Evaluación de un marcador molecular asociado al lento oscurecimiento de la testa de la semilla de frijol (Phaseolus vulgaris).

dc.contributor.advisorRincón Flórez, Juan Carlos
dc.contributor.advisorLobatón Garcés, Juan David
dc.contributor.authorCantor Saavedra, Juan Pablo
dc.contributor.educationalvalidatorConejo Rodríguez, Diego Felipe
dc.contributor.educationalvalidatorCruz Carvajal, Sergio Andrés
dc.contributor.orcidCantor Saavedra, Juan [0009-0003-5212-3934]spa
dc.contributor.researchgroupGenética de Rasgos de Interés Agronómicospa
dc.date.accessioned2024-10-30T21:10:57Z
dc.date.available2024-10-30T21:10:57Z
dc.date.issued2024-10-27
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLa selección asistida por marcadores (MAS) ha sido efectiva para identificar distintos rasgos como la resistencia a enfermedades. En el caso del frijol común, se ha tenido éxito en la resistencia a enfermedades y algunos insectos, aunque hay avances incipientes en el estudio de rasgos cuantitativos como rendimiento y tolerancia a sequía. En el presente estudio, se identificó y se diseñó un marcador molecular tipo SNP en el gen bHLH que interviene en rutas metabólicas de algunos flavonoides asociados al oscurecimiento de la testa del frijol al interactuar con el gen Pigment, responsable del color de semilla y comúnmente asociado al tamaño de semilla. Las poblaciones de estudio se obtuvieron mediante el cruzamiento simple de una línea desarrollada para el rasgo de lento oscurecimiento (ND-Palomino) como fuente del marcador, con dos líneas locales de los acervos Andino y Mesoamericano. Se hizo una extracción fenólica en la fase de diseño de los cebadores y la validación en las generaciones F1 y F2 con la extracción alcalina de ADN. Se aceleró el oscurecimiento de las semillas mediante exposición a luz ultravioleta durante diferentes periodos de tiempo (0, 24, 48 y 72 horas) en genotipos seleccionados con datos de genotipado en poblaciones F3 de fríjol. Se tomaron fotografías en formato RGB dentro de una plataforma de fenotipado denominada ImagingCrop, que luego se ajustaron para el análisis y se transformaron al espectro L*a*b. Se encontraron diferencias significativas entre los genotipos basados en el marcador snpPv00135, con el valor medio de L, espacio que explica el 0.4414 de la variación asociada a este rasgo, con valores de 64.12 para el alelo positivo y 58.73 para el alelo negativo, con un valor de p inferior a 0.001. (Texto tomado de la fuente)spa
dc.description.abstractMarker-assisted selection (MAS) has been effective in identifying various traits, such as disease resistance. In the case of common beans, success has been achieved in resistance to diseases and some insects, although there have been only initial advances in the study of quantitative traits such as yield and drought tolerance. In this study, a molecular SNP marker was identified and designed within the bHLH gene, which is involved in metabolic pathways of certain flavonoids associated with seed coat darkening by interacting with the Pigment gene, responsible for seed color and commonly linked to seed size. The study populations were obtained through a simple cross between a line developed for the slow darkening trait (ND-Palomino) as a source of the marker and two local lines from the Andean and Mesoamerican gene pools. Phenolic extraction was performed during the primer design phase, and validation was carried out in F1 and F2 generations using alkaline DNA extraction. Seed darkening was accelerated by exposure to ultraviolet light for different periods (0, 24, 48, and 72 hours) in genotypes selected with genotyping data in F3 bean populations. RGBformat photographs were taken within a phenotyping platform called ImagingCrop, which were then adjusted for analysis and transformed into the L*a*b spectrum. Significant differences were found between genotypes based on the snpPv00135 marker, with the mean value of L, explaining 0.4414 of the variation associated to this trait, with values of 64.12 for the positive genotypes and 58.73 for the negatives, with a p-value less than 0.001.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.methodsEn el presente estudio, se identificó y se diseñó un marcador molecular tipo SNP en el gen bHLH que interviene en rutas metabólicas de algunos flavonoides asociados al oscurecimiento de la testa del frijol al interactuar con el gen Pigment, responsable del color de semilla y comúnmente asociado al tamaño de semilla. Las poblaciones de estudio se obtuvieron mediante el cruzamiento simple de una línea desarrollada para el rasgo de lento oscurecimiento (ND-Palomino) como fuente del marcador, con dos líneas locales de los acervos Andino y Mesoamericano. Se hizo una extracción fenólica en la fase de diseño de los cebadores y la validación en las generaciones F1 y F2 con la extracción alcalina de ADN. Se aceleró el oscurecimiento de las semillas mediante exposición a luz ultravioleta durante diferentes periodos de tiempo (0, 24, 48 y 72 horas) en genotipos seleccionados con datos de genotipado en poblaciones F3 de fríjol. Se tomaron fotografías en formato RGB dentro de una plataforma de fenotipado denominada ImagingCrop, que luego se ajustaron para el análisis y se transformaron al espectro L*a*b.spa
dc.description.researchareaFitomejoramientospa
dc.description.sponsorshipEl proyecto se financió principalmente a través de una combinación de fondos provenientes de donantes internacionales, fondos gubernamentales, y colaboraciones con universidades y centros de investigación. Algunos de los principales donantes han sido agencias como El consorcio Internacional CGIAR, USAID y la fundación Bill & Melinda Gates, el monto asignado para el presente proyecto fue de aproximadamente USD 6.500.spa
dc.description.technicalinfoDiseño GLM para análisis de imágenes y Técnica de genotipado TM-Shift y técnicas de fenotipado de alto rendimiento, así como uso de software para la segmentación de imágenesspa
dc.description.technicalinfoGLM design for image analysis and TM-Shift genotyping technique and high-throughput phenotyping techniques, as well as use of software for image segmentation.eng
dc.format.extentxxi, 78 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87116
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences, 19(2), 164–174.spa
dc.relation.referencesAdak, A., Kang, M., Anderson, S. L., Murray, S. C., Jarquin, D., Wong, R. K., & Katzfuß, M. (2023). Phenomic data-driven biological prediction of maize through field-based high throughput phenotyping integration with genomic data. Journal of Experimental Botany, 74(15), erad216.spa
dc.relation.referencesAdams, M. W., & Bedford, C. L. (1972). Improvement of food legumes for enhanced processing properties and consumer acceptance. In M. Milner (Ed.), Nutritional improvement of food legumes by genetic improvement (pp. 299–309). Proceedings of the Symposium sponsored by PAG, Rome, Italy, July 1972. Protein Advisory Group of the United Nations, New York.spa
dc.relation.referencesAguiar, C. (2014). Arquitetura de plantas. Instituto Politécnico de Bragança, Escola Superior Agrária.spa
dc.relation.referencesAlvares, R. C., Stonehouse, R., Souza, T. L. P. O., Melo, P. G. S., Miklas, P. N., Bett, K. E., Melo, L. C., Rodriguez, L. A., Souza, L. L., & Pereira, H. S. (2019). Generation and validation of genetic markers for the selection of carioca dry bean genotypes with the slow-darkening seed coat trait. Euphytica, 215(8), 1–11. https://doi.org/10.1007/s10681-019-2461-yspa
dc.relation.referencesÁlvarez, M. D. L. S. S., & Estrella, A. H. H. (2015). El frijol en la era genómica. Revista Digital Universitaria, 16(2), 3–10. Universidad Autónoma de México. Disponible en: http://www.revista.unam.mx/vol.16/num2/art11/index.htmlspa
dc.relation.referencesÁlvarez-Fernández, R. (2013). Explanatory chapter: PCR primer design. In Methods in Enzymology (Vol. 529, pp. 1–21). Academic Press.spa
dc.relation.referencesAndrews, C. (2010). The Hardy-Weinberg principle. Nature Education Knowledge, 3(10), 65.spa
dc.relation.referencesAssefa, T., Assibi Mahama, A., Brown, A. V., et al. (2019). A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Molecular Breeding, 39(1), 20. https://doi.org/10.1007/s11032-018-0920-0spa
dc.relation.referencesAraus, J. L., & Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Current Opinion in Plant Biology, 45, 237–247.spa
dc.relation.referencesBaek, J., Lee, E., Kim, N., Kim, S. L., Choi, I., Ji, H., ... & Kim, K. H. (2020). High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors, 20(1), 248. https://doi.org/10.3390/s20010248spa
dc.relation.referencesBassett, M. J., & McClean, P. E. (2000). Una breve revisión de la genética de cubiertas de semillas parcialmente coloreadas en frijol común. Annual Report of the Bean Improvement Cooperative, 43, 99–101.spa
dc.relation.referencesBassett, M. J., Shearon, C., & McClean, P. E. (1999). Allelism between two common bean genes, hilum color (D) and partially colored seed coat pattern (z), previously thought to be independent. Journal of the American Society for Horticultural Science, 124(6), 649–653.spa
dc.relation.referencesBassett, M. J. (1996b). The margo (mar) seed coat color gene is a synonym for the Joker (j) locus in common bean. Journal of the American Society for Horticultural Science, 121(6), 1028–1031.spa
dc.relation.referencesBassett, M. J. M. (2007). Genetics of seed coat color and pattern in common bean. In Plant Breeding Reviews (pp. 239–315). Wiley.spa
dc.relation.referencesBarrón, J. M., Cota, A. G., Anduaga, R., & Rentería, T. R. (1996). Influence of the hard-to-cook defect in pinto beans on the germination capacity, cookability, and hardness of newly harvested grains. Tropical Science, 36(1), 1–5.spa
dc.relation.referencesBeaver, J. S., & Osorno, J. M. (2009). Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica, 168(2), 145–175. https://doi.org/10.1007/s10681-009-9911-xspa
dc.relation.referencesBeebe, S., & Pedraza, F. (1998). Perspectivas para el uso de marcadores moleculares en el mejoramiento del frijol. Revista de Ciencias Agropecuarias, 15(2), 123–135.spa
dc.relation.referencesBeebe, S., Ramirez, J., Jarvis, A., Rao, I. M., Mosquera, G., Bueno, J. M., & Blair, M. W. (2011). Genetic improvement of common beans and the challenges of climate change. In Crop adaptation to climate change (pp. 356–369). CABI.spa
dc.relation.referencesBeebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, 35. https://doi.org/10.3389/fphys.2013.00035spa
dc.relation.referencesBeebe, S., Rengifo, J., Gaitan, E., Duque, M. C., & Tohme, J. (2001). Diversity and origin of Andean landraces of common bean. Crop Science, 41(3), 854–859. https://doi.org/10.2135/cropsci2001.413854xspa
dc.relation.referencesBeninger, C. W., Gu, L., Prior, R. L., Junk, D. C., Vandenberg, A., & Bett, K. E. (2005). Changes in polyphenols of the seed coat during the after-darkening process in pinto bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 53(20), 7777–7782. https://doi.org/10.1021/jf050051lspa
dc.relation.referencesBeninger, C. W., Hosfield, G. L., & Bassett, M. J. (1999). Composición de flavonoides de tres genotipos de frijol seco (Phaseolus vulgaris L.) que difieren en el color de la cubierta de la semilla. Journal of the American Society for Horticultural Science, 124(4), 514–518.spa
dc.relation.referencesBeninger, C. W., Hosfield, G. L., & Nair, M. G. (1998). Flavonol glycosides of a new Manteca-type dry bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 46(7), 2906–2910. https://doi.org/10.1021/jf980190mspa
dc.relation.referencesBeshir, H. M., Walley, F. L., Bueckert, R., & Tar’an, B. (2015). Response of snap bean cultivars to Rhizobium inoculation under dryland agriculture in Ethiopia. Agronomy, 5(3), 291–308. https://doi.org/10.3390/agronomy5030291spa
dc.relation.referencesBitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus spp.) as a model for understanding crop evolution. Frontiers in Plant Science, 8, 1–21. https://doi.org/10.3389/fpls.2017.00722spa
dc.relation.referencesBornowski, N., Song, Q., & Kelly, J. D. (2020). QTL mapping of post-processing color retention in two black bean populations. Theoretical and Applied Genetics, 133(12), 3085–3100. https://link.springer.com/article/10.1007/s00122-020-03656-3spa
dc.relation.referencesBrady, L., Bassett, M. J., & McClean, P. E. (1998). Marcadores moleculares asociados con t y z, dos genes que controlan los patrones de la cubierta de la semilla parcialmente coloreada en el frijol común. Ciencia de Cultivos, 38, 1073–1075.spa
dc.relation.referencesBroccanello, C., Chiodi, C., Funk, A., McGrath, J. M., Panella, L., & Stevanato, P. (2018). Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods, 14(1), 1–8. https://doi.org/10.1186/s13007-018-0295-6spa
dc.relation.referencesBroughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.)—Model food legumes. Plant and Soil, 252(1), 55–128. https://doi.org/10.1023/A:1024146710611spa
dc.relation.referencesBuruchara, R., Chirwa, R., Sperling, L., Mukankusi, C., Rubyogo, J. C., Mutonhi, R., & Abang, M. M. (2011). Development and delivery of bean varieties in Africa: The Pan-Africa Bean Research Alliance (PABRA) model. African Crop Science Journal, 19(4), 227–245.spa
dc.relation.referencesCavalcante, A. G., Lemos, L. B., Meirelles, F. C., Cavalcante, A. C., & de Aquino, L. A. (2020). Thermal sum and phenological descriptions of growth stages of the common bean according to the BBCH scale. Annals of Applied Biology, 176(3), 342–349. https://doi.org/10.1111/aab.12571spa
dc.relation.referencesCarović-Stanko, K., Liber, Z., Vidak, M., Barešić, A., Grdiša, M., Lazarević, B., & Šatović, Z. (2017). Genetic diversity of Croatian common bean landraces. Frontiers in Plant Science, 8, 604. https://doi.org/10.3389/fpls.2017.00604spa
dc.relation.referencesCastillo, C., Narváez, W., & Hahn, C. (2016). Agro morfología y usos del Cajanus cajan L. Millsp. (Fabaceae). Boletín Científico del Centro de Museos, 20(1), 52–62. https://doi.org/10.17151/bccm.2016.20.1.5spa
dc.relation.referencesCelmeli, T., Sari, H., Canci, H., Sari, D., Adak, A., Eker, T., & Toker, C. (2018). The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy, 8(9), 166. https://doi.org/10.3390/agronomy8090166spa
dc.relation.referencesChacón, I. M., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2spa
dc.relation.referencesChhabra, R., Hossain, F., Muthusamy, V., Baveja, A., Mehta, B., & Zunjare, R. U. (2019). Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in early selection of shrunken2 gene governing kernel sweetness in maize. Journal of Cereal Science, 88, 102796. https://doi.org/10.1016/j.jcs.2019.04.012spa
dc.relation.referencesChen, J., Greenblatt, I. M., & Dellaporta, S. L. (1992). Molecular analysis of Ac transposition and DNA replication. Genetics, 130(3), 665–676.spa
dc.relation.referencesChomet, P. S., Wessler, S., & Dellaporta, S. L. (1987). Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. The EMBO Journal, 6(10), 2953–2962. https://doi.org/10.1002%2Fj.1460-2075.1987.tb04753.xspa
dc.relation.referencesCichy, K. A., Wiesinger, J. A., Berry, M., Nchimbi‐Msolla, S., Fourie, D., Porch, T. G., & Miklas, P. N. (2019). The role of genotype and production environment in determining the cooking time of dry beans (Phaseolus vulgaris L.). Legume Science, 1(1), e13. https://doi.org/10.1002/leg3.13spa
dc.relation.referencesCobb, J., Egan, A. N., & Jannink, J.-L. (2019). Identification of causative genes in diverse species and traits using marker-assisted selection. Journal of Crop Science, 20(3), 155-167. https://doi.org/10.1007/s00122-019-03317-0spa
dc.relation.referencesCobb, J. N., Juma, R. U., Biswas, P. S., et al. (2019). Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theoretical and Applied Genetics, 132(3), 627–645. https://doi.org/10.1007/s00122-019-03317-0spa
dc.relation.referencesCollard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572. https://doi.org/10.1098/rstb.2007.2170spa
dc.relation.referencesConejo-Rodríguez, D. F., Gonzalez-Guzmán, J. J., Ramirez-Gil, J. G., Wenzl, P., & Urban, M. O. (2024). Digital descriptors sharpen classical descriptors for improving gene bank accession management: A case study on Arachis spp. and Phaseolus spp. PLOS ONE, 19(5), e0302158. https://doi.org/10.1371/journal.pone.0302158spa
dc.relation.referencesConejo, F., Urban, M. O., Santaella, M., Gereda, J. M., Contreras, A. D., & Wenzl, P. (2022). Using phenomics to identify and integrate traits of interest for better-performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. Frontiers in Plant Science, 13, 1008666. https://doi.org/10.3389/fpls.2022.1008666spa
dc.relation.referencesCruz-Ruiz, S. A. (2021). *Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius (Doctoral dissertation, Universidad Nacional de Colombia).spa
dc.relation.referencesda Silva, L. O., Hemp, S., Moda-Cirino, V., Ferrão, M., Ferreira, R., Singh, S., ... & Serpa, J. (1993). Performance in Brazil and Colombia of common bean lines from the second selection cycle. Brasil J Genetics, 115-127. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/195745/1/rbg-1993.pdfspa
dc.relation.referencesde Almeida, C. P., Santos, I. L., de Carvalho Paulino, J. F., Barbosa, C. C. F., Pereira, C. C. A., Carvalho, C. R. L., de Moraes Cunha Gonçalves, G., Song, Q., Carbonell, S. A. M., Chiorato, A. F., & Benchimol-Reis, L. L. (2021). Genome-wide association mapping reveals new loci associated with light-colored seed coat at harvest and slow darkening in carioca beans. BMC Plant Biology, 21(1), 343. https://doi.org/10.1186/s12870-021-03122-2spa
dc.relation.referencesDías, P. A. S., Almeida, D. V., Melo, P. G. S., Pereira, H. S., & Melo, L. C. (2021). Effectiveness of breeding selection for grain quality in common bean. Crop Science, 61, 1127–1140. https://doi.org/10.1002/csc2.20422spa
dc.relation.referencesDixon, R. A., Xie, D. Y., & Sharma, S. B. (2005). Proanthocyanidins—a final frontier in flavonoid research? New Phytologist, 165(1), 9–28. https://doi.org/10.1111/j.1469-8137.2004.01279.xspa
dc.relation.referencesDohle, S., Berny Mier y Terán, J. C., Egan, A., Kisha, T., & Khoury, C. K. (2019). Wild beans (Phaseolus L.) of North America. In North American Crop Wild Relatives, Volume 2: Important Species (pp. 99–127).spa
dc.relation.referencesDuwadi, K., Austin, R. S., Mainali, H. R., Bett, K., Marsolais, F., & Dhaubhadel, S. (2018). Slow darkening of pinto bean seed coat is associated with significant metabolite and transcript differences related to proanthocyanidin biosynthesis. BMC Genomics, 19, 260. https://doi.org/10.1186/s12864-018-4550-zspa
dc.relation.referencesElsadr, H. T., Wright, L. C., Peter Pauls, K., & Bett, K. E. (2011). Characterization of seed coat post-harvest darkening in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 123, 1267–1272. https://doi.org/10.1007/s00122-011-1683-8spa
dc.relation.referencesEmerson, R. A. (1909). Factors for mottling in beans. American Breeders' Association Report, 5, 368–376.spa
dc.relation.referencesErfatpour, M., Navabi, A., & Pauls, K. P. (2018). Mapping the non-darkening trait from ‘Wit-rood boontje’ in bean (Phaseolus vulgaris). Theoretical and Applied Genetics, 131, 1331–1343. https://doi.org/10.1007/s00122-018-3081-yspa
dc.relation.referencesErfatpour, M., & Pauls, K. P. (2020). A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from ‘Wit-rood boontje’. Theoretical and Applied Genetics, 133, 1977–1994. https://doi.org/10.1007/s00122-020-03571-7spa
dc.relation.referencesFarrow, A., & Muthoni-Andriatsitohaina, R. (Eds.). (2020). Atlas of common bean production in Africa: Second edition. Pan-Africa Bean Research Alliance (PABRA); International Center for Tropical Agriculture (CIAT). Nairobi, Kenya. 242 p.spa
dc.relation.referencesFelicetti, E., Song, Q., Jia, G., Cregan, P., Bett, K. E., & Miklas, P. N. (2012). Simple sequence repeats linked with the slow darkening trait in pinto bean discovered by single nucleotide polymorphism assay and whole genome sequencing. Crop Science, 52(4), 1600–1608. https://doi.org/10.2135/cropsci2011.12.0655spa
dc.relation.referencesFernández de Córdova, F., Gepts, P. L., & López Genes, M. A. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.).spa
dc.relation.referencesFertiGlobal. (n.d.). Common bean program. FertiGlobal. Retrieved [Noviembre 15 de 2023], from https://www.fertiglobal.com/cmp/common-bean/spa
dc.relation.referencesFreyre, R., Ríos, R., Guzmán, L., Debouck, D. G., & Gepts, P. (1996). Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Economic Botany, 50(2), 195–215. http://www.jstor.org/stable/4255831spa
dc.relation.referencesGepts, P. (1999). Development of an integrated genetic linkage map in common bean (Phaseolus vulgaris L.) and its use.spa
dc.relation.referencesGepts, P. (1998). Origin and evolution of common bean: past events and recent trends. HortScience, 33(7), 1124–1130.spa
dc.relation.referencesGepts, P., & Bliss, F. A. (1988). Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Economic Botany, 42(1), 86–104. https://doi.org/10.1007/BF02859038spa
dc.relation.referencesGraham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., Bonierbale, M., et al. (2007). Nutritious subsistence food systems. Advances in Agronomy, 92, 2–75. http://www.ask-force.org/web/Biofortification/Graham-Subsistence-Food-Systems-2008.pdfspa
dc.relation.referencesHagerty, C. H., Cuesta-Marcos, A., Cregan, P., Song, Q., McClean, P., & Myers, J. R. (2016). Mapping snap bean pod and color traits, in a dry bean × snap bean recombinant inbred population. Journal of the American Society for Horticultural Science, 141(2), 131-138. https://doi.org/10.21273/JASHS.141.2.131spa
dc.relation.referencesHamilton, M. B. (2021). Population genetics. John Wiley & Sons.spa
dc.relation.referencesHasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. R. A. (2021). Recent advancements in molecular marker assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19, 128. https://doi.org/10.1186/s43141-021-00231-1spa
dc.relation.referencesHardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28(706), 49-50.spa
dc.relation.referencesHartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates. Disponible en: https://archive.org/details/principles-of-population-geneticsspa
dc.relation.referencesHossain, K. G., Islam, N., Jacob, D., Ghavami, F., Tucker, M., Kowalski, T., Leilani, A., & Zacharias, J. (2013). Interdependence of genotype and growing site on seed mineral compositions in common bean. Asian Journal of Plant Sciences, 12, 11–20. https://doi.org/10.3923/ajps.2013.11.20spa
dc.relation.referencesHuertas, R., Allwood, J. W., Hancock, R. D., & Stewart, D. (2022). Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method. Food Chemistry, 387, 132900. https://doi.org/10.1016/j.foodchem.2022.132900spa
dc.relation.referencesHughes, P. A., & Sandsted, R. F. (1975). Effect of temperature, relative humidity, and light on the color of ‘California Light Red Kidney’ bean seed during storage. HortScience, 10(4), 421-423.spa
dc.relation.referencesISAR. (2011). Bean Program, Rwanda Agricultural Research Institute. Retrieved from http://www.isar.rw/spip.php?article45 (last accessed December 5, 2011).spa
dc.relation.referencesIslam, N. S., Bett, K. E., Pauls, K. P., Marsolais, F., & Dhaubhadel, S. (2020). Postharvest seed coat darkening in pinto bean (Phaseolus vulgaris) is regulated by Psd, an allele of the basic helix-loop-helix transcription factor. Plants People Planet, 2, 663–677. https://doi.org/10.1002/ppp3.10132spa
dc.relation.referencesJunk-Knievel, D. C., Vandenberg, A., & Bett, K. E. (2008). Slow darkening in pinto bean (Phaseolus vulgaris L.) seed coats is controlled by a single major gene. Crop Science, 48(1), 189–193. https://doi.org/10.2135/cropsci2007.04.0227spa
dc.relation.referencesJunk-Knievel, D. C., Vandenberg, A., & Bett, K. E. (2007). An accelerated postharvest seed-coat darkening protocol for pinto beans grown across different environments. Crop Science, 47(2), 694–702. https://doi.org/10.2135/cropsci2006.05.0325spa
dc.relation.referencesKassambara, A., Mundt, F., Kassambara, F., & Mundt, A. (2017). Factoextra R package: Easy multivariate data analyses and elegant visualization. Retrieved from https://cran.r-project.org/web/packages/factoextra/index.htmlspa
dc.relation.referencesKavas, M., Abdulla, M. F., Mostafa, K., Seçgin, Z., Yerlikaya, B. A., Otur, Ç., Gökdemir, G., Kızıldoğan, A. K., Al-Khayri, J. M., & Jain, S. M. (2022). Investigation and expression analysis of R2R3-MYBs and anthocyanin biosynthesis-related genes during seed color development of common bean (Phaseolus vulgaris). Plants, 11(23), 3386. https://doi.org/10.3390/plants11233386spa
dc.relation.referencesKouam, E. B., Kamga-Fotso, A. M. A., & Anoumaa, M. (2023). Exploring agro-morphological profiles of Phaseolus vulgaris germplasm shows manifest diversity and opportunities for genetic improvement. Journal of Agriculture and Food Research, 14, 100772. https://doi.org/10.1016/j.jafr.2023.100772spa
dc.relation.referencesLamprecht, H. (1932). Beiträge zur Genetik von Phaseolus vulgaris. Hereditas, 16, 169–211.spa
dc.relation.referencesLamprecht, H. (1947). The inheritance of the slender-type of Phaseolus vulgaris and some other results. Agricultural and Horticultural Genetics, 5, 72–84.spa
dc.relation.referencesLande, R., & Thompson, R. (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124(3), 743-756. https://doi.org/10.1093/genetics/124.3.743spa
dc.relation.referencesLiu, J., Huang, S., Sun, M., & otros. (2012). An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods, 8, 34. https://doi.org/10.1186/1746-4811-8-34spa
dc.relation.referencesLiu, Y., Li, J., Zhu, Y., Jones, A., Rose, R. J., & Song, Y. (2019). Heat stress in legume seed setting: Effects, causes, and future prospects. Frontiers in Plant Science, 10, 938. https://doi.org/10.3389/fpls.2019.00938spa
dc.relation.referencesLogozzo, G., Donnoli, R., Macaluso, L., Papa, R., Knupffer, H., & Spagnoletti Zeuli, P. (2007). Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genetic Resources and Crop Evolution, 54(8), 1763–1779. https://doi.org/10.1007/s10722-006-9185-2spa
dc.relation.referencesMacKill, D. J. (2006, May). Breeding for resistance to abiotic stresses in rice: The value of quantitative trait loci. In Plant Breeding: The Arnel R. Hallauer International Symposium (pp. 201-212). Ames, Iowa, USA: Blackwell Publishing. https://doi.org/10.1002/9780470752708.ch14spa
dc.relation.referencesMaga, J. A., Park, D., & Baskerville, W. G. (1997). Unpublished private communication. Colorado State University, Fort Collins, CO.spa
dc.relation.referencesMamidi, S., Rossi, M., Moghaddam, S., et al. (2013). Demographic factors shaped diversity in the two gene pools of wild common bean (Phaseolus vulgaris L.). Heredity, 110(3), 267–276. https://doi.org/10.1038/hdy.2012.82spa
dc.relation.referencesMarles, M. A. S., Vandenberg, A., & Bett, K. E. (2008). Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of pinto bean (Phaseolus vulgaris L.) characterize postharvest color changes. Journal of Agricultural and Food Chemistry, 56(15), 7049–7056. https://doi.org/10.1021/jf8004367spa
dc.relation.referencesMcCartney, C. A., Somers, D. J., Fedak, G., & Cao, W. (2004). Haplotype diversity at fusarium head blight resistance QTLs in wheat. Theoretical and Applied Genetics, 109(2), 261-271. https://doi.org/10.1007/s00122-004-1640-xspa
dc.relation.referencesMcClean, P. E., Bett, K. E., Stonehouse, R., Lee, R., Pflieger, S., Moghaddam, S. M., … & Mamidi, S. (2018). White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. New Phytologist, 219(3), 1112-1123. https://doi.org/10.1111/nph.15259spa
dc.relation.referencesMcClean, P. E., Lee, R. K., Otto, C., Gepts, P., & Bassett, M. J. (2002). Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). Journal of Heredity, 93(2), 148-152. https://doi.org/10.1093/jhered/93.2.148spa
dc.relation.referencesMcClean, P. E., Moghaddam, S. M., López-Millán, A. F., Brick, M. A., Kelly, J. D., Miklas, P. N., Osorno, J., Porch, T. G., Urrea, C. A., Soltani, A., & Grusak, M. A. (2017). Phenotypic diversity for seed mineral concentration in North American dry bean germplasm of Middle American ancestry. Crop Science, 57(6), 3129–3144. https://doi.org/10.2135/cropsci2017.04.0244spa
dc.relation.referencesMendel, G. (1866). Experiments on plant hybridization. Proceedings of the Natural History Society of Brünn, 4, 3-47. Retrieved from http://www.esp.org/foundations/genetics/classical/gm-65.pdfspa
dc.relation.referencesMorales-Soto, A., & Lamz-Piedra, A. (2020). Genetic improvement methods in the cultivation of common beans (Phaseolus vulgaris L.) against the Bean Yellow Golden mosaic Virus (BGYMV). Cultivos Tropicales, 41(4), e10.spa
dc.relation.referencesMukankusi, C., Raatz, B., Nkalubo, S., Berhanu, F., Binagwa, P., Kilango, M., Williams, M., Enid, K., Chirwa, R., & Beebe, S. (2019). Genomics, genetics and breeding of common bean in Africa: A review of the tropical legume project. Plant Breeding, 138(4), 401–414. https://doi.org/10.1111/pbr.12573spa
dc.relation.referencesMyers, J. R., & Baggett, J. R. (1999). Improvement of snap bean. In S. Sing (Ed.), Common bean improvement in the twenty-first century (Vol. 7, pp. 289–329). Springer. https://doi.org/10.1007/978-94-015-9211-6_12spa
dc.relation.referencesMyers, J. R., & Kmiecik, K. (2017). Common bean: Economic importance and relevance to biological science research. In M. Pérez de la Vega, M. Santalla, & F. Marsolais (Eds.), The common bean genome (pp. 1-20). Compendium of Plant Genomes. Springer. https://doi.org/10.1007/978-3-319-63526-2_1spa
dc.relation.referencesNesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., & Lepiniec, L. (2000). The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell, 12, 1863-1878. https://doi.org/10.1105/tpc.12.10.1863spa
dc.relation.referencesNesi, N., Jond, C., Debeaujon, I., Caboche, M., & Lepiniec, L. (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 13, 2099–2114. https://doi.org/10.1105/tpc.010226spa
dc.relation.referencesO'Brian, M. R., & Vance, C. P. (2007). Legume Biology: Sequence to Seeds. Plant Physiology, 144(2), 537. https://doi.org/10.1104/pp.107.098806spa
dc.relation.referencesOliveira, M. G. C., Oliveira, L. F. C., Wendland, A., Guimarães, C. M., Quintela, E. D., Barbosa, G. R., Carvalho, M. C. S., Lobo Junior, M., & Silveira, P. M. (2018). Variabilidade fenotípica e genotípica de acessos de feijão (Phaseolus vulgaris L.) em diferentes ambientes. Revista de Ciências Agrárias, 36(2), 80-92. https://journal.unoeste.br/index.php/ca/article/view/4440/3649spa
dc.relation.referencesOsorno, J. M., Vander Wal, A. J., Kloberdanz, M., Pasche, J. S., Schroder, S., & Miklas, P. N. (2018). A new slow-darkening pinto bean with improved agronomic performance: registration of ‘ND-Palomino.’ Journal of Plant Registrations, 12(1), 25–30. https://doi.org/10.3198/jpr2017.05.0026crcspa
dc.relation.referencesPhytozome v13: Phaseolus vulgaris v2.1. (n.d.). Retrieved from https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1spa
dc.relation.referencesPapa, R., & Gepts, P. L. (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theoretical and Applied Genetics, 106, 239-250. https://doi.org/10.1007/s00122-002-1085-zspa
dc.relation.referencesPark, D., & Maga, J. A. (1999). Dry bean (Phaseolus vulgaris) color stability as influenced by time and moisture content. Journal of Food Processing and Preservation, 23(6), 515-522. https://doi.org/10.1111/j.1745-4549.1999.tb00371.xspa
dc.relation.referencesPrakken, R. (1972). Inheritance of colors in Phaseolus vulgaris L. III. On genes for red seed coat color and a general synthesis. Mededelingen Landbouwhogeschool Wageningen, 72-29, 1–82.spa
dc.relation.referencesPrakken, R. (1970). Inheritance of color in Phaseolus vulgaris L. II. A critical review. Mededelingen Landbouwhogeschool Wageningen, 70-23, 1–38.spa
dc.relation.referencesPrediger, E. (2023). Considering SNPs when designing PCR and qPCR assays. Integrated DNA Technologies. https://www.idtdna.com/pages/education/decoded/article/considering-snps-when-designing-pcr-and-qpcr-assaysspa
dc.relation.referencesR Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.orgspa
dc.relation.referencesRibeiro, N. D., & Maziero, S. M. (2023). Number of experiments necessary to more accurately differentiate common bean genotypes for grain physical traits and minerals in cluster analysis. Revista Ceres, 70(1), 114–123. https://doi.org/10.1590/0034-737X202370010013spa
dc.relation.referencesRibeiro, N. D., & Kläser, G. R. (2020). Physical quality and mineral composition of new Mesoamerican bean lines developed for cultivation in Brazil. Journal of Food Composition and Analysis, 89, 103479. https://doi.org/10.1016/j.jfca.2020.103479spa
dc.relation.referencesRibeiro, N. D., Kläser, G. R., Argenta, H. D. S., & Andrade, F. F. D. (2022). Selection of common bean genotypes with higher macro- and micromineral concentrations in the grains. Pesquisa Agropecuária Brasileira, 57. https://doi.org/10.1590/S1678-3921.pab2022.v57.02757spa
dc.relation.referencesRobledo-Torres, V., González-Domínguez, J. R., Núñez-Barrios, A., Benavides-Mendoza, A., & Ramírez-Godina, F. (2002). Estudio de la heterosis en frijol común en condiciones de temporal. Revista Fitotecnia Mexicana, 25(1), 65-75. https://www.redalyc.org/pdf/610/61025109.pdfspa
dc.relation.referencesRodrigues, L. L., Rodrigues, L. A., de Souza, T. L., Melo, L. C., & Pereira, H. S. (2019). Genetic control of seed coat darkening in common bean cultivars from three market classes. Crop Science, 59(5), 2046-2054. https://doi.org/10.2135/cropsci2019.03.0161spa
dc.relation.referencesSadohara, R., Izquierdo, P., Couto Alves, F., Porch, T., Beaver, J., Urrea, C. A., & Cichy, K. (2022). The Phaseolus vulgaris L. yellow bean collection: Genetic diversity and characterization for cooking time. Genetic Resources and Crop Evolution, 69(4), 1627–1648. https://doi.org/10.1007/s10722-021-01323-0spa
dc.relation.referencesSanchez, A. C., Brar, D. S., Huang, N., Li, Z., & Khush, G. S. (2000). Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Science, 40(3), 792-797. https://doi.org/10.2135/cropsci2000.403792xspa
dc.relation.referencesSánchez, I. (s.f.). Nueva variedad de frijol para el sureste del estado de Coahuila. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). http://www.inifapcirne.gob.mx/Biblioteca/Publicaciones/678.pdfspa
dc.relation.referencesSathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1984). Dry beans of Phaseolus. A review. Part 1. Chemical composition: Proteins. Critical Reviews in Food Science and Nutrition, 20(1), 1–46. https://doi.org/10.1080/10408398409527390spa
dc.relation.referencesSathe, S. K., & Deshpande, S. S. (1993). Beans. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopedia of food science, food technology and nutrition (pp. 317–325). Academic Press.spa
dc.relation.referencesSavić, A., Zorić, M., Brdar-Jokanović, M., … & Vasić, M. (2020). Origin and diversity study of local common bean (Phaseolus vulgaris L.) germplasm from Serbia: Phaseolin and phenotyping approach. Genetic Resources and Crop Evolution, 67(6), 2195–2212. https://doi.org/10.1007/s10722-020-00974-9spa
dc.relation.referencesSax, K. (1923). "The Association of Size Differences with Seed-Coat Pattern and Pigmentation in Phaseolus vulgaris". Genetics, 8(6), 552–560.spa
dc.relation.referencesSchmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., ... & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3028spa
dc.relation.referencesShinya, Y., Simo-Serra, E., & Suzuki, T. (2019). Understanding the effects of pre-training for object detectors via eigenspectrum. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (pp. 0-0).spa
dc.relation.referencesShure, M., Wessler, S., & Fedoroff, N. (1983). Molecular identification and isolation of the Waxy locus in maize. Cell, 35(1), 225–233. https://doi.org/10.1016/0092-8674(83)90225-8spa
dc.relation.referencesSilva, F. C., Melo, P. G., Pereira, H. S., & Melo, L. C. (2014). Genetic control and estimation of genetic parameters for seed-coat darkening of carioca beans. Genetics and Molecular Research: GMR, 13(3), 6486–6496. https://doi.org/10.4238/2014.August.25.12spa
dc.relation.referencesSingh, S. (Ed.). (2000). Bean breeding for the 21st century. Kluwer Academic Publishers.spa
dc.relation.referencesSingh, S. P., Debouck, D. G., & Gepts, P. (1988). Razas de frijol común Phaseolus vulgaris L. In P. Gepts (Ed.), Genetic resources of Phaseolus beans (pp. 179-207). Kluwer Academic Publishers.spa
dc.relation.referencesSingh, S. P., Gepts, P., & Debouck, D. G. (1991). Razas de fríjol común (Phaseolus vulgaris, Fabaceae). Economic Botany, 45(4), 379–396.spa
dc.relation.referencesSingh, S. P., & Miklas, P. N. (2015). Breeding common bean for resistance to common blight: A review. Crop Science, 55(3), 971–984. https://doi.org/10.2135/cropsci2014.07.0502spa
dc.relation.referencesSingh, S. P. (1989). Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Economic Botany, 43(1), 39–57. https://doi.org/10.1007/BF02859324spa
dc.relation.referencesSiqueira, B. S., Pereira, W. P., Batista, K. A., Oomah, B. D., Fernandes, K. F., & Bassinello, P. Z. (2014). Influência of storage on darkening and hardening of slow-and regular-darkening carioca bean (Phaseolus vulgaris L.) genotypes. Journal of Agricultural Studies, 2(2), 87-104. https://doi.org/10.5296/jas.v2i2.5859spa
dc.relation.referencesŠuštar-Vozlič, J., Maras, M., Javornik, B., & Meglič, V. (2006). Genetic diversity and origin of Slovene common bean (Phaseolus vulgaris L.) germplasm as revealed by AFLP markers and phaseolin analysis. Journal of the American Society for Horticultural Science, 131(2), 242–249. https://doi.org/10.21273/JASHS.131.2.242spa
dc.relation.referencesStrack, D., & Wray, V. (1994). The anthocyanins. In J. B. Harborne (Ed.), The flavonoids: Advances in research since 1986 (pp. 1-22). Chapman and Hall. https://doi.org/10.1201/9780203736692spa
dc.relation.referencesSyvänen, A. C. (2001). Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2(12), 930–942. https://doi.org/10.1038/35103535spa
dc.relation.referencesTakeoka, G., Dao, L. T., Full, G., Wong, R. Y., Harden, L. A., Edwards, R. H., & Berrios, J. D. (1997). Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. Journal of Agricultural and Food Chemistry, 45(8), 3395-3400. https://doi.org/10.1021/jf970264dspa
dc.relation.referencesTroy, J. (1977). The inheritance of seedcoat color in Phaseolus vulgaris (Doctoral dissertation).spa
dc.relation.referencesTschermak, E. V. (1916). Über den gegenwärtigen Stand der Gemüsezüchtung. Zeitschrift für Pflanzenzüchtung, 4, 65–104.spa
dc.relation.referencesUSDA. (2015). Nutrient data: USDA national nutrient database for standard reference release 27. http://www.ars.usda.gov/Services/docs.htm?docid=8964spa
dc.relation.referencesVezulli, S., Stefanini, M., Zulini, L., & Moser, S. (2019). Genetic mapping of resistance loci to downy and powdery mildew in grapevine. BIO Web of Conferences, 12, 01002. https://doi.org/10.1051/bioconf/20191201002spa
dc.relation.referencesWalker, D., Boerma, H. R., All, J., & Parrott, W. (2002). Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding, 9, 43–51. https://doi.org/10.1023/A:1018923925003spa
dc.relation.referencesWang, J., Chuang, K., Ahluwalia, M., Patel, S., Umblas, N., Mirel, D., Higuchi, R., & Germer, S. (2005). High-throughput SNP genotyping by single-tube PCR with T<sub>m</sub>-shift primers. BioTechniques, 39(6), 885–893. https://doi.org/10.2144/000112028spa
dc.relation.referencesWells, W. C., Isom, W. H., & Waines, J. G. (1988). Outcrossing rates of six common bean lines. Crop Science, 28(1), 177–178. https://doi.org/10.2135/cropsci1988.0011183X002800010038xspa
dc.relation.referencesWeller, H. I., & Westneat, M. W. (2019). Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ, 7, e6398. https://doi.org/10.7717/peerj.6398spa
dc.relation.referencesXu, Y., & Crouch, J. H. (2008). Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 48(2), 391–407. https://doi.org/10.2135/cropsci2007.04.0191spa
dc.relation.referencesYang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., ... & Yan, J. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Molecular Plant, 13(2), 187–214. https://doi.org/10.1016/j.molp.2019.12.012spa
dc.relation.referencesZhao, Y., Zhang, Y. Y., Liu, H., & et al. (2019). Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biology, 19(497). https://doi.org/10.1186/s12870-019-2109-zspa
dc.relation.referencesZelada, L. I. (2014). La producción y comercialización de frijol en El Salvador. El Salvador Coyuntura Económica, 31–45.spa
dc.relation.referencesZilio, M., Souza, C. A., & Coelho, C. M. M. (2017). Phenotypic diversity of nutrients and anti-nutrients in bean grains grown in different locations. Revista Brasileira de Ciências Agrárias, 12(4), 526–534. https://doi.org/10.5039/agraria.v12i4a5490spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.agrovocFríjol
dc.subject.agrovocMarcador genético
dc.subject.agrovocGenetic markers
dc.subject.agrovocTesta
dc.subject.agrovocSemilla
dc.subject.agrovocCalidad de la semilla
dc.subject.agrovocSeed quality
dc.subject.armarcSeed
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalMarcador SNPspa
dc.subject.proposalGenotipospa
dc.subject.proposalUltravioletaspa
dc.subject.proposalFenotipadospa
dc.subject.proposalbHLHspa
dc.subject.proposalSNP Markereng
dc.subject.proposalGenotypeeng
dc.subject.proposalUltravioleteng
dc.subject.proposalPhenotypingeng
dc.subject.proposalbHLHeng
dc.titleEvaluación de un marcador molecular asociado al lento oscurecimiento de la testa de la semilla de frijol (Phaseolus vulgaris).spa
dc.title.translatedEvaluation of a molecular marker associated with the slow darkening of common bean seed coat (Phaseolus vulgaris)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto de Mejoramiento de Genética de Frijol de Acervo Andinospa
oaire.fundernamePrograma de Genética de Frijolspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1114833026.2024.pdf
Tamaño:
6.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: