Estudio de las técnicas de reducción de dimensión basadas en componentes principales: Análisis de componentes principales no lineales

dc.contributor.advisorEsteban Duarte, Nubia
dc.contributor.advisorMartínez Aragón, Aymara
dc.contributor.authorGiraldo Otálvaro, Juan David
dc.date.accessioned2021-08-26T16:37:07Z
dc.date.available2021-08-26T16:37:07Z
dc.date.issued2021
dc.descriptionfiguras, tablasspa
dc.description.abstractEn la estadística multivariada un gran desafío en el manejo correcto de grandes cantidades de datos es el análisis de variables de carácter cuantitativo y cualitativo al mismo tiempo, es decir, análisis de datos mixtos. En lo relacionado al tratamiento de datos solamente cuantitativos existen varias técnicas que ayudan en la reducción de la dimensión, en donde el Análisis de Componentes Principales (PCA) es la metodología de mayor relevancia. Para el análisis de datos mixtos, la técnica de Análisis de Componentes Principales proporciona una base fundamental para otras técnicas multivariadas como lo es el Análisis de Componentes Principales No Lineales (NLPCA), la cual no está muy bien documentada y tal vez aplicada sin la rigurosidad que la teoría requiere. Por otro lado, su uso no ha sido extendido a la metodología de las cartas de control como herramienta que apoya la gestión de calidad desde un punto de vista analítico. Por lo anterior, en este trabajo se describe de forma teórica la metodología de Análisis de Componentes Principales y se formaliza una técnica que permita el procesamiento de datos mixtos con el fin de facilitar la reducción de dimensión bajo el marco del PCA seleccionando la técnica de Análisis de Componentes Principales No Lineales (NLPCA), la cual incluye en su procesamiento la cuantificación óptima de datos cualitativos de manera no lineal con el fin de encontrar las mejores relaciones entre las variables. Se propone adaptar las cartas de control desarrolladas para variables múltiples y componentes obtenidas a partir del PCA, a las técnicas NLPCA obteniendo herramientas novedosas de gran interés para la interpretación de datos. Las metodologías descritas son aplicadas a un conjunto de datos reales pertenecientes al Proyecto “Corazones de Baependi” (Processo Fapesp 2007/58150-7) del Laboratorio de Genética y Cardiología Molecular (Incor/USP). (Texto tomado de la fuente)spa
dc.description.abstractIn multivariate statistics, a great challenge in the correct handling of large amounts of data is the analysis of variables of a quantitative and qualitative nature at the same time, that is, analysis of mixed data. Regarding the treatment of only quantitative data, there are several techniques that help in dimensional reduction, where the Principal Component Analysis (PCA) is the most relevant methodology. For the analysis of mixed data, the Principal Component Analysis technique provides a fundamental basis for other multivariate techniques such as Nonlinear Principal Component Analysis (NLPCA), which is not very well documented and perhaps applied without rigor. that the theory requires. On the other hand, its use has not been extended to the control chart methodology as a tool that supports quality management from an analytical point of view. Due to the above, in this work the Principal Component Analysis methodology is described theoretically and a technique is formalized that allows the processing of mixed data in order to facilitate the reduction of dimensions under the framework of the PCA by selecting the technique Non-linear Principal Components Analysis (NLPCA), which includes in its processing the optimal quantification of qualitative data in a non-linear way in order to find the best relationships between the variables. It is proposed to adapt the control charts developed for multiple variables and components obtained from the PCA, to the NLPCA techniques, obtaining novel tools of great interest for data interpretation. The methodologies described are applied to a set of real data belonging to the Project "Hearts of Baependi ”(Processo Fapesp 2007 / 58150-7) of the Molecular Genetics and Cardiology Laboratory (Incor / USP).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.format.extent177 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80028
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Matemáticas y Estadísticaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesAbdi, H., & Valentin, D. (2007). Multiple correspondence analysis. Encyclopedia of measurement and statistics, 2(4), 651-657.spa
dc.relation.referencesAbdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.spa
dc.relation.referencesAhmed, S., Taporoski, T., Gómez, L., Ruiz, F., Beijamini, F., Horimoto, A, et al. (2019). Data from the brazilian baependi heart study cohort yield new insights into the genetic epidemiology of insomnia. BMJ Open Respiratory Research. Vol. 6.spa
dc.relation.referencesAhsan, M., Mashuri, M., Kuswanto, H., Prastyo, D. D., & Khusna, H. (2018). Multivariate control chart based on PCA mix for variable and attribute quality characteristics. Production & Manufacturing Research, 6(1), 364-384.spa
dc.relation.referencesAlbert, P. R. (2015). Why is depression more prevalent in women?. J Psychiatry Neurosci;40(4).spa
dc.relation.referencesAlmalki, S. (2016). Integrating Quantitative and Qualitative Data in Mixed Methods Research--Challenges and Benefits. Journal of education and learning, 5(3), 288-296.spa
dc.relation.referencesArévalo-Avecillas, D., Nájera-Acuña, S., & Piñero, E. A. (2018). La Influencia de la Implementación de las Tecnologías de Información en la Productividad de Empresas de Servicios. Información tecnológica, 29(6), 199-212.spa
dc.relation.referencesBalasubramanian, M., Schwartz, E. L., Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2002). The isomap algorithm and topological stability. Science, 295(5552), 7-7.spa
dc.relation.referencesBeijamini, F. et al. (2016). Timing and quality of sleep in a rural Brazilian family-based cohort, the Baependi Heart Study. Sci. Rep. 6, 39283, doi: 10.1038/srep39283.spa
dc.relation.referencesBelkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Nips (Vol. 14, No. 14, pp. 585-591).spa
dc.relation.referencesBelkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6), 1373-1396.spa
dc.relation.referencesBenzécri, J. P. (1973). Lanalyse des données (Vol. 2, p. l). Paris: Dunod.spa
dc.relation.referencesBersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability engineering international, 23(5), 517-543.spa
dc.relation.referencesBezdek, J. C., Keller, J., Krisnapuram, R., & Pal, N. (1999). Fuzzy models and algorithms for pattern recognition and image processing (Vol. 4). Springer Science & Business Media.spa
dc.relation.referencesBishop, C. M. (2006). Pattern recognition and machine learning. springer.spa
dc.relation.referencesCachofeiro, V. (2009). Alteraciones del colesterol y enfermedad cardiovascular. Lopez Farré A., Macaya Miguel C. et al Libro de la salud cardiovascular. 1ª ed. Bilbao: Fundación BBVA, 131-139.spa
dc.relation.referencesCarreira-Perpinán, M. A., & Lu, Z. (2007, March). The laplacian eigenmaps latent variable model. In Artificial Intelligence and Statistics (pp. 59-66). PMLR.spa
dc.relation.referencesChen, J., & Liu, Y. (2011). Locally linear embedding: a survey. Artificial Intelligence Review, 36(1), 29-48.spa
dc.relation.referencesChoong, A. C. H., & Lee, N. K. (2017, November). Evaluation of convolutionary neural networks modeling of DNA sequences using ordinal versus one-hot encoding method. In 2017 International Conference on Computer and Drone Applications (IConDA) (pp. 60-65). IEEE.spa
dc.relation.referencesCostantini, P., Linting, M., & Porzio, G. C. (2010). Mining performance data through nonlinear PCA with optimal scaling. Applied Stochastic Models in Business and Industry, 26(1), 85-101.spa
dc.relation.referencesCox, M. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of data visualization (pp. 315-347). Springer, Berlin, Heidelberg.spa
dc.relation.referencesCrawford, J., Hughes, C. E., & Lykoudis, S. (2014). Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. Journal of Hydrology, 519, 2331-2340.spa
dc.relation.referencesDatta, A., Ghosh, S., & Ghosh, A. (2018). PCA, kernel PCA and dimensionality reduction in hyperspectral images. In Advances in Principal Component Analysis (pp. 19-46). Springer, Singapore.spa
dc.relation.referencesDiaz, L. G., & Morales, M. A. (2012). Análisis estadístico de datos multivariados. Universidad Nacional de Colombia.spa
dc.relation.referencesDi Franco, G. (2016). Multiple correspondence analysis: one only or several techniques?. Quality & Quantity, 50(3), 1299-1315.spa
dc.relation.referencesDoersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.spa
dc.relation.referencesDu, T. Y. (2019). Dimensionality reduction techniques for visualizing morphometric data: comparing principal component analysis to nonlinear methods. Evolutionary Biology, 46(1), 106-121.spa
dc.relation.referencesDuarte, N., Giolo, S., & de Andrade, M. (2015). On the equivalence of methods for population stratification and their application in genetic association studies. Rev. Bras. Biom., São Paulo, v.33, n.4, 494-507.spa
dc.relation.referencesDunteman, G. H. (1989). Principal components analysis (No. 69). Sage.spa
dc.relation.referencesEgan, K. J., Von Schantz, M., Negrão, A. B., Santos, H. C., Horimoto, A. R., Duarte, N. E., ... & Pereira, A. C. (2016). Cohort profile: the Baependi Heart Study—a family-based, highly admixed cohort study in a rural Brazilian town. BMJ open, 6(10).spa
dc.relation.referencesEscribano Hernández, A., Vega Alonso, A. T., Lozano Alonso, J. E., Álamo Sanz, R., Castrodeza Sanz, J. J., & Lleras Muñoz, S. (2010). Dislipidemias y riesgo cardiovascular en la población adulta de Castilla y León. Gaceta Sanitaria, 24, 282-287.spa
dc.relation.referencesE. P¸ekalska, D. de Ridder, R.P.W. Duin, and M.A. Kraaijveld (1999). A new method of generalizing Sammon mapping with application to algorithm speed-up. ASCI’99, 5th Annual Conference of the Advanced School for Computing and Imaging, pages 221–228.spa
dc.relation.referencesFeng, X., Xie, Y., Song, M., Yu, W., & Tang, J. (2018, November). Fast randomized PCA for sparse data. In Asian conference on machine learning (pp. 710-725). PMLR.spa
dc.relation.referencesFriedman, N. P. & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204.spa
dc.relation.referencesGabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453-467.spa
dc.relation.referencesGéron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. OReilly Media.spa
dc.relation.referencesGhojogh, B., Ghodsi, A., Karray, F., & Crowley, M. (2020). Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey. arXiv preprint arXiv:2009.08136.spa
dc.relation.referencesGifi, A. (1985). Princals. Department of Data Theory.spa
dc.relation.referencesGifi, A. (1989). Algorithm Descriptions for Anacor, Homal, Princals and Overals. Department of Data Theory, University of Leiden.spa
dc.relation.referencesGifi, A. (1990). Nonlinear multivariate analysis. Wiley.spa
dc.relation.referencesGower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, v.53, 325-338.spa
dc.relation.referencesGower, J. C., Le Roux, N. J., & Gardner-Lubbe, S. (2015). Biplots: quantitative data. WIREs Comput Stat, 7:42–62.spa
dc.relation.referencesGower, J. C., Le Roux, N. J., & Gardner-Lubbe, S. (2016). Biplots: qualititative data. WIREs Comput Stat, 8:82–111.spa
dc.relation.referencesGreenacre, M. J. (1984). Theory and application of Correspondence Analysis. London: Academic Press.spa
dc.relation.referencesGreenacre, M., & Blasius, J. (2006). Multiple correspondence analysis and related methods. Chapman and Hall/CRC.spa
dc.relation.referencesGuttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. The Prediciton of Personal Adjustment.spa
dc.relation.referencesHinton, G. E. (1986). Proceedings of the eighth annual conference of the cognitive science society.spa
dc.relation.referencesHoffmann, H. (2007). Kernel PCA for novelty detection. Pattern recognition, 40(3), 863-874.spa
dc.relation.referencesHotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24.spa
dc.relation.referencesHout, M. C., Papesh, M. H., & Goldinger, S. D. (2013). Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science, 4(1), 93-103.spa
dc.relation.referencesIpsen, Ilse C. F. (2009). Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM (Society for Industrial and Applied Mathematics). Philadelphia.spa
dc.relation.referencesJenssen, R. (2009). Kernel entropy component analysis. IEEE transactions on pattern analysis and machine intelligence, 32(5), 847-860.spa
dc.relation.referencesJin, J., & Loosveldt, G. (2019). Assessing response quality by using multivariate control charts for numerical and categorical response quality indicators. Journal of Survey Statistics and Methodology.spa
dc.relation.referencesJhonson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis. New Jersey: Prentice Hall, 794p.spa
dc.relation.referencesKhemakhem, I., Kingma, D., Monti, R., & Hyvarinen, A. (2020, June). Variational autoencoders and nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence and Statistics (pp. 2207-2217). PMLR.spa
dc.relation.referencesKiers, H. A. (2002). Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational statistics & data analysis, 41(1), 157-170.spa
dc.relation.referencesKingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691.spa
dc.relation.referencesKruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1-27.spa
dc.relation.referencesKruskal, J. B. (1965). Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society: Series B (Methodological), 27(2), 251-263.spa
dc.relation.referencesKruskal, J. B., & Shepard, R. N. (1974). A nonmetric variety of linear factor analysis. Psychometrika, 39(2), 123-157.spa
dc.relation.referencesKuhfeld, W. F. (1990). SAS Technical Report R-108: Algorithms for the PRINQUAL and TRANSREG Procedures. Cary NC: SAS Institute Inc.spa
dc.relation.referencesKuroda, M., Mori, Y., & Iizuka, M. (2020). Initial value selection for the alternating least squares algorithm. In Advanced Studies in Classification and Data Science (pp. 227-239). Springer, Singapore.spa
dc.relation.referencesLahera, V., & de las Eras, N. (2009). Libro de la salud cardiovascular. Diabetes y riesgo cardiovascular. Capítulo 11.spa
dc.relation.referencesLackland, D. T. (2014). Racial Differences in Hypertension: Implications for High Blood Pressure Management. Am J Med Sci; 348(2), 135–138. doi:10.1097/MAJ.0000000000000308.spa
dc.relation.referencesLaub, J. H., & Sampson, R. J. (1998). Integrating quantitative and qualitative data. Methods of life course research: Qualitative and quantitative approaches, 213-230.spa
dc.relation.referencesLawrence, N. D. (2003, December). Gaussian process latent variable models for visualisation of high dimensional data. In Nips (Vol. 2, p. 5).spa
dc.relation.referencesLawrence, N., & Hyvärinen, A. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of machine learning research, 6(11).spa
dc.relation.referencesLee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. Springer Science & Business Media.spa
dc.relation.referencesDe Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41(4), 471-503.spa
dc.relation.referencesDe Leeuw, J., & Van Rijckevorsel, J. (1980). HOMALS and PRINCALS—Some generalizations of principal components analysis. Data analysis and informatics, 2, 231-42.spa
dc.relation.referencesDe Leeuw, J., & Heiser, W. (1982). 13 Theory of multidimensional scaling. Handbook of statistics, 2, 285-316.spa
dc.relation.referencesDe Leeuw, J. (1984). The Gifi system of nonlinear multivariate analysis. Data analysis and informatics III, 415-424.spa
dc.relation.referencesLi, B., Li, Y. R., & Zhang, X. L. (2019). A survey on Laplacian eigenmaps based manifold learning methods. Neurocomputing, 335, 336-351.spa
dc.relation.referencesLi, P., & Chen, S. (2016). A review on Gaussian process latent variable models. CAAI Transactions on Intelligence Technology, 1(4), 366-376.spa
dc.relation.referencesLinting, M., Meulman, J. J., Groenen, P. J., & van der Koojj, A. J. (2007). Nonlinear principal components analysis: introduction and application. Psychological methods, 12(3), 336.spa
dc.relation.referencesLinting, M., & van der Kooij, A. (2012). Nonlinear principal components analysis with CATPCA: a tutorial. Journal of personality assessment, 94(1), 12-25.spa
dc.relation.referencesMair, P. (2018). Gifi Methods. In Modern Psychometrics with R (pp. 231-256). Springer, Cham.spa
dc.relation.referencesMcLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender Differences in Anxiety Disorders: Prevalence, Course of Illness, Comorbidity and Burden of Illness. J Psychiatr; 45(8), 1027–1035. doi:10.1016/j.jpsychires.2011.03.006.spa
dc.relation.referencesMeulman, J. J. (1998). Optimal scaling methods for multivariate categorical data analysis. SPSS White Paper: Chicago.spa
dc.relation.referencesMeulman, J. J., Van der Kooij, A. J., & Heiser, W. J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. The Sage handbook of quantitative methodology for the social sciences, 49-72.spa
dc.relation.referencesMinsky, M., & Papert, S. A. (2017). Perceptrons: An introduction to computational geometry. MIT press.spa
dc.relation.referencesMichailidis, G., & De Leeuw, J. (1998). The Gifi system of descriptive multivariate analysis. Statistical Science, 307-336.spa
dc.relation.referencesMiljković, D. (2017, May). Brief review of self-organizing maps. In 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1061-1066). IEEE.spa
dc.relation.referencesMontgomery, D. C. (2012). Statistical quality control. Wiley Global Education.spa
dc.relation.referencesNasiriany, S., Thomas, G., Wang, W., Yang, A., Listgarten, J., & Sahai, A. (2019). A Comprehensive Guide to Machine Learning. Department of Electrical Engineering and Computer Sciences. University of California, Berkeley. http://snasiriany.me/files/ml-book.pdf.spa
dc.relation.referencesNg, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011), 1-19.spa
dc.relation.referencesde Oliveira, C. M., Pereira, A. C., De Andrade, M., Soler, J. M., & Krieger, J. E. (2008). Heritability of cardiovascular risk factors in a Brazilian population: Baependi Heart Study. BMC medical genetics, 9(1), 1-8.spa
dc.relation.referencesde Oliveira, C. M., Ulbrich, A. Z., Neves, F. S., Dias, F.A. L., Horimoto, A.R.V.R., Krieger, J. E., et al. (2017). Association between anthropometric indicators of adiposity and hypertension in a Brazilian population: Baependi Heart Study. PLoS ONE 12 (10): e0185225. https://doi.org/10.1371/journal.pone.0185225.spa
dc.relation.referencesOliveira, G. F., Oliveira, T. R., Ikejiri, A. T., Andraus, M. P., Galvao, T. F., et al. (2014). Prevalence of Hypertension and Associated Factors in an Indigenous Community of Central Brazil: A Population-Based Study. 6, 19; doi:10.3390/jcdd6020019.spa
dc.relation.referencesÖzdemir, V., & Hekim, N. (2018). Birth of industry 5.0: Making sense of big data with artificial intelligence,“the internet of things” and next-generation technology policy. Omics: a journal of integrative biology, 22(1), 65-76.spa
dc.relation.referencesPotdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of categorical variable encoding techniques for neural network classifiers. International journal of computer applications, 175(4), 7-9.spa
dc.relation.referencesPearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6, 559 - 572.spa
dc.relation.referencesPeña, D. (2002). Análisis de Datos Multivariantes. https://www.researchgate.net/publication/40944325.spa
dc.relation.referencesPerreault Jr, W. D., & Young, F. W. (1980). Alternating least squares optimal scaling: Analysis of nonmetric data in marketing research. Journal of Marketing Research, 17(1), 1-13.spa
dc.relation.referencesQuiroga-Parra, D. J., Torrent-Sellens, J., & Murcia-Zorrilla, C. P. (2017). Las tecnologías de la información en América Latina, su incidencia en la productividad: Un análisis comparado con países desarrollados. Dyna, 84(200), 281-290.spa
dc.relation.referencesRencher, A. C. (1998). Multivariate statistical inference and applications (p. 559). New York: Wiley.spa
dc.relation.referencesRencher, A. C. (2002). Methods of Multivariate Analysis. A Wiley-Interscience publication. ISBN 0-471-41889-7.spa
dc.relation.referencesRevista de Endocrinología y Nutrición (2004); Complicaciones macrovasculares en la diabetes mellitus tipo 2. Vol. 12, No. 2 Supl.1. pp S23-S30.spa
dc.relation.referencesRodgers, J. L., Jones, J., Bolleddu, S. I., Vanthenapalli, S., Rodgers, L. E., Shah, K., Karia, K. & Panguluri, S. K. (2019). Cardiovascular Risks Associated with Gender and Aging. Journal of Cardiovascular Development and Disease. 6, 19; doi:10.3390/jcdd6020019.spa
dc.relation.referencesRodríguez, H. E. D. (2017). Tecnologías de la información y comunicación y crecimiento económico. Economía Informa, 405, 30-45.spa
dc.relation.referencesRoweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. science, 290(5500), 2323-2326.spa
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science.spa
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.spa
dc.relation.referencesSammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on computers, 100(5), 401-409.spa
dc.relation.referencesSands, R., & Young, F. W. (1980). Component models for three-way data: An alternating least squares algorithm with optimal scaling features. Psychometrika, 45(1), 39-67.spa
dc.relation.referencesSaul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: unsupervised learning of low dimensional manifolds. Departmental Papers (CIS), 12.spa
dc.relation.referencesSantos, M. Y., e Sá, J. O., Costa, C., Galvão, J., Andrade, C., Martinho, B., & Costa, E. (2017). A big data analytics architecture for industry 4.0. In World Conference on Information Systems and Technologies (pp. 175-184). Springer, Cham.spa
dc.relation.referencesSchölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319.spa
dc.relation.referencesScholz, M. (2012). Validation of nonlinear PCA. Neural processing letters, 36(1), 21-30.spa
dc.relation.referencesShawe-Taylor, J., Williams, C. K., Cristianini, N., & Kandola, J. (2005). On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Transactions on Information Theory, 51(7), 2510-2522.spa
dc.relation.referencesShepard, R. N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika, 27(2), 125-140.spa
dc.relation.referencesShepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology, 3(2), 287-315.spa
dc.relation.referencesSriperumbudur, B., & Sterge, N. (2017). Approximate kernel PCA using random features: Computational vs. statistical trade-off. arXiv preprint arXiv:1706.06296.spa
dc.relation.referencesStewart, G. W. (1993). On the Early History of the Singular Value Decomposition. SIAM REVIEW. Vol 35(4), 551 - 566.spa
dc.relation.referencesTakane, Y., Young, F. W., & De Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42(1), 7-67.spa
dc.relation.referencesTaporoski, T. P., Negrão, A. B., Horimoto, A. R. V. R., Duarte, N. .E, Alvim, R. O., de Oliveira, C. M., et al. (2015). Shared Genetic Factors of Anxiety and Depression Symptoms in a Brazilian Family-Based Cohort, the Baependi Heart Study. PLoS ONE 10(12): e0144255, 1-10. doi:10.1371/journal.pone.0144255spa
dc.relation.referencesTenenbaum, J. B. (1998). Mapping a manifold of perceptual observations. Advances in neural information processing systems, 10, 682-688.spa
dc.relation.referencesTorgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17(4), 401-419.spa
dc.relation.referencesTenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.spa
dc.relation.referencesTuerhong, G., & Kim, S. B. (2014). Gower distance-based multivariate control charts for a mixture of continuous and categorical variables. Expert systems with applications, 41(4), 1701-1707.spa
dc.relation.referencesTschannen, M., Bachem, O., & Lucic, M. (2018). Recent advances in autoencoder-based representation learning. arXiv preprint arXiv:1812.05069.spa
dc.relation.referencesVan der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).spa
dc.relation.referencesVan der Burg, E., De Leeuw, J., & Verdegaal, R. (1988). Homogeneity analysis withk sets of variables: An alternating least squares method with optimal scaling features. Psychometrika, 53(2), 177-197.spa
dc.relation.referencesVenna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 11(2).spa
dc.relation.referencesVon der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 14(2), 85-100.spa
dc.relation.referencesVon Schantz, M. et al. (2015). Distribution and heritability of diurnal preference (chronotype) in a rural Brazilian family-based cohort, the Baependi study. Sci. Rep., 5:9214, 1-6. DOI:10.1038/srep09214spa
dc.relation.referencesWaagen, D., Hulsey, D., Godwin, J., Gray, D., Barton, J., & Farmer, B. (2021, April). t-SNE or not t-SNE, that is the question. In Automatic Target Recognition XXXI (Vol. 11729, p. 117290B). International Society for Optics and Photonics.spa
dc.relation.referencesWattenberg, M., Viégas, F., & Johnson, I. (2016). How to use t-SNE effectively. Distill, 1(10), e2.spa
dc.relation.referencesWeinberger, K. Q., & Saul, L. K. (2006, July). An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In AAAI (Vol. 6, pp. 1683-1686).spa
dc.relation.referencesWerbos, P. J. (2008). Foreword: ADP-The Key Direction for Future Research in Intelligent Control and Understanding Brain Intelligence. IEEE Trans. Syst. Man Cybern. Part B, 38(4), 898-900.spa
dc.relation.referencesWetzel, S. J. (2017). Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders. Physical Review E, 96(2), 022140.spa
dc.relation.referencesWilliams, C. K. (2001). On a connection between kernel PCA and metric multidimensional scaling. In Advances in neural information processing systems (pp. 675-681).spa
dc.relation.referencesWilliams, C. K. (2002). On a connection between kernel PCA and metric multidimensional scaling. Machine Learning, 46(1), 11-19.spa
dc.relation.referencesWold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.spa
dc.relation.referencesYang, L. (2004, August). Sammons nonlinear mapping using geodesic distances. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 2, pp. 303-306). IEEE.spa
dc.relation.referencesYoung, F. W., De Leeuw, J., & Takane, Y. (1976). Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features. Psychometrika, 41(4), 505-529.spa
dc.relation.referencesYoung, F. W., Takane, Y., & de Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. Psychometrika, 43(2), 279-281.spa
dc.relation.referencesYoung, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3(1), 19-22.spa
dc.relation.referencesZhang, Z., Chow, T. W., & Zhao, M. (2012). M-Isomap: Orthogonal constrained marginal isomap for nonlinear dimensionality reduction. IEEE transactions on cybernetics, 43(1), 180-191.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lcshMultivariate analysis
dc.subject.lembAnálisis multivariable
dc.subject.proposalComponentes Principalesspa
dc.subject.proposalComponentes Principales no Linealesspa
dc.subject.proposalEscalamiento Óptimospa
dc.subject.proposalAnálisis de Homogeneidadspa
dc.subject.proposalMínimos Cuadrados Alternantesspa
dc.subject.proposalPrincipal Components Analyisiseng
dc.subject.proposalNonlinear Principal Componentseng
dc.subject.proposalOptimal Scalingeng
dc.subject.proposalHomogeinity Analysiseng
dc.subject.proposalAlternating Least Squareseng
dc.titleEstudio de las técnicas de reducción de dimensión basadas en componentes principales: Análisis de componentes principales no linealesspa
dc.title.translatedStudy of dimension reduction techniques based on Principal Components: Non-linear Principal Components Analysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1054995955.2021.pdf
Tamaño:
1.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: