Compuestos orgánicos volátiles de Trichoderma spp. con actividad biocontroladora sobre el patógeno Fusarium oxysporum f. sp. lycopersici y el insecto plaga Trialeurodes vaporariorum en plantas de tomate

dc.contributor.advisorAragón Rodríguez, Sandra Milenaspa
dc.contributor.advisorSinuco León, Diana Cristinaspa
dc.contributor.authorRamírez Alarcón, Sandra Milenaspa
dc.date.accessioned2020-08-02T16:39:53Zspa
dc.date.available2020-08-02T16:39:53Zspa
dc.date.issued2019-06-10spa
dc.description.abstractThe effect of the volatile organic compounds (VOCs) emitted by 15 strains of Trichoderma spp. was evaluated on (1) in vitro radial growth of Fusarium oxysporum f. sp. lycopersici (FoL59), (2) the severity of the disease in planta and (3) the oviposition rate of the greenhouse whitefly Trialeurodes vaporariorum. For the in vitro experiment, we used the double plate technique, where two Petri plates, one with Trichoderma spp. and other with F. oxysporum grown on PDA were placed one over the other for ten days at 25°C, the inhibition rate was registered. Seven strains showed the best inhibition rates of the pathogen: Th004 (46.1%), M44 (45,8%), Th035(40,5%), Th019(39,8%), Th007 (39,4%), 3T (39%) and M45 (37.1%). These strains were assessed in planta by exposing the roots of tomato seedling to the VOCs emitted by Trichoderma spp. in a sealed environment for 21 days. The progress and severity of the disease were assessed. Only the strain Th035 showed a significant difference compared to control plants, reducing by 31% the severity of the disease. Finally, the oviposition preference index (OPI) of the whitefly on VOCs treated tomato plants. Negative OPI values were observed with the strains Th035 (-27.30), M44 (-21.80), Th007 (-17.17) and M45(-7,46), while Th004, 3T, and Th019 showed a stimulant effect on the oviposition. These findings demonstrate a biocontrol activity generated by the fungal VOCs of Trichoderma spp. against two different tomato plant health problems and contribute to the development of biological control strategies via bioprospection of fungal metabolites.spa
dc.description.abstractEn esta investigación se evaluó el efecto de los compuestos orgánicos volátiles (COVs) emitidos por 15 cepas de Trichoderma spp. sobre (1) el crecimiento radial in vitro de Fusarium oxysporum f. sp.lycopersici, (2) la severidad de la enfermedad in planta y (3) la tasa de oviposición de Trialeurodes vaporariorum en tomate. En condiciones in vitro, se empleó la técnica de doble placa, donde se enfrentó una caja de Petri con Trichoderma y otra con F. oxysporum desarrollados en medio PDA, permitiendo solo el intercambio de los VOCs durante 10 días a 25°C. Los mayores porcentajes de inhibición observados fueron: Th004 (46.1%), M44 (45,8%), Th035(40,5%), Th019(39,8%), Th007 (39,4%), 3T(39%) y M45 (37.1%). Estas cepas, fueron probadas en condiciones in planta, mediante la exposición de las raíces de las plántulas de tomate inoculadas con el patógeno, a los COVs emitidos por Trichoderma spp. en un ambiente confinado durante 21 días. Se observó que la cepa Th035, disminuyó la severidad de la enfermedad en un 31%. Finalmente, se calculó el índice de preferencia de oviposición (IPO) de la mosca blanca sobre plantas tratadas con los COVs, observando valores negativos con las cepas Th035 (-27.30), M44 (-21.80), Th007 (-17.17) y M45(-7,46), mientras que las cepas Th004, 3T, y Th019 estimularon una mayor oviposición. Estos resultados demuestran el potencial biocontrolador de los compuestos orgánicos volátiles emitidos por algunas cepas del hongo Trichoderma sobre dos problemas fitosanitarios en tomate y contribuyen al desarrollo de estrategias de control biológico mediante la bioprospección de estos metabolitos.spa
dc.description.additionalMagíster en Ciencias, Microbiología . Línea de Investigación: Microbiología.spa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipAgrosaviaspa
dc.format.extent95spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRamírez Alarcón Sandra Milena. Compuestos orgánicos volátiles de Trichoderma spp. con actividad biocontroladora sobre el patógeno Fusarium oxysporum f. sp. lycopersici y el insecto plaga Trialeurodes vaporariorum en plantas de tomate. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTA. 2020spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77894
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAgrawal, A. A. (2005). Future directions in the study of induced plant responses to herbivory. Entomologia Experimentalis et Applicata, 115(1), 97-105.spa
dc.relation.referencesAgronet. (2017). Producción y rendimiento de tomate 2017. ttps://www.agronet.gov.co/Documents/9- TOMATE_2017.pdf%0Ahttp://www.agronet.gov.co/Documents/TOMATE2016.pdfspa
dc.relation.referencesAgrios GN (2005) Plant pathology. Academic press.spa
dc.relation.referencesAjilogba, C. F., & Babalola, O. O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol science, 18(3), 117-127spa
dc.relation.referencesAmini, J., & Sidovich, D. (2010). The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of plant protection research, 50(2), 172-178.spa
dc.relation.referencesAragón, S., & Beltran, C. (2018). Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga Endophytic fungi in biological control of phytopathogens and insect pests Contenido. Control Biológico de Fitopatógenos, Insectos y Ácaros, October 2018, 854–873.spa
dc.relation.referencesAregbesola, O. Z., Legg, J. P., Sigsgaard, L., Lund, O. S., & Rapisarda, C. (2019). Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. Journal of Pest Science, 92(2), 381-392.spa
dc.relation.referencesBernal, L., Pesca, L., Rodríguez, D., Cantor, F., & Cure, J. (2008). Plan de muestreo directo para Trialeurodes vaporariorum (Westwood)(Hemiptera: Aleyrodidae) en cultivos comerciales de tomate. Agronomía colombiana, 26(2), 266-276.spa
dc.relation.referencesBetancur Pérez, J. F. (2012). Identificación y caracterización molecular de virus transmitidos por mosca blanca Bemisia tabaci que infectan tomate en la región andina de Colombia (para optar título de Doctoral, Universidad Nacional de Colombia-Sede Palmira).spa
dc.relation.referencesBlancard, D. (2011). Enfermedades del tomate: Mundi-Prensa Libros.spa
dc.relation.referencesBolton, M. D. (2009). Primary metabolism and plant defense—fuel for the fire. Molecular plant-microbe Interactions, 22(5), 487-497.spa
dc.relation.referencesBruce, A., Wheatley, R. E., Humphris, S. N., Hackett, C. A., & Florence, M. E. (2000). Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung, 54(5), 481-486.spa
dc.relation.referencesChen, J.-L., Sun, S.-Z., Miao, C.-P., Wu, K., Chen, Y.-W., Xu, L.-H., Zhao, L.-X. (2016). Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. Journal of Ginseng Research, 40(4), 315-324.spa
dc.relation.referencesCarmona, S. L. (2018). Sandra Lorena Carmona Gutiérrez. Universidad Nacional de Colombia.spa
dc.relation.referencesCarmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., Simbaqueba, J., & Soto-Suárez, M. (2020). Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean Region of Colombia. Pathogens, 9(1). https://doi.org/10.3390/pathogens9010070spa
dc.relation.referencesCordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V. J., & Raaijmakers, J. M. (2017). Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani. Frontiers in Plant Science, 8, 1262. https://doi.org/10.3389/fpls.2017.01262spa
dc.relation.referencesContreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS microbiology ecology, 92(4), fiw036.spa
dc.relation.referencesContreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53. https://doi.org/10.1016/j.apsoil.2017.10.004spa
dc.relation.referencesContarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L., & Restuccia, C. (2019). Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food microbiology, 82, 70-74.spa
dc.relation.referencesContreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2020). Interactions of Trichoderma with plants, insects, and plant pathogen microorganisms: chemical and molecular bases. Co-Evolution of Secondary Metabolites, 263-290.spa
dc.relation.referencesDarshanee, H. L., Ren, H., Ahmed, N., Zhang, Z. F., Liu, Y. H., & Liu, T. X. (2017). Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Frontiers in plant science, 8, 1285.spa
dc.relation.referencesDavis, T. S., Crippen, T. L., Hofstetter, R. W., & Tomberlin, J. K. (2013). Microbial Volatile Emissions as Insect Semiochemicals. Journal of Chemical Ecology, 39(7), 840–859. https://doi.org/10.1007/s10886-013-0306-zspa
dc.relation.referencesDe Granada, E. G., De Amezquita, M. C. O., Mendoza, G. R. B., & Zapata, H. A. V. (2001). Fusarium oxysporum el hongo que nos falta conocer. Acta Biológica Colombiana, 6(1), 7-25.spa
dc.relation.referencesDe Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., & Pieterse, C. M. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular plant-microbe interactions, 18(9), 923-937spa
dc.relation.referencesDos Reis Almeida, F. B., Cerqueira, F. M., do Nascimento Silva, R., Ulhoa, C. J., & Lima, A. L. (2007). Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnology letters, 29(8), 1189-1193.spa
dc.relation.referencesEbrahimifar, J., Jamshidnia, A., & Allahyari, H. (2017). Functional response of Eretmocerus delhiensis (Hymenoptera: Aphelinidae) on Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) by parasitism and host feeding. Journal of Insect Science, 17(2), 56.spa
dc.relation.referencesEffmert, U., Kalderás, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of chemical ecology, 38(6), 665-703.spa
dc.relation.referencesFAO (2013). El cultivo de tomate con buenas prácticas agrícolas en la agricultura urbana y periurbana. Recuperado de http://www. fao. org/3/a-i3359s. pdf.spa
dc.relation.referencesFAO (2018). FAOSTAT Crop statistics. http://www.fao.org/faostat/en/#data/QCspa
dc.relation.referencesFAO (2019). Manejo integrado de enfermidades-FAO. www.fao.org/3/a1374s/a1374s05.pdf.spa
dc.relation.referencesFargues, J., Vidal, C., Smits, N., Rougier, M., Boulard, T., Mermier, M., ... & Lagier, J. (2003). Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biological Control, 28(3), 320-331.spa
dc.relation.referencesGómez, M. (2019). Evaluación de sustancias bioactivas como alternativa para el manejo de la marchitez vascular causada por Fusarium oxysporum f. sp. lycopersici [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/71749/1/1069723022.2019.pdfspa
dc.relation.referencesGonzález, I., Yailén, A., & Peteira, B. (2012). Aspectos generales de la interacción Fusarium oxysporum f. sp. lycopersici-tomate. Revista de Protección Vegetal, 27(1), 1-7spa
dc.relation.referencesGordon, T. R. (2017). Fusarium oxysporum and the Fusarium wilt syndrome. Annual review of phytopathology, 55, 23-39.spa
dc.relation.referencesGuo, Y., Ghirardo, A., Weber, B., Schnitzler, J. P., Benz, J. P., & Rosenkranz, M. (2019). Trichoderma Species Differ in Their Volatile Profiles and in Antagonism Toward Ectomycorrhiza Laccaria bicolor. Frontiers in microbiology, 10, 891.spa
dc.relation.referencesGupta, V. G., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., & Tuohy, M. (Eds.). (2014). Biotechnology and biology of Trichoderma. Newnesspa
dc.relation.referencesHarman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant disease, 84(4), 377-393.spa
dc.relation.referencesHarman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43.spa
dc.relation.referencesHassanpour, M., Bagheri, M., Golizadeh, A., & Farrokhi, S. (2016). Functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to Trialeurodes vaporariorum (Hemiptera: Aleyrodidae): effect of different host plants. Biocontrol Science and Technology, 26(11), 1489-1503.spa
dc.relation.referencesHung, R., Lee, S., & Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal ecology, 6(1), 19-26.spa
dc.relation.referencesHung, R., Lee, S., & Bennett, J. W. (2015). Fungal volatile organic compounds and their role in ecosystems. Applied microbiology and biotechnology, 99(8), 3395-3405.spa
dc.relation.referencesInbar, M., & Gerling, D. (2008). Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu. Rev. Entomol., 53, 431-448.spa
dc.relation.referencesJaber, L. R., & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological control, 116, 36-45.spa
dc.relation.referencesJaramillo, J., Rodriguez, V., Gil, L., Garcia, M., Climaco, J., Quevedo, D., Sanchez, G., Aguilar, P., Pinzon, L., Zapata, M., Restrepo, J., & Guzman, M. (2013). Tecnología para el cultivo de tomate bajo condiciones protegidas. In Tecnología para el cultivo de tomate bajo condiciones protegidas. https://doi.org/10.21930/978-958-740-120-2spa
dc.relation.referencesKant, P.; Reinprecht, Y.; Martin, C.J.; Islam, R.; Pauls, K.P.( 2011). Integration of biotechnologies: disease resistance pathology Fusarium. In: Moo-Young M. (ed.). Comprehensive Biotechnology, second edition, Elsevier, Amsterdam. p.729-743.spa
dc.relation.referencesKessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annual review of plant biology, 53(1), 299-328.spa
dc.relation.referencesLee, S., Yap, M., Behringer, G., Hung, R., & Bennett, J. W. (2016). Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal biology and biotechnology, 3(1), 7.spa
dc.relation.referencesLee, S., Behringer, G., Hung, R., & Bennett, J. (2019). Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal ecology, 37, 1-9.spa
dc.relation.referencesLeonetti, P., Zonno, M. C., Molinari, S., & Altomare, C. (2017). Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant cell reports, 36(4), 621-631.spa
dc.relation.referencesMacías-Rodríguez, L., Guzmán-Gómez, A., García-Juárez, P., & Contreras-Cornejo, H. A. (2018). Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology, 94(9). https://doi.org/10.1093/femsec/fiy137spa
dc.relation.referencesLemfack, M. C., Nickel, J., Dunkel, M., Preissner, R., & Piechulla, B. (2013). mVOC: a database of microbial volatiles. Nucleic acids research, 42(D1), D744-D748.spa
dc.relation.referencesMahecha, L. M. H., & del Rosario Manzano, M. (2016). Efecto del viento en la dispersión a corta distancia del parasitoide Amitus fuscipennis MacGown y Nebeker (Hymenoptera: Platygasteridae) en cultivos de fríjol y habichuela. Acta Agronómica, 65(1), 80-86.spa
dc.relation.referencesMathys, J., De Cremer, K., Timmermans, P., Van Kerkhove, S., Lievens, B., Vanhaecke, M., & De Coninck, B. (2012). Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Frontiers in plant science, 3, 108.spa
dc.relation.referencesMayer, R. T., Inbar, M., McKenzie, C. L., Shatters, R., Borowicz, V., Albrecht, U. & Doostdar, H. (2002). Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 51(4), 151-169.spa
dc.relation.referencesMendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A., & Mukherjee, P. K. (2018). Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews, 32(2), 62-85.spa
dc.relation.referencesMC Govern, R. J., & MC Sorley, R. (2012). Management of bacterial and fungal plant pathogens by soil solarization. Soil Solarization: Theory and Practice. APS Press, Minneapolis, MN, 53-62.spa
dc.relation.referencesMC Govern, R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection. 73:78-92.spa
dc.relation.referencesMcKee, G. J., & Zalom, F. G. (2009). A model of greenhouse whitefly Trialeurodes vaporariorum (Westwood) population development and management on Camarosa variety strawberry plants. Journal of Asia-Pacific Entomology, 12(3), 117-122.spa
dc.relation.referencesMcKenzie, C. L., Shatters Jr, R. G., Doostdar, H., Lee, S. D., Inbar, M., & Mayer, R. T. (2002). Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis‐related proteins in tomato. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 49(4), 203-214.spa
dc.relation.referencesMoisan, K., Cordovez, V., van de Zande, E. M., Raaijmakers, J. M., Dicke, M., & Lucas-Barbosa, D. (2019). Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia, 190(3), 589–604. https://doi.org/10.1007/s00442-019-04433-wspa
dc.relation.referencesMonteiro, V. N., do Nascimento Silva, R., Steindorff, A. S., Costa, F. T., Noronha, E. F., Ricart, C. A. O., ... & Ulhoa, C. J. (2010). New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Current microbiology, 61(4), 298-305.spa
dc.relation.referencesMoreno, I., Belando, A., Grávalos, C., & Bielza, P. (2018). Baseline susceptibility of Mediterranean strains of Trialeurodes vaporariorum (Westwood) to cyantraniliprole. Pest management science, 74(7), 1552-1557.spa
dc.relation.referencesMoreno-Velandia, C. A., Izquierdo-García, L. F., Ongena, M., Kloepper, J. W., & Cotes, A. M. (2019). Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant and Soil, 435(1-2), 39-55.spa
dc.relation.referencesMorath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2-3), 73-83.spa
dc.relation.referencesNaher, L., Yusuf, U. K., Ismail, A., & Hossain, K. (2014). Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak. J. Bot, 46(4), 1489-1493.spa
dc.relation.referencesNasruddin, A., & Mound, L. A. (2016). First record of Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae) severely damaging field grown potato crops in South Sulawesi, Indonesia. Journal of plant protection research, 56(2), 199-202.spa
dc.relation.referencesNawrocka, J., & Małolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological control, 67(2), 149-156.spa
dc.relation.referencesNaznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9(1), e86882.spa
dc.relation.referencesPagans, E., Font, X., & Sánchez, A. (2006). Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. Journal of hazardous materials, 131(1-3), 179-186.spa
dc.relation.referencesPeralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84.spa
dc.relation.referencesPineda, A., Zheng, S.-J., Van Loon, J. J. A., Pieterse, C. M. J., & Dicke, M. (2010). Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 15, 507–514. https://doi.org/10.1016/j.tplants.2010.05.007spa
dc.relation.referencesPym, A., Singh, K. S., Nordgren, Å., Davies, T. E., Zimmer, C. T., Elias, J., ... & Bass, C. (2019). Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC genomics, 20(1), 1-19.spa
dc.relation.referencesRamyabharathi, S. A., Meena, B., & Raguchander, T. (2012). Induction of chitinase and β-1, 3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today’s Biol Sci Res Rev, 1, 50-60.spa
dc.relation.referencesRincon, D. F., Vasquez, D. F., Rivera-Trujillo, H. F., Beltrán, C., & Borrero-Echeverry, F. (2019). Economic injury levels for the potato yellow vein disease and its vector, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), affecting potato crops in the Andes. Crop Protection, 119(January), 52–58. https://doi.org/10.1016/j.cropro.2019.01.002spa
dc.relation.referencesRoberto N. Silva, Valdirene Neves Monteiro, Andrei Stecca Steindorf, Eriston Viera Gomes, Eliane Ferreira Noronha, Cirano J. Ulhoa, (2019) Trichoderma/pathogen/plant interaction in pre-harvest food security, Fungal Biology.spa
dc.relation.referencesRyu, C. Farag, M.A., Hu, C., Reddy, M.S., Wei, H., Pare, P.W., & Kloepper, J.W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 100(8), 4927-4932.spa
dc.relation.referencesSchmidt, R., Cordovez, V., De Boer, W., Raaijmakers, J., & Garbeva, P. (2015). Volatile affairs in microbial interactions. The ISME journal, 9(11), 2329-2335.spa
dc.relation.referencesShoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43spa
dc.relation.referencesSimsek, D., Pinar, H., & Mutlu, N. (2018). Development of Fusarium oxysporum f. sp. lycopersici (fol) and Fusarium oxysporum f. sp. radicis lycopersici (forl) resistant tomato lines with the aid of marker assisted selection. Current Trends in Natural Sciences Vol, 7(13), 281-285.spa
dc.relation.referencesSingh, B. N., Singh, A., Singh, B. R., & Singh, H. B. (2014). Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani. Journal of applied microbiology, 116(3), 654-666.spa
dc.relation.referencesSinuco, D. C., Pérez, A. C., & Moreno-Sarmiento, N. (2017). Evaluación de la actividad fungicida e identificación de compuestos orgánicos volátiles liberados por Trichoderma viride. Revista Colombiana de Biotecnología, 19(1), 63-70.spa
dc.relation.referencesSinuco León, D., Coconubo Guio, L.C., & Castellanos, L. (2020). Fungicidal activity of volatile organic compounds from Paenibacillus bacteria against Colletotrichum gloeosporioides. Revista Colombiana de Química, 49(1), 20-25.spa
dc.relation.referencesStashenko, E. E., & Martínez, J. R. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Scientia Chromatographica, 2, 29–47.spa
dc.relation.referencesSnyder, W. C., & Hansen, H. N. (1940). The Species Concept in Fusarium. American Journal of Botany, 27(2), 64–67. https://doi.org/10.1002/j.1537-2197.1940.tb14217.xspa
dc.relation.referencesStoppacher, N., Kluger, B., Zeilinger, S., Krska, R., & Schuhmacher, R. (2010). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 81(2), 187-193.spa
dc.relation.referencesToro, V. (2017). Evaluación de método de muestreo y dinámica poblacional de mosca blanca.(Tesis de grado.Ingeniero Agrónomo). Escuela Superior Politecnica de Chimborazo. Riobamba-Ecuador, Chimborazo. p. 87.spa
dc.relation.referencesVásquez, R. L., & Castaño, Z. J. (2017). manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) WC Snyder & HN Hansen]: UNA REVISIÓN. Revista UDCA Actualidad & Divulgación Científica, 20(2), 363-374.spa
dc.relation.referencesVerma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valero, J. R. (2007). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20.spa
dc.relation.referencesVinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10spa
dc.relation.referencesVinale, F., Ghisalberti, E. L., Sivasithamparam, K., Marra, R., Ritieni, A., Ferracane, R., & Lorito, M. (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in applied microbiology, 48(6), 705-711.spa
dc.relation.referencesVinodkumar, S., Indumathi, T., & Nakkeeran, S. (2017). Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biological Control, 113, 58-64.spa
dc.relation.referencesWink, M. (2018). Plant secondary metabolites modulate insect behavior-steps toward addiction?. Frontiers in physiology, 9, 364.spa
dc.relation.referencesYang, Z., Yu, Z., Lei L., Xia., Z., Shao, L., Zhnag, K., & Li, G. (2012). Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology, 15 (4), 647–650.spa
dc.relation.referencesZaki, O., Weekers, F., Thonart, P., Tesch, E., Kuenemann, P., & Jacques, P. (2020). Limiting factors of mycopesticide development. Biological Control, 104220.spa
dc.relation.referencesZavala, J. A. (2010). Respuestas inmunológicas de las plantas frente al ataque de insectos.spa
dc.relation.referencesZipfel, C. (2013). Combined roles of ethylene and endogenous peptides in regulating plant immunity and growth. Proceedings of the National Academy of Sciences, 110(15), 5748-5749.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.ddc633 - Cultivos de campo y de plantaciónspa
dc.subject.ddc668 - Tecnología de otros productos orgánicosspa
dc.subject.ddc333 - Economía de la tierra y de la energíaspa
dc.subject.proposalbioprospecciónspa
dc.subject.proposalRadial growth inhibitioneng
dc.subject.proposalmarchitez vascularspa
dc.subject.proposalbioprospectingeng
dc.subject.proposalvascular wilteng
dc.subject.proposalíndice de preferencia de oviposiciónspa
dc.subject.proposalcontrol biológicospa
dc.subject.proposaloviposition preference indexeng
dc.subject.proposalbiological controleng
dc.subject.proposalinhibición de crecimiento radialspa
dc.subject.proposalradial growth inhibitioneng
dc.titleCompuestos orgánicos volátiles de Trichoderma spp. con actividad biocontroladora sobre el patógeno Fusarium oxysporum f. sp. lycopersici y el insecto plaga Trialeurodes vaporariorum en plantas de tomatespa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090400777.2020.pdf
Tamaño:
1.65 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: