under dryland agriculture in Ethiopia. Agronomy, 5(3), 291–308. https://doi.org/10.3390/agronomy5030291 | spa |
dc.relation.references | Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus spp.) as a model for understanding crop evolution. Frontiers in Plant Science, 8, 1–21. https://doi.org/10.3389/fpls.2017.00722 | spa |
dc.relation.references | Bornowski, N., Song, Q., & Kelly, J. D. (2020). QTL mapping of post-processing color retention in two black bean populations. Theoretical and Applied Genetics, 133(12), 3085–3100. https://link.springer.com/article/10.1007/s00122-020-03656-3 | spa |
dc.relation.references | Brady, L., Bassett, M. J., & McClean, P. E. (1998). Marcadores moleculares asociados con t y z, dos genes que controlan los patrones de la cubierta de la semilla parcialmente coloreada en el frijol común. Ciencia de Cultivos, 38, 1073–1075. | spa |
dc.relation.references | Broccanello, C., Chiodi, C., Funk, A., McGrath, J. M., Panella, L., & Stevanato, P. (2018). Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods, 14(1), 1–8. https://doi.org/10.1186/s13007-018-0295-6 | spa |
dc.relation.references | Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.)—Model food legumes. Plant and Soil, 252(1), 55–128. https://doi.org/10.1023/A:1024146710611 | spa |
dc.relation.references | Buruchara, R., Chirwa, R., Sperling, L., Mukankusi, C., Rubyogo, J. C., Mutonhi, R., & Abang, M. M. (2011). Development and delivery of bean varieties in Africa: The Pan-Africa Bean Research Alliance (PABRA) model. African Crop Science Journal, 19(4), 227–245. | spa |
dc.relation.references | Cavalcante, A. G., Lemos, L. B., Meirelles, F. C., Cavalcante, A. C., & de Aquino, L. A. (2020). Thermal sum and phenological descriptions of growth stages of the common bean according to the BBCH scale. Annals of Applied Biology, 176(3), 342–349. https://doi.org/10.1111/aab.12571 | spa |
dc.relation.references | Carović-Stanko, K., Liber, Z., Vidak, M., Barešić, A., Grdiša, M., Lazarević, B., & Šatović, Z. (2017). Genetic diversity of Croatian common bean landraces. Frontiers in Plant Science, 8, 604. https://doi.org/10.3389/fpls.2017.00604 | spa |
dc.relation.references | Castillo, C., Narváez, W., & Hahn, C. (2016). Agro morfología y usos del Cajanus cajan L. Millsp. (Fabaceae). Boletín Científico del Centro de Museos, 20(1), 52–62. https://doi.org/10.17151/bccm.2016.20.1.5 | spa |
dc.relation.references | Celmeli, T., Sari, H., Canci, H., Sari, D., Adak, A., Eker, T., & Toker, C. (2018). The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy, 8(9), 166. https://doi.org/10.3390/agronomy8090166 | spa |
dc.relation.references | Chacón, I. M., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2 | spa |
dc.relation.references | Chhabra, R., Hossain, F., Muthusamy, V., Baveja, A., Mehta, B., & Zunjare, R. U. (2019). Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in early selection of shrunken2 gene governing kernel sweetness in maize. Journal of Cereal Science, 88, 102796. https://doi.org/10.1016/j.jcs.2019.04.012 | spa |
dc.relation.references | Chen, J., Greenblatt, I. M., & Dellaporta, S. L. (1992). Molecular analysis of Ac transposition and DNA replication. Genetics, 130(3), 665–676. | spa |
dc.relation.references | Chomet, P. S., Wessler, S., & Dellaporta, S. L. (1987). Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. The EMBO Journal, 6(10), 2953–2962. https://doi.org/10.1002%2Fj.1460-2075.1987.tb04753.x | spa |
dc.relation.references | Cichy, K. A., Wiesinger, J. A., Berry, M., Nchimbi‐Msolla, S., Fourie, D., Porch, T. G., & Miklas, P. N. (2019). The role of genotype and production environment in determining the cooking time of dry beans (Phaseolus vulgaris L.). Legume Science, 1(1), e13. https://doi.org/10.1002/leg3.13 | spa |
dc.relation.references | Cobb, J., Egan, A. N., & Jannink, J.-L. (2019). Identification of causative genes in diverse species and traits using marker-assisted selection. Journal of Crop Science, 20(3), 155-167. https://doi.org/10.1007/s00122-019-03317-0 | spa |
dc.relation.references | Cobb, J. N., Juma, R. U., Biswas, P. S., et al. (2019). Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theoretical and Applied Genetics, 132(3), 627–645. https://doi.org/10.1007/s00122-019-03317-0 | spa |
dc.relation.references | Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572. https://doi.org/10.1098/rstb.2007.2170 | spa |
dc.relation.references | Conejo-Rodríguez, D. F., Gonzalez-Guzmán, J. J., Ramirez-Gil, J. G., Wenzl, P., & Urban, M. O. (2024). Digital descriptors sharpen classical descriptors for improving gene bank accession management: A case study on Arachis spp. and Phaseolus spp. PLOS ONE, 19(5), e0302158. https://doi.org/10.1371/journal.pone.0302158 | spa |
dc.relation.references | Conejo, F., Urban, M. O., Santaella, M., Gereda, J. M., Contreras, A. D., & Wenzl, P. (2022). Using phenomics to identify and integrate traits of interest for better-performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. Frontiers in Plant Science, 13, 1008666. https://doi.org/10.3389/fpls.2022.1008666 | spa |
dc.relation.references | Cruz-Ruiz, S. A. (2021). *Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius (Doctoral dissertation, Universidad Nacional de Colombia). | spa |
dc.relation.references | da Silva, L. O., Hemp, S., Moda-Cirino, V., Ferrão, M., Ferreira, R., Singh, S., ... & Serpa, J. (1993). Performance in Brazil and Colombia of common bean lines from the second selection cycle. Brasil J Genetics, 115-127. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/195745/1/rbg-1993.pdf | spa |
dc.relation.references | de Almeida, C. P., Santos, I. L., de Carvalho Paulino, J. F., Barbosa, C. C. F., Pereira, C. C. A., Carvalho, C. R. L., de Moraes Cunha Gonçalves, G., Song, Q., Carbonell, S. A. M., Chiorato, A. F., & Benchimol-Reis, L. L. (2021). Genome-wide association mapping reveals new loci associated with light-colored seed coat at harvest and slow darkening in carioca beans. BMC Plant Biology, 21(1), 343. https://doi.org/10.1186/s12870-021-03122-2 | spa |
dc.relation.references | Días, P. A. S., Almeida, D. V., Melo, P. G. S., Pereira, H. S., & Melo, L. C. (2021). Effectiveness of breeding selection for grain quality in common bean. Crop Science, 61, 1127–1140. https://doi.org/10.1002/csc2.20422 | spa |
dc.relation.references | Dixon, R. A., Xie, D. Y., & Sharma, S. B. (2005). Proanthocyanidins—a final frontier in flavonoid research? New Phytologist, 165(1), 9–28. https://doi.org/10.1111/j.1469-8137.2004.01279.x | spa |
dc.relation.references | Dohle, S., Berny Mier y Terán, J. C., Egan, A., Kisha, T., & Khoury, C. K. (2019). Wild beans (Phaseolus L.) of North America. In North American Crop Wild Relatives, Volume 2: Important Species (pp. 99–127). | spa |
dc.relation.references | Duwadi, K., Austin, R. S., Mainali, H. R., Bett, K., Marsolais, F., & Dhaubhadel, S. (2018). Slow darkening of pinto bean seed coat is associated with significant metabolite and transcript differences related to proanthocyanidin biosynthesis. BMC Genomics, 19, 260. https://doi.org/10.1186/s12864-018-4550-z | spa |
dc.relation.references | Elsadr, H. T., Wright, L. C., Peter Pauls, K., & Bett, K. E. (2011). Characterization of seed coat post-harvest darkening in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 123, 1267–1272. https://doi.org/10.1007/s00122-011-1683-8 | spa |
dc.relation.references | Emerson, R. A. (1909). Factors for mottling in beans. American Breeders' Association Report, 5, 368–376. | spa |
dc.relation.references | Erfatpour, M., Navabi, A., & Pauls, K. P. (2018). Mapping the non-darkening trait from ‘Wit-rood boontje’ in bean (Phaseolus vulgaris). Theoretical and Applied Genetics, 131, 1331–1343. https://doi.org/10.1007/s00122-018-3081-y | spa |
dc.relation.references | Erfatpour, M., & Pauls, K. P. (2020). A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from ‘Wit-rood boontje’. Theoretical and Applied Genetics, 133, 1977–1994. https://doi.org/10.1007/s00122-020-03571-7 | spa |
dc.relation.references | Farrow, A., & Muthoni-Andriatsitohaina, R. (Eds.). (2020). Atlas of common bean production in Africa: Second edition. Pan-Africa Bean Research Alliance (PABRA); International Center for Tropical Agriculture (CIAT). Nairobi, Kenya. 242 p. | spa |
dc.relation.references | Felicetti, E., Song, Q., Jia, G., Cregan, P., Bett, K. E., & Miklas, P. N. (2012). Simple sequence repeats linked with the slow darkening trait in pinto bean discovered by single nucleotide polymorphism assay and whole genome sequencing. Crop Science, 52(4), 1600–1608. https://doi.org/10.2135/cropsci2011.12.0655 | spa |
dc.relation.references | Fernández de Córdova, F., Gepts, P. L., & López Genes, M. A. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). | spa |
dc.relation.references | FertiGlobal. (n.d.). Common bean program. FertiGlobal. Retrieved [Noviembre 15 de 2023], from https://www.fertiglobal.com/cmp/common-bean/ | spa |
dc.relation.references | Freyre, R., Ríos, R., Guzmán, L., Debouck, D. G., & Gepts, P. (1996). Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Economic Botany, 50(2), 195–215. http://www.jstor.org/stable/4255831 | spa |
dc.relation.references | Gepts, P. (1999). Development of an integrated genetic linkage map in common bean (Phaseolus vulgaris L.) and its use. | spa |
dc.relation.references | Gepts, P. (1998). Origin and evolution of common bean: past events and recent trends. HortScience, 33(7), 1124–1130. | spa |
dc.relation.references | Gepts, P., & Bliss, F. A. (1988). Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Economic Botany, 42(1), 86–104. https://doi.org/10.1007/BF02859038 | spa |
dc.relation.references | Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., Bonierbale, M., et al. (2007). Nutritious subsistence food systems. Advances in Agronomy, 92, 2–75. http://www.ask-force.org/web/Biofortification/Graham-Subsistence-Food-Systems-2008.pdf | spa |
dc.relation.references | Hagerty, C. H., Cuesta-Marcos, A., Cregan, P., Song, Q., McClean, P., & Myers, J. R. (2016). Mapping snap bean pod and color traits, in a dry bean × snap bean recombinant inbred population. Journal of the American Society for Horticultural Science, 141(2), 131-138. https://doi.org/10.21273/JASHS.141.2.131 | spa |
dc.relation.references | Hamilton, M. B. (2021). Population genetics. John Wiley & Sons. | spa |
dc.relation.references | Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. R. A. (2021). Recent advancements in molecular marker assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19, 128. https://doi.org/10.1186/s43141-021-00231-1 | spa |
dc.relation.references | Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28(706), 49-50. | spa |
dc.relation.references | Hartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates. Disponible en: https://archive.org/details/principles-of-population-genetics | spa |
dc.relation.references | Hossain, K. G., Islam, N., Jacob, D., Ghavami, F., Tucker, M., Kowalski, T., Leilani, A., & Zacharias, J. (2013). Interdependence of genotype and growing site on seed mineral compositions in common bean. Asian Journal of Plant Sciences, 12, 11–20. https://doi.org/10.3923/ajps.2013.11.20 | spa |
dc.relation.references | Huertas, R., Allwood, J. W., Hancock, R. D., & Stewart, D. (2022). Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method. Food Chemistry, 387, 132900. https://doi.org/10.1016/j.foodchem.2022.132900 | spa |
dc.relation.references | Hughes, P. A., & Sandsted, R. F. (1975). Effect of temperature, relative humidity, and light on the color of ‘California Light Red Kidney’ bean seed during storage. HortScience, 10(4), 421-423. | spa |
dc.relation.references | ISAR. (2011). Bean Program, Rwanda Agricultural Research Institute. Retrieved from http://www.isar.rw/spip.php?article45 (last accessed December 5, 2011). | spa |
dc.relation.references | Islam, N. S., Bett, K. E., Pauls, K. P., Marsolais, F., & Dhaubhadel, S. (2020). Postharvest seed coat darkening in pinto bean (Phaseolus vulgaris) is regulated by Psd, an allele of the basic helix-loop-helix transcription factor. Plants People Planet, 2, 663–677. https://doi.org/10.1002/ppp3.10132 | spa |
dc.relation.references | Junk-Knievel, D. C., Vandenberg, A., & Bett, K. E. (2008). Slow darkening in pinto bean (Phaseolus vulgaris L.) seed coats is controlled by a single major gene. Crop Science, 48(1), 189–193. https://doi.org/10.2135/cropsci2007.04.0227 | spa |
dc.relation.references | Junk-Knievel, D. C., Vandenberg, A., & Bett, K. E. (2007). An accelerated postharvest seed-coat darkening protocol for pinto beans grown across different environments. Crop Science, 47(2), 694–702. https://doi.org/10.2135/cropsci2006.05.0325 | spa |
dc.relation.references | Kassambara, A., Mundt, F., Kassambara, F., & Mundt, A. (2017). Factoextra R package: Easy multivariate data analyses and elegant visualization. Retrieved from https://cran.r-project.org/web/packages/factoextra/index.html | spa |
dc.relation.references | Kavas, M., Abdulla, M. F., Mostafa, K., Seçgin, Z., Yerlikaya, B. A., Otur, Ç., Gökdemir, G., Kızıldoğan, A. K., Al-Khayri, J. M., & Jain, S. M. (2022). Investigation and expression analysis of R2R3-MYBs and anthocyanin biosynthesis-related genes during seed color development of common bean (Phaseolus vulgaris). Plants, 11(23), 3386. https://doi.org/10.3390/plants11233386 | spa |
dc.relation.references | Kouam, E. B., Kamga-Fotso, A. M. A., & Anoumaa, M. (2023). Exploring agro-morphological profiles of Phaseolus vulgaris germplasm shows manifest diversity and opportunities for genetic improvement. Journal of Agriculture and Food Research, 14, 100772. https://doi.org/10.1016/j.jafr.2023.100772 | spa |
dc.relation.references | Lamprecht, H. (1932). Beiträge zur Genetik von Phaseolus vulgaris. Hereditas, 16, 169–211. | spa |
dc.relation.references | Lamprecht, H. (1947). The inheritance of the slender-type of Phaseolus vulgaris and some other results. Agricultural and Horticultural Genetics, 5, 72–84. | spa |
dc.relation.references | Lande, R., & Thompson, R. (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124(3), 743-756. https://doi.org/10.1093/genetics/124.3.743 | spa |
dc.relation.references | Liu, J., Huang, S., Sun, M., & otros. (2012). An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods, 8, 34. https://doi.org/10.1186/1746-4811-8-34 | spa |
dc.relation.references | Liu, Y., Li, J., Zhu, Y., Jones, A., Rose, R. J., & Song, Y. (2019). Heat stress in legume seed setting: Effects, causes, and future prospects. Frontiers in Plant Science, 10, 938. https://doi.org/10.3389/fpls.2019.00938 | spa |
dc.relation.references | Logozzo, G., Donnoli, R., Macaluso, L., Papa, R., Knupffer, H., & Spagnoletti Zeuli, P. (2007). Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genetic Resources and Crop Evolution, 54(8), 1763–1779. https://doi.org/10.1007/s10722-006-9185-2 | spa |
dc.relation.references | MacKill, D. J. (2006, May). Breeding for resistance to abiotic stresses in rice: The value of quantitative trait loci. In Plant Breeding: The Arnel R. Hallauer International Symposium (pp. 201-212). Ames, Iowa, USA: Blackwell Publishing. https://doi.org/10.1002/9780470752708.ch14 | spa |
dc.relation.references | Maga, J. A., Park, D., & Baskerville, W. G. (1997). Unpublished private communication. Colorado State University, Fort Collins, CO. | spa |
dc.relation.references | Mamidi, S., Rossi, M., Moghaddam, S., et al. (2013). Demographic factors shaped diversity in the two gene pools of wild common bean (Phaseolus vulgaris L.). Heredity, 110(3), 267–276. https://doi.org/10.1038/hdy.2012.82 | spa |
dc.relation.references | Marles, M. A. S., Vandenberg, A., & Bett, K. E. (2008). Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of pinto bean (Phaseolus vulgaris L.) characterize postharvest color changes. Journal of Agricultural and Food Chemistry, 56(15), 7049–7056. https://doi.org/10.1021/jf8004367 | spa |
dc.relation.references | McCartney, C. A., Somers, D. J., Fedak, G., & Cao, W. (2004). Haplotype diversity at fusarium head blight resistance QTLs in wheat. Theoretical and Applied Genetics, 109(2), 261-271. https://doi.org/10.1007/s00122-004-1640-x | spa |
dc.relation.references | McClean, P. E., Bett, K. E., Stonehouse, R., Lee, R., Pflieger, S., Moghaddam, S. M., … & Mamidi, S. (2018). White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. New Phytologist, 219(3), 1112-1123. https://doi.org/10.1111/nph.15259 | spa |
dc.relation.references | McClean, P. E., Lee, R. K., Otto, C., Gepts, P., & Bassett, M. J. (2002). Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). Journal of Heredity, 93(2), 148-152. https://doi.org/10.1093/jhered/93.2.148 | spa |
dc.relation.references | McClean, P. E., Moghaddam, S. M., López-Millán, A. F., Brick, M. A., Kelly, J. D., Miklas, P. N., Osorno, J., Porch, T. G., Urrea, C. A., Soltani, A., & Grusak, M. A. (2017). Phenotypic diversity for seed mineral concentration in North American dry bean germplasm of Middle American ancestry. Crop Science, 57(6), 3129–3144. https://doi.org/10.2135/cropsci2017.04.0244 | spa |
dc.relation.references | Mendel, G. (1866). Experiments on plant hybridization. Proceedings of the Natural History Society of Brünn, 4, 3-47. Retrieved from http://www.esp.org/foundations/genetics/classical/gm-65.pdf | spa |
dc.relation.references | Morales-Soto, A., & Lamz-Piedra, A. (2020). Genetic improvement methods in the cultivation of common beans (Phaseolus vulgaris L.) against the Bean Yellow Golden mosaic Virus (BGYMV). Cultivos Tropicales, 41(4), e10. | spa |
dc.relation.references | Mukankusi, C., Raatz, B., Nkalubo, S., Berhanu, F., Binagwa, P., Kilango, M., Williams, M., Enid, K., Chirwa, R., & Beebe, S. (2019). Genomics, genetics and breeding of common bean in Africa: A review of the tropical legume project. Plant Breeding, 138(4), 401–414. https://doi.org/10.1111/pbr.12573 | spa |
dc.relation.references | Myers, J. R., & Baggett, J. R. (1999). Improvement of snap bean. In S. Sing (Ed.), Common bean improvement in the twenty-first century (Vol. 7, pp. 289–329). Springer. https://doi.org/10.1007/978-94-015-9211-6_12 | spa |
dc.relation.references | Myers, J. R., & Kmiecik, K. (2017). Common bean: Economic importance and relevance to biological science research. In M. Pérez de la Vega, M. Santalla, & F. Marsolais (Eds.), The common bean genome (pp. 1-20). Compendium of Plant Genomes. Springer. https://doi.org/10.1007/978-3-319-63526-2_1 | spa |
dc.relation.references | Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., & Lepiniec, L. (2000). The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell, 12, 1863-1878. https://doi.org/10.1105/tpc.12.10.1863 | spa |
dc.relation.references | Nesi, N., Jond, C., Debeaujon, I., Caboche, M., & Lepiniec, L. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 13, 2099–2114. https://doi.org/10.1105/tpc.010226 | spa |
dc.relation.references | O'Brian, M. R., & Vance, C. P. (2007). Legume Biology: Sequence to Seeds. Plant Physiology, 144(2), 537. https://doi.org/10.1104/pp.107.098806 | spa |
dc.relation.references | Oliveira, M. G. C., Oliveira, L. F. C., Wendland, A., Guimarães, C. M., Quintela, E. D., Barbosa, G. R., Carvalho, M. C. S., Lobo Junior, M., & Silveira, P. M. (2018). Variabilidade fenotípica e genotípica de acessos de feijão (Phaseolus vulgaris L.) em diferentes ambientes. Revista de Ciências Agrárias, 36(2), 80-92. https://journal.unoeste.br/index.php/ca/article/view/4440/3649 | spa |
dc.relation.references | Osorno, J. M., Vander Wal, A. J., Kloberdanz, M., Pasche, J. S., Schroder, S., & Miklas, P. N. (2018). A new slow-darkening pinto bean with improved agronomic performance: registration of ‘ND-Palomino.’ Journal of Plant Registrations, 12(1), 25–30. https://doi.org/10.3198/jpr2017.05.0026crc | spa |
dc.relation.references | Phytozome v13: Phaseolus vulgaris v2.1. (n.d.). Retrieved from https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1 | spa |
dc.relation.references | Papa, R., & Gepts, P. L. (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theoretical and Applied Genetics, 106, 239-250. https://doi.org/10.1007/s00122-002-1085-z | spa |
dc.relation.references | Park, D., & Maga, J. A. (1999). Dry bean (Phaseolus vulgaris) color stability as influenced by time and moisture content. Journal of Food Processing and Preservation, 23(6), 515-522. https://doi.org/10.1111/j.1745-4549.1999.tb00371.x | spa |
dc.relation.references | Prakken, R. (1972). Inheritance of colors in Phaseolus vulgaris L. III. On genes for red seed coat color and a general synthesis. Mededelingen Landbouwhogeschool Wageningen, 72-29, 1–82. | spa |
dc.relation.references | Prakken, R. (1970). Inheritance of color in Phaseolus vulgaris L. II. A critical review. Mededelingen Landbouwhogeschool Wageningen, 70-23, 1–38. | spa |
dc.relation.references | Prediger, E. (2023). Considering SNPs when designing PCR and qPCR assays. Integrated DNA Technologies. https://www.idtdna.com/pages/education/decoded/article/considering-snps-when-designing-pcr-and-qpcr-assays | spa |
dc.relation.references | R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org | spa |
dc.relation.references | Ribeiro, N. D., & Maziero, S. M. (2023). Number of experiments necessary to more accurately differentiate common bean genotypes for grain physical traits and minerals in cluster analysis. Revista Ceres, 70(1), 114–123. https://doi.org/10.1590/0034-737X202370010013 | spa |
dc.relation.references | Ribeiro, N. D., & Kläser, G. R. (2020). Physical quality and mineral composition of new Mesoamerican bean lines developed for cultivation in Brazil. Journal of Food Composition and Analysis, 89, 103479. https://doi.org/10.1016/j.jfca.2020.103479 | spa |
dc.relation.references | Ribeiro, N. D., Kläser, G. R., Argenta, H. D. S., & Andrade, F. F. D. (2022). Selection of common bean genotypes with higher macro- and micromineral concentrations in the grains. Pesquisa Agropecuária Brasileira, 57. https://doi.org/10.1590/S1678-3921.pab2022.v57.02757 | spa |
dc.relation.references | Robledo-Torres, V., González-Domínguez, J. R., Núñez-Barrios, A., Benavides-Mendoza, A., & Ramírez-Godina, F. (2002). Estudio de la heterosis en frijol común en condiciones de temporal. Revista Fitotecnia Mexicana, 25(1), 65-75. https://www.redalyc.org/pdf/610/61025109.pdf | spa |
dc.relation.references | Rodrigues, L. L., Rodrigues, L. A., de Souza, T. L., Melo, L. C., & Pereira, H. S. (2019). Genetic control of seed coat darkening in common bean cultivars from three market classes. Crop Science, 59(5), 2046-2054. https://doi.org/10.2135/cropsci2019.03.0161 | spa |
dc.relation.references | Sadohara, R., Izquierdo, P., Couto Alves, F., Porch, T., Beaver, J., Urrea, C. A., & Cichy, K. (2022). The Phaseolus vulgaris L. yellow bean collection: Genetic diversity and characterization for cooking time. Genetic Resources and Crop Evolution, 69(4), 1627–1648. https://doi.org/10.1007/s10722-021-01323-0 | spa |
dc.relation.references | Sanchez, A. C., Brar, D. S., Huang, N., Li, Z., & Khush, G. S. (2000). Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Science, 40(3), 792-797. https://doi.org/10.2135/cropsci2000.403792x | spa |
dc.relation.references | Sánchez, I. (s.f.). Nueva variedad de frijol para el sureste del estado de Coahuila. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). http://www.inifapcirne.gob.mx/Biblioteca/Publicaciones/678.pdf | spa |
dc.relation.references | Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1984). Dry beans of Phaseolus. A review. Part 1. Chemical composition: Proteins. Critical Reviews in Food Science and Nutrition, 20(1), 1–46. https://doi.org/10.1080/10408398409527390 | spa |
dc.relation.references | Sathe, S. K., & Deshpande, S. S. (1993). Beans. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopedia of food science, food technology and nutrition (pp. 317–325). Academic Press. | spa |
dc.relation.references | Savić, A., Zorić, M., Brdar-Jokanović, M., … & Vasić, M. (2020). Origin and diversity study of local common bean (Phaseolus vulgaris L.) germplasm from Serbia: Phaseolin and phenotyping approach. Genetic Resources and Crop Evolution, 67(6), 2195–2212. https://doi.org/10.1007/s10722-020-00974-9 | spa |
dc.relation.references | Sax, K. (1923). "The Association of Size Differences with Seed-Coat Pattern and Pigmentation in Phaseolus vulgaris". Genetics, 8(6), 552–560. | spa |
dc.relation.references | Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., ... & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3028 | spa |
dc.relation.references | Shinya, Y., Simo-Serra, E., & Suzuki, T. (2019). Understanding the effects of pre-training for object detectors via eigenspectrum. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (pp. 0-0). | spa |
dc.relation.references | Shure, M., Wessler, S., & Fedoroff, N. (1983). Molecular identification and isolation of the Waxy locus in maize. Cell, 35(1), 225–233. https://doi.org/10.1016/0092-8674(83)90225-8 | spa |
dc.relation.references | Silva, F. C., Melo, P. G., Pereira, H. S., & Melo, L. C. (2014). Genetic control and estimation of genetic parameters for seed-coat darkening of carioca beans. Genetics and Molecular Research: GMR, 13(3), 6486–6496. https://doi.org/10.4238/2014.August.25.12 | spa |
dc.relation.references | Singh, S. (Ed.). (2000). Bean breeding for the 21st century. Kluwer Academic Publishers. | spa |
dc.relation.references | Singh, S. P., Debouck, D. G., & Gepts, P. (1988). Razas de frijol común Phaseolus vulgaris L. In P. Gepts (Ed.), Genetic resources of Phaseolus beans (pp. 179-207). Kluwer Academic Publishers. | spa |
dc.relation.references | Singh, S. P., Gepts, P., & Debouck, D. G. (1991). Razas de fríjol común (Phaseolus vulgaris, Fabaceae). Economic Botany, 45(4), 379–396. | spa |
dc.relation.references | Singh, S. P., & Miklas, P. N. (2015). Breeding common bean for resistance to common blight: A review. Crop Science, 55(3), 971–984. https://doi.org/10.2135/cropsci2014.07.0502 | spa |
dc.relation.references | Singh, S. P. (1989). Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Economic Botany, 43(1), 39–57. https://doi.org/10.1007/BF02859324 | spa |
dc.relation.references | Siqueira, B. S., Pereira, W. P., Batista, K. A., Oomah, B. D., Fernandes, K. F., & Bassinello, P. Z. (2014). Influência of storage on darkening and hardening of slow-and regular-darkening carioca bean (Phaseolus vulgaris L.) genotypes. Journal of Agricultural Studies, 2(2), 87-104. https://doi.org/10.5296/jas.v2i2.5859 | spa |
dc.relation.references | Šuštar-Vozlič, J., Maras, M., Javornik, B., & Meglič, V. (2006). Genetic diversity and origin of Slovene common bean (Phaseolus vulgaris L.) germplasm as revealed by AFLP markers and phaseolin analysis. Journal of the American Society for Horticultural Science, 131(2), 242–249. https://doi.org/10.21273/JASHS.131.2.242 | spa |
dc.relation.references | Strack, D., & Wray, V. (1994). The anthocyanins. In J. B. Harborne (Ed.), The flavonoids: Advances in research since 1986 (pp. 1-22). Chapman and Hall. https://doi.org/10.1201/9780203736692 | spa |
dc.relation.references | Syvänen, A. C. (2001). Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2(12), 930–942. https://doi.org/10.1038/35103535 | spa |
dc.relation.references | Takeoka, G., Dao, L. T., Full, G., Wong, R. Y., Harden, L. A., Edwards, R. H., & Berrios, J. D. (1997). Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. Journal of Agricultural and Food Chemistry, 45(8), 3395-3400. https://doi.org/10.1021/jf970264d | spa |
dc.relation.references | Troy, J. (1977). The inheritance of seedcoat color in Phaseolus vulgaris (Doctoral dissertation). | spa |
dc.relation.references | Tschermak, E. V. (1916). Über den gegenwärtigen Stand der Gemüsezüchtung. Zeitschrift für Pflanzenzüchtung, 4, 65–104. | spa |
dc.relation.references | USDA. (2015). Nutrient data: USDA national nutrient database for standard reference release 27. http://www.ars.usda.gov/Services/docs.htm?docid=8964 | spa |
dc.relation.references | Vezulli, S., Stefanini, M., Zulini, L., & Moser, S. (2019). Genetic mapping of resistance loci to downy and powdery mildew in grapevine. BIO Web of Conferences, 12, 01002. https://doi.org/10.1051/bioconf/20191201002 | spa |
dc.relation.references | Walker, D., Boerma, H. R., All, J., & Parrott, W. (2002). Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding, 9, 43–51. https://doi.org/10.1023/A:1018923925003 | spa |
dc.relation.references | Wang, J., Chuang, K., Ahluwalia, M., Patel, S., Umblas, N., Mirel, D., Higuchi, R., & Germer, S. (2005). High-throughput SNP genotyping by single-tube PCR with T<sub>m</sub>-shift primers. BioTechniques, 39(6), 885–893. https://doi.org/10.2144/000112028 | spa |
dc.relation.references | Wells, W. C., Isom, W. H., & Waines, J. G. (1988). Outcrossing rates of six common bean lines. Crop Science, 28(1), 177–178. https://doi.org/10.2135/cropsci1988.0011183X002800010038x | spa |
dc.relation.references | Weller, H. I., & Westneat, M. W. (2019). Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ, 7, e6398. https://doi.org/10.7717/peerj.6398 | spa |
dc.relation.references | Xu, Y., & Crouch, J. H. (2008). Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 48(2), 391–407. https://doi.org/10.2135/cropsci2007.04.0191 | spa |
dc.relation.references | Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., ... & Yan, J. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Molecular Plant, 13(2), 187–214. https://doi.org/10.1016/j.molp.2019.12.012 | spa |
dc.relation.references | Zhao, Y., Zhang, Y. Y., Liu, H., & et al. (2019). Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biology, 19(497). https://doi.org/10.1186/s12870-019-2109-z | spa |
dc.relation.references | Zelada, L. I. (2014). La producción y comercialización de frijol en El Salvador. El Salvador Coyuntura Económica, 31–45. | spa |
dc.relation.references | Zilio, M., Souza, C. A., & Coelho, C. M. M. (2017). Phenotypic diversity of nutrients and anti-nutrients in bean grains grown in different locations. Revista Brasileira de Ciências Agrárias, 12(4), 526–534. https://doi.org/10.5039/agraria.v12i4a5490 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.agrovoc | Fríjol | |
dc.subject.agrovoc | Marcador genético | |
dc.subject.agrovoc | Genetic markers | |
dc.subject.agrovoc | Testa | |
dc.subject.agrovoc | Semilla | |
dc.subject.agrovoc | Calidad de la semilla | |
dc.subject.agrovoc | Seed quality | |
dc.subject.armarc | Seed | |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.proposal | Marcador SNP | spa |
dc.subject.proposal | Genotipo | spa |
dc.subject.proposal | Ultravioleta | spa |
dc.subject.proposal | Fenotipado | spa |
dc.subject.proposal | bHLH | spa |
dc.subject.proposal | SNP Marker | eng |
dc.subject.proposal | Genotype | eng |
dc.subject.proposal | Ultraviolet | eng |
dc.subject.proposal | Phenotyping | eng |
dc.subject.proposal | bHLH | eng |
dc.title | Evaluación de un marcador molecular asociado al lento oscurecimiento de la testa de la semilla de frijol (Phaseolus vulgaris). | spa |
dc.title.translated | Evaluation of a molecular marker associated with the slow darkening of common bean seed coat (Phaseolus vulgaris) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Proyecto de Mejoramiento de Genética de Frijol de Acervo Andino | spa |
oaire.fundername | Programa de Genética de Frijol | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1114833026.2024.pdf
- Tamaño:
- 6.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: