Producción de aminoácidos tipo-micosporinas mediante cultivo de macroorganismos y microorganismos : revisión de condiciones de cultivo, técnicas analíticas y usos

dc.contributor.advisorCastellanos Hernandez, Leonardo
dc.contributor.advisorUrrea Victoria, Vanessa
dc.contributor.authorGarcia Ramirez, Natalia Katherine
dc.contributor.researchgroupEstudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.date.accessioned2025-09-29T20:20:35Z
dc.date.available2025-09-29T20:20:35Z
dc.date.issued2024
dc.descriptionilustraciones a color, diagramas, mapasspa
dc.description.abstractLos aminoácidos tipo micosporinas (MAAs, por sus siglas en inglés) son moléculas nitrogenadas solubles en agua, que absorben significativamente la radiación ultravioleta, ganando cada vez más relevancia en el ámbito de la cosmética, por sus potenciales aplicaciones como componentes activos de productos fotoprotectores para el cuidado de la piel. Estos compuestos están ampliamente distribuidos en la naturaleza, generalmente en organismos que están expuestos a luz de alta intensidad, como cianobacterias, hongos, microalgas y macroalgas marinas, corales e incluso líquenes terrestres. Los primeros reportes de los MAAs se remontan a la década de 60s, y desde entonces han sido caracterizados alrededor de 60 MAAs. Sus propiedades como fotoprotector han hecho que sean objeto de múltiples investigaciones, entre las cuales se han venido buscando alternativas de producción a partir del cultivo de organismos, principalmente marinos. Así pues, la presente tesis de maestría tiene como objetivo principal caracterizar los estudios de cultivos de organismos para la producción de este tipo de compuestos, mediante una revisión sistemática de la bibliografía, con miras a identificar los organismos potencialmente cultivables en el contexto colombiano. Para ello, se recopiló la información consultada en las bases de datos Scielo, SciFinder y Scopus, usando las palabras claves “Mycosporine-Like Amino Acids” ‘AND’ el nombre del grupo taxonómico general en inglés (ej. cyanobacteria, etc.). A partir de la búsqueda, se recuperaron 1239 artículos, los cuales fueron depurados para delimitar 185 documentos publicados desde 1993 hasta 2023, a ser revisados, estudiados y sus datos registrados en una matriz para el posterior análisis. La revisión permitió identificar el cultivo de 385 cepas de diferentes grupos de organismos, que mostraron la producción de 36 MAAs diferentes. Se identificaron 23 organismos (género o especie) con potencialidad para la producción de MAAs a través de cultivo, dentro de los cuales el taxón predominante son las macroalgas (8 especímenes), seguido por las cianobacterias (7 especímenes), microalgas (2 especímenes), carofitas (2 especímenes), dinoflagelados (2 especímenes), y hongos (1 espécimen), que presentaron concentraciones altas, tanto generales como específicas para cada MAAs. Los géneros con mayor contenido de MAAs total fueron Caloglossa con 30,9 mg/g DW, Bangia con 19,48 mg/gDW, y Pseudanabaena con 16,5 mg/g DW. Porphyra-334 (31,2 mg/g DW), shinorina (20,9 mg/g DW) son los cuantitativamente dominantes para las macroalgas y cianobacterias. Además, palitina-serina (16,5 mg/g DW) fue dominante en las cianobacterias. Estos géneros son los que se consideran con mayor potencial biotecnológico en el país. Adicionalmente, se encontraron dos reportes de organismos genéticamente modificados que reportaron altas concentraciones de MAAs (Saccharomyces cerevisiae con genes de Actinosynnema mirum y Nannochloropsis salina con genes de Pyropia yezoensis), que en condiciones naturales no cuentan con esos metabolitos dentro de su perfil. Entre las variables que influyen el cultivo de los organismos para la producción de MAAs está predominantemente la radiación, seguido por la salinidad, nutrientes (como la concentración de amoniaco) y temperatura. Finalmente, en relación con los métodos analíticos, el proceso de extracción se desarrolla principalmente con metanol, y la detección e identificación mediante técnicas de espectroscopía UV, HPLC, HPLC-MS y RMN (Texto tomado de la fuente).spa
dc.description.abstractMycosporine-like amino acids (MAAs) are water-soluble nitrogenous molecules that significantly absorb ultraviolet radiation, increasingly gaining relevance in the cosmetic industry for applications as active components in sunscreen products for skin care. These compounds are widely distributed in nature, typically found in organisms exposed to high-intensity light, such as cyanobacteria, fungi, microalgae, macroalgae, corals, and even terrestrial lichens. The first reports of MAAs date back to the 1960s, and since then, around 60 MAAs have been characterized. Their photoprotective properties have led to multiple research efforts, including the search for production alternatives through the cultivation of marine organisms. Thus, this master's thesis aims to characterize studies on organism cultivation to produce these compounds through a systematic review, with the goal of identifying potentially cultivable organisms for Colombia. To achieve this, information was gathered from the Scielo, SciFinder, and Scopus databases, using keywords such as "Mycosporine-Like Amino Acids" 'AND' “general taxonomic group name” in English. The search yielded 1239 articles, which were refined to 185 documents published from 1993 to 2023 and data recorded in a matrix for subsequent analysis.The review identified 385 strains from different organism groups, demonstrating the production of 36 different MAAs. Moreover, 23 organisms (genus or species) with the potential for MAAs production through cultivation, with macroalgae (8 specimens) being the predominant taxon, followed by cyanobacteria (7 specimens), microalgae (2 specimens), charophytes (2 specimens), dinoflagellates (2 specimens), and fungi (1 specimen), which exhibited high concentrations, both in general and specific for each MAAs. The genera with the highest total MAA content were Caloglossa with 30.9 mg/g DW, Bangia with 19.48 mg/g DW, and Pseudanabaena with 16.5 mg/g DW. Porphyra-334 (31.2 mg/g DW), shinorine (20.9 mg/g DW) are quantitatively dominant for both macroalgae and cyanobacteria. Additionally, palithyne-serine (16.5 mg/g DW) is also dominant for cyanobacteria. These genera are considered to have the greatest biotechnological potential in the country. Additionally, two reports of genetically modified organisms were found to exhibit high concentrations of MAAs (Saccharomyces cerevisiae with Actinosynnema mirum genes and Nannochloropsis salina with Pyropia yezoensis genes), which do not naturally possess these metabolites in their profile. Among the variables influencing organism cultivation for MAAs production, irradiance predominates, followed by salinity, nutrients (such as ammonia concentration), and temperature. Finally, regarding analytical methods, the extraction process primarily uses methanol, and detection and identification are performed using UV spectroscopy, HPLC, HPLC-MS, and NMR techniques.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias - Química
dc.description.methodsPara identificar los artículos científicos sobre el cultivo de organismos productores de MAAs, se hizo una búsqueda exhaustiva de los trabajos científicos publicados en revistas indexadas. Las bases de datos consultadas fueron Scopus, Scifinder y Scielo.
dc.description.researchareaProductos Naturales
dc.format.extentxvii, 124 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88979
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesAhmed, H., Pathak, J., Rajneesh, Sonkar, P. K., Ganesan, V., Häder, D.-P., & Sinha, R. P. (2021). Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: Photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling and its antioxidative potentials. 3 Biotech, 11(1), 10. https://doi.org/10.1007/s13205-020-02562-1
dc.relation.referencesAlegría Hatada, E. A., Cano Huillca, G. E., & Azabache Morán, C. A. (2018). La viabilidad de los productos cosméticos ecológicos en función de los atributos más valorados en la decisión de compra [UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS]. http://hdl.handle.net/10757/623551
dc.relation.referencesAlparslan, L., Sekeroglu, N., & Kijjoa, A. (2018). The Potential of Marine Resources in Cosmetics. Current Perspectives on Medicinal and Aromatic Plants, 2, 53-66.
dc.relation.referencesAraujo Vidal, D. R., Hernández Benítez, R. E., & Vanegas, J. (2018). Efecto de la Inoculación de Cianobacterias en Cultivos de Interés Comercial en Zonas Semiáridas de La Guajira—Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20-31.
dc.relation.referencesAristizabal Gómez, S. C. A., & Vasquez Salazar, J. J. V. (2022). Aislamiento de levaduras oleaginosas a partir residuos orgánicos de la plaza Frutas y verduras Doña Yady, con el fin de obtener un sustrato para la posible producción de biodiesel [Tesis de pregrado, Ingenieria Ambiental]. Universidad del Bosque.
dc.relation.referencesArróniz-Crespo, M., Sinha, R. P., Martínez-Abaigar, J., Núñez-Olivera, E., & Häder, D. P. (2005). Ultraviolet Radiation-Induced Changes in Mycosporine-Like Amino Acids and Physiological Variables in the Red Alga Lemanea fluviatilis. Journal of Freshwater Ecology, 20(4), 677-687. https://doi.org/10.1080/02705060.2005.9664791
dc.relation.referencesBabele, P. K., Singh, G., Singh, A., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2017). UV-B radiation and temperature stress-induced alterations in metabolic events and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Acta Physiologiae Plantarum, 39(11), 248. https://doi.org/10.1007/s11738-017-2540-4
dc.relation.referencesBabich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh, E., Prosekov, A., Noskova, S., Ivanova, S., Fendri, I., Smaoui, S., Abdelkafi, S., Michaud, P., & Dolganyuk, V. (2022). Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. Plants, 11(6), Article 6. https://doi.org/10.3390/plants11060780
dc.relation.referencesBalcázar Naranjo, A. (2020). Evaluación de diferentes medios de cultivo para la obtención de biomasa microalgal con bajo contenido de nitrógeno utilizada en biofijación de CO2. http://hdl.handle.net/10784/25855
dc.relation.referencesBalskus, E. P., & Walsh, C. T. (2010). The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science (New York, N.Y.), 329(5999), 1653-1656. https://doi.org/10.1126/science.1193637
dc.relation.referencesBarceló-Villalobos, M., Figueroa, F. L., Korbee, N., Álvarez-Gómez, F., & Abreu, M. H. (2017). Production of Mycosporine-Like Amino Acids from Gracilaria vermiculophylla (Rhodophyta) Cultured Through One Year in an Integrated Multi-trophic Aquaculture (IMTA) System. Marine Biotechnology, 19(3), 246-254. https://doi.org/10.1007/s10126-017-9746-8
dc.relation.referencesBarufi, J. B., Mata, M. T., Oliveira, M. C., & Figueroa, F. L. (2012). Nitrate reduces the negative effect of UV radiation on photosynthesis and pigmentation in Gracilaria tenuistipitata (Rhodophyta): The photoprotection role of mycosporine-like amino acids. Phycologia, 51(6), 636-648. https://doi.org/10.2216/10.77.1
dc.relation.referencesBautista-Saraiva, Bonomi-Barufi, J., Figueroa, F., & Necchi Jr, O. (2018). UV-radiation effects on photosynthesis and photoprotection in gametophytic and sporophytic stages of the freshwater red alga Kumanoa ambigua (Rhodophyta, Batrachospermales). Phycological Research, 66, 108-116. https://doi.org/10.1111/pre.12209
dc.relation.referencesBecker, K., Hartmann, A., Ganzera, M., Fuchs, D., & Gostner, J. M. (2016). Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Marine Drugs, 14(6), Article 6. https://doi.org/10.3390/md14060119
dc.relation.referencesBoedeker, C., & Karsten, U. (2005). The occurrence of mycosporine-like amino acids in the gametophytic and sporophytic stages of Bangia (Bangiales, Rhodophyta). Phycologia, 44(4), 403-408. https://doi.org/10.2216/0031-8884(2005)44[403:TOOMAA]2.0.CO;2
dc.relation.referencesBois, F.Y.; Ochoa, J.G.D.; Gajewska, M.; Kovarich, S.; Mauch, K.; Paini, A.; Péry, A.; Benito, J.V.S.; Teng, S.; Worth, A. (2017). Multiscale modelling approaches for assessing cosmetic ingredients safety. Toxicology, 392, 130–139. https://doi.org/10.1016/j.tox.2016.05.026
dc.relation.referencesBonomi-Barufi, J., Figueroa, F. L., Korbee, N., Momoli, M. M., Martins, A. P., Colepicolo, P., Van Sluys, M.-A., & Oliveira, M. C. (2020). How macroalgae can deal with radiation variability and photoacclimation capacity: The example of Gracilaria tenuistipitata (Rhodophyta) in laboratory. Algal Research, 50, 102007. https://doi.org/10.1016/j.algal.2020.102007
dc.relation.referencesBoucar, M. C. M., Shen, L.-Q., Wang, K., Zhang, Z.-C., & Qiu, B.-S. (2021). UV-B irradiation enhances the production of unique mycosporine-like amino acids and carotenoids in the subaerial cyanobacterium Pseudanabaena sp. CCNU1. European Journal of Phycology, 56(3), 316-323. https://doi.org/10.1080/09670262.2020.1824019
dc.relation.referencesBrowne, N., Otero, P., Murray, P., & Saha, S. K. (2023). Rapid Screening for Mycosporine-like Amino Acids (MAAs) of Irish Marine Cyanobacteria and Their Antioxidant Potential. Sustainability, 15(4), 3792. https://doi.org/10.3390/su15043792
dc.relation.referencesCallone, A. I., Carignan, M., Montoya, N. G., & Carreto, J. I. (2006). Biotransformation of mycosporine like amino acids (MAAs) in the toxic dinoflagellate Alexandrium tamarense. Journal of Photochemistry and Photobiology B: Biology, 84(3), 204-212. https://doi.org/10.1016/j.jphotobiol.2006.03.001
dc.relation.referencesCamacho, O., & Fernández, J. M. (2012). Cultivo experimental en el mar del alga roja hypnea musciformis en el área de santa marta, caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 41(1), Article 1. https://doi.org/10.25268/bimc.invemar.2012.41.1.71
dc.relation.referencesCandelo V. & Llewellyn C. (2023) Separating and Purifying Mycosporine-like Amino Acids from Cyanobacteria for Application in Commercial Sunscreen Formulations. BioTech; 12(1):16. https://doi.org/10.3390/biotech12010016
dc.relation.referencesCardozo, K. H. M., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P., & Pinto, E. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 60-78. https://doi.org/10.1016/j.cbpc.2006.05.007
dc.relation.referencesCarignan, M. O., Cardozo, K. H. M., Oliveira-Silva, D., Colepicolo, P., & Carreto, J. I. (2009). Palythine–threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral Pocillopora capitata. Journal of Photochemistry and Photobiology B: Biology, 94(3), 191-200. https://doi.org/10.1016/j.jphotobiol.2008.12.001
dc.relation.referencesCarignan, M. O., & Carreto, J. I. (2013). Characterization of mycosporine-serine-glycine methyl ester, a major mycosporine-like amino acid from dinoflagellates: A mass spectrometry study. Journal of Phycology, 49(4), 680-688. https://doi.org/10.1111/jpy.12076
dc.relation.referencesCarreto, J., Carignan, M., & Montoya, N. (2001). Comparative studies on mycosporine-like amino acids, paralytic shellfish toxins and pigment profiles of the toxic dinoflagellates Alexandrium tamarense, A. catenella and A. minutum. Marine Ecology Progress Series, 223, 49-60. https://doi.org/10.3354/meps223049
dc.relation.referencesCarreto, J. I., Carignan, M. O., & Montoya, N. G. (2005). A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Marine Biology, 146(2), 237-252. https://doi.org/10.1007/s00227-004-1447-y
dc.relation.referencesChandra, N., & Mallick, N. (2022). A synergistic “waste-to-wealth” approach towards a cyanobacterial biorefinery via valorizing potato peels for the cultivation of marine Synechococcus elongatus. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03281-8
dc.relation.referencesChandra, R., Das, P., Vishal, G., & Nagra, S. (2019). Factors affecting the induction of UV protectant and lipid productivity in Lyngbya for sequential biorefinery product recovery. Bioresource Technology, 278, 303-310. https://doi.org/10.1016/j.biortech.2019.01.084
dc.relation.referencesChandra, R., Pons-Faudoa, F. P., Parra Saldívar, R., & Rittmann, B. E. (2020). Effect of ultra-violet exposure on production of mycosporine-like amino acids and lipids by Lyngbya purpurem. Biomass and Bioenergy, 134, 105475. https://doi.org/10.1016/j.biombioe.2020.105475
dc.relation.referencesCheewinthamrongrod, V., Kageyama, H., Palaga, T., Takabe, T., & Waditee-Sirisattha, R. (2016). DNA damage protecting and free radical scavenging properties of mycosporine-2-glycine from the Dead Sea cyanobacterium in A375 human melanoma cell lines. Journal of Photochemistry and Photobiology B: Biology, 164, 289-295. https://doi.org/10.1016/j.jphotobiol.2016.09.037
dc.relation.referencesChoo, W.-T., Teoh, M.-L., Phang, S.-M., Convey, P., Yap, W.-H., Goh, B.-H., & Beardall, J. (2020). Microalgae as Potential Anti-Inflammatory Natural Product Against Human Inflammatory Skin Diseases. Frontiers in Pharmacology, 11, 1086. https://doi.org/10.3389/fphar.2020.01086
dc.relation.referencesChrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., & Bialczyk, J. (2017). Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Marine Drugs, 15(10), Article 10. https://doi.org/10.3390/md15100326
dc.relation.referencesChrapusta-Srebrny, E., Bialczyk, J., Duchnik, K., & Bober, B. (2022). Metabolism of Mycosporine-Glutamicol in the Lichen Cladonia arbuscula subsp. Squarrosa under Seasonal Changes and Elevated Exposure to UV-B or PAR Irradiation. Metabolites, 12(7), 632. https://doi.org/10.3390/metabo12070632
dc.relation.referencesClaudia, T.-L., & Jesus, O.-V. (2023). Potentially Toxic Cyanobacteria in a Eutrophic Reservoir in Northern Colombia. Water, 15(20), Article 20. https://doi.org/10.3390/w15203696
dc.relation.referencesCosta, E. F., Magalhães, W. V., & Di Stasi, L. C. (2022). Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules, 27(21), 7518. https://doi.org/10.3390/molecules27217518
dc.relation.referencesCuellar-Gaviria, T., Gonzalez-Jaramillo, L., & Villegas-Escobar, V. (2021). Role of Bacillus tequilensis EA-CB0015 cells and lipopeptides in the biological control of black Sigatoka disease. Biological Control, 155.
dc.relation.referencesD’Agostino, P. M., Javalkote, V. S., Mazmouz, R., Pickford, R., Puranik, P. R., & Neilan, B. A. (2016). Comparative Profiling and Discovery of Novel Glycosylated Mycosporine-Like Amino Acids in Two Strains of the Cyanobacterium Scytonema cf. Crispum. Applied and Environmental Microbiology, 82(19), 5951-5959. https://doi.org/10.1128/AEM.01633-16
dc.relation.referencesde la Coba, F., Aguilera, J., de Gálvez, M. V., Álvarez, M., Gallego, E., Figueroa, F. L., & Herrera, E. (2009). Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. Journal of Dermatological Science, 55(3), 161-169. https://doi.org/10.1016/j.jdermsci.2009.06.004
dc.relation.referencesde la Coba, F., Aguilera, J., Figueroa, F. L., de Gálvez, M. V., & Herrera, E. (2009). Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. Journal of Applied Phycology, 21(2), 161-169. https://doi.org/10.1007/s10811-008-9345-1
dc.relation.referencesDe Ramos, B., Da Costa, G. B., Ramlov, F., Maraschin, M., Horta, P. A., Figueroa, F. L., Korbee, N., & Bonomi-Barufi, J. (2019). Ecophysiological implications of UV radiation in the interspecific interaction of Pyropia acanthophora and Grateloupia turuturu (Rhodophyta). Marine Environmental Research, 144, 36-45. https://doi.org/10.1016/j.marenvres.2018.11.014
dc.relation.referencesDextro, R. B., Delbaje, E., Geraldes, V., Pinto, E., Long, P. F., & Fiore, M. F. (2023). Exploring the Relationship between Biosynthetic Gene Clusters and Constitutive Production of Mycosporine-like Amino Acids in Brazilian Cyanobacteria. Molecules, 28(3), Article 3. https://doi.org/10.3390/molecules28031420
dc.relation.referencesDíaz-Castillo, J. P., Mier Giraldo, H. J., Fernández Rodríguez, J. F., & Ayala, M. E. (2018). Análisis de la Competitividad del Sector de Cosméticos e Ingredientes Naturales. Organización de las Naciones Unidas para el Desarrollo Industrial - ONUDI. Din, N
dc.relation.referencesDin, N. A. S., Mohd Alayudin, ‘Ain Sajda, Sofian-Seng, N.-S., Rahman, H. A., Mohd Razali, N. S., Lim, S. J., & Wan Mustapha, W. A. (2022). Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods, 11(15), 2235. https://doi.org/10.3390/foods11152235
dc.relation.referencesDzeha, T., Nyiro, C., Kardasopoulos, D., Mburu, D., Mwafaida, J., Hall, M. J., & Burgess, J. G. (2019). UV Resistance of bacteria from the Kenyan Marine cyanobacterium Moorea producens. MicrobiologyOpen, 8(4), e00697. https://doi.org/10.1002/mbo3.697
dc.relation.referencesFeng, Y.-N., Zhang, Z.-C., Feng, J.-L., & Qiu, B.-S. (2012). Effects of UV-B Radiation and Periodic Desiccation on the Morphogenesis of the Edible Terrestrial Cyanobacterium Nostoc flagelliforme. Applied and Environmental Microbiology, 78(19), 7075-7081. https://doi.org/10.1128/AEM.01427-12
dc.relation.referencesFigueroa, F. L., Álvarez-Gómez, F., Bonomi-Barufi, J., Vega, J., Massocato, T. F., Gómez-Pinchetti, J. L., & Korbee, N. (2022). Interactive effects of solar radiation and inorganic nutrients on biofiltration, biomass production, photosynthetic activity and the accumulation of bioactive compounds in Gracilaria cornea (Rhodophyta). Algal Research, 68, 102890. https://doi.org/10.1016/j.algal.2022.102890
dc.relation.referencesFigueroa, F. L., Bueno, A., Korbee, N., Santos, R., Mata, L., & Schuenhoff, A. (2008). Accumulation of Mycosporine‐like Amino Acids in Asparagopsis armata Grown in Tanks with Fishpond Effluents of Gilthead Sea Bream, Sparus aurata. Journal of the World Aquaculture Society, 39(5), 692-699. https://doi.org/10.1111/j.1749-7345.2008.00199.x
dc.relation.referencesFigueroa, F. L., Israel, A., Neori, A., Martínez, B., Malta, E. J., Put, A., Inken, S., Marquardt, R., Abdala, R., & Korbee, N. (2010). Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Marine Pollution Bulletin, 60(10), 1768-1778. https://doi.org/10.1016/j.marpolbul.2010.06.009
dc.relation.referencesFonseca, S., Amaral, M. N., Reis, C. P., & Custódio, L. (2023). Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs, 21(3), 170. https://doi.org/10.3390/md21030170
dc.relation.referencesFranklin, L. A., Kräbs, G., & Kuhlenkamp, R. (2001). Blue light and UV‐A radiation control the synthesis of mycosporine‐like amino acids in chondrus crispus (florideophyceae). Journal of Phycology, 37(2), 257-270. https://doi.org/10.1046/j.1529-8817.2001.037002257.x
dc.relation.referencesFuentealba Arcos, J. (2016). Alteraciones producidas por el extracto de Heterosigma akashiwo en la actividad neuronal y en el canal Nav1.3. [Tesis pregrado, Biología, Universidad de Concepción]. http://repositorio.udec.cl/jspui/handle/11594/6391
dc.relation.referencesGacesa, R., Lawrence, K. P., Georgakopoulos, N. D., Yabe, K., Dunlap, W. C., Barlow, D. J., Wells, G., Young, A. R., & Long, P. F. (2018). The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Biochimie, 154, 35-44. https://doi.org/10.1016/j.biochi.2018.07.020
dc.relation.referencesGeraldes, V., Jacinavicius, F. R., Genuário, D. B., & Pinto, E. (2020). Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 34(S3), e8634. https://doi.org/10.1002/rcm.8634
dc.relation.referencesGeraldes, V., & Pinto, E. (2021). Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals, 14(1), 63. https://doi.org/10.3390/ph14010063
dc.relation.referencesGhedifa, A. B., Vega, J., Korbee, N., Mensi, F., Figueroa, F. L., & Sadok, S. (2021). Effects of light quality on the photosynthetic activity and biochemical composition of Gracilaria gracilis (Rhodophyta). Journal of Applied Phycology, 33(5), 3413-3425. https://doi.org/10.1007/s10811-021-02496-y
dc.relation.referencesGiraldo Grisales, V. (2021). Sistema de propagación de levadura para la elaboración de bebidas alcohólicas en la cervecería libre de Colombia S.A [Tesis de pregrado, Ingeniería Bioquímica]. Universidad de Antioquia.
dc.relation.referencesGiraldo-Calderón, N. D., Romo-Buchelly, R. J., Arbeláez-Pérez, A. A., Echeverri-Hincapié, D., & Atehortúa-Garcés, L. (2018). Microalgae biorefineries: Applications and emerging technologies. DYNA, 85(205), 219-233. https://doi.org/10.15446/dyna.v85n205.68780
dc.relation.referencesGómez, F., & Moreira, D. (2011). Avances en el estudio de los dinoflagelados (Dinophyceae) con la filogenia molecular Advances on the study of dinoflagellates (Dinophyceae) with the molecular phylogeny. Hidrobiológica, 21(3).
dc.relation.referencesGonzález, J. (Trabajo en desarrollo). Hypnea musciformis del caribe colombiano: Perfil metabólico en ambiente natural y en cultivo, y su potencial cosmético [Tesis de Maestria]. Universidad Nacional de Colombia.
dc.relation.referencesGonzalez‐Silvera, D., Pérez, S., Korbee, N., Figueroa, F. L., Asencio, A. D., Aboal, M., & López‐Jiménez, J. Á. (2017). Effects of global change factors on fatty acids and mycosporine‐like amino acid production in Chroothece richteriana (Rhodophyta). Journal of Phycology, 53(5), 999-1009. https://doi.org/10.1111/jpy.12560
dc.relation.referencesGullón, B., Gagaoua, M., Barba, F. J., Gullón, P., Zhang, W., & Lorenzo, J. M. (2020). Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science & Technology, 100, 1-18. https://doi.org/10.1016/j.tifs.2020.03.039
dc.relation.referencesGurgel, C. F. D., & Lopez‐Bautista, J. (2007). Red Algae. En Wiley, Encyclopedia of Life Sciences (1.a ed.). Wiley. https://doi.org/10.1002/9780470015902.a0000335
dc.relation.referencesHartmann, A., Becker, K., Karsten, U., Remias, D., & Ganzera, M. (2015). Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens. Marine Drugs, 13(10), 6291-6305. https://doi.org/10.3390/md13106291
dc.relation.referencesHartmann, A., Gostner, J., Fuchs, J. E., Chaita, E., Aligiannis, N., Skaltsounis, L., & Ganzera, M. (2015). Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources. Planta Medica, 81(10), 813-820. https://doi.org/10.1055/s-0035-1546105
dc.relation.referencesHartmann, A., Murauer, A., & Ganzera, M. (2017). Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection. Journal of pharmaceutical and biomedical analysis, 138, 153-157. https://doi.org/10.1016/j.jpba.2017.01.053
dc.relation.referencesHolzinger, A., & Karsten, U. (2013). Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms. Frontiers in Plant Science, 4. https://www.frontiersin.org/articles/10.3389/fpls.2013.00327
dc.relation.referencesHosseinabadi, T., Gharib, R., Salehian, S., & Tabarzad, M. (2022). A Study on the Effect of Nitrate and Phosphate Concentrations on the Production of Mycosporine-Like Amino Acids by Chlorella Vulgaris. Iranian Journal of Biotechnology, 20(3). https://doi.org/10.30498/ijb.2022.313739.3194
dc.relation.referencesHotter, V., Glaser, K., Hartmann, A., Ganzera, M., & Karsten, U. (2018). Polyols and UV ‐sunscreens in the Prasiola ‐clade (Trebouxiophyceae, Chlorophyta) as metabolites for stress response and chemotaxonomy. Journal of Phycology, 54(2), 264-274. https://doi.org/10.1111/jpy.12619
dc.relation.referencesHoyer, K., Karsten, U., & Wiencke, C. (2002). Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Marine Biology, 141(4), 619-627. https://doi.org/10.1007/s00227-002-0871-0
dc.relation.referencesHuwaidi, A., Ahmad, K. A., Magdy, M., Shaharuddin, N. A., Ikeno, S., & Syahir, A. (2020). Identification of mycosporine-like amino acids and expression of 3- dehydroquinate synthase gene in UV radiations-induced Deinococcus radiodurans R1; Malaysian journal of biochemistry & molecular biology, 2, 19 – 29.
dc.relation.referencesIn, J.-S., Lim, J.-M., Jung, S., Choi, D.-W., Min, S.-R., & Jeong, W.-J. (2021). Production of porphyra-334 in transgenic lines of Nannochloropsis salina by the expression of mycosporine-like amino acid biosynthetic genes of P. yezoensis. Journal of Applied Phycology, 33(3), 1663-1672. https://doi.org/10.1007/s10811-021-02396-1
dc.relation.referencesInamura, E., Katayama, T., & Taguchi, S. (2017). Absorption of Low-Dose Ultraviolet Radiation by Mycosporine-like Amino Acids Induced by the Dinoflagellate Prorocentrum micans. Plankton and Benthos Research, 12(1), 15-24. https://doi.org/10.3800/pbr.12.15
dc.relation.referencesIshihara, K., Watanabe, R., Uchida, H., Suzuki, T., Yamashita, M., Takenaka, H., Nazifi, E., Matsugo, S., Yamaba, M., & Sakamoto, T. (2017). Novel glycosylated mycosporine-like amino acid, 13- O -(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum -protective activity on human keratinocytes from UV light. Journal of Photochemistry and Photobiology B: Biology, 172, 102-108. https://doi.org/10.1016/j.jphotobiol.2017.05.019
dc.relation.referencesJain, S., Prajapat, G., Abrar, M., Ledwani, L., Singh, A., & Agrawal, A. (2017). Cyanobacteria as efficient producers of mycosporine-like amino acids. Journal of Basic Microbiology, 57(9), 715-727. https://doi.org/10.1002/jobm.201700044
dc.relation.referencesJiménez, M. V. H., Sarmiento, A. C. J., Díaz, A. G. L., & Cárdenas, L. A. C. (2020). PRODUCCIÓN DE PIGMENTOS A PARTIR DE LA LEVADURA Rhodotorula mucilaginosa USANDO DESECHOS AGROINDUSTRIALES [Tesis de pregrado, Bacteriología y laboratorio clínico]. Universidad Colegio Mayor de Cundinamarca.
dc.relation.referencesJoshi, D., Mohandass, C., & Dhale, M. (2018). Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp. Applied Biochemistry and Biotechnology, 184(1), 35-47. https://doi.org/10.1007/s12010-017-2523-3
dc.relation.referencesKageyama, H., & Waditee-Sirisattha, R. (2019). Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Marine Drugs, 17(4), Article 4. https://doi.org/10.3390/md17040222
dc.relation.referencesKarsten, U., & Holzinger, A. (2014). Green algae in alpine biological soil crust communities: Acclimation strategies against ultraviolet radiation and dehydration | Biodiversity and Conservation. Biodiversity and Conservation, 23, 1845-1858. https://doi.org/10.1007/s10531-014-0653-2
dc.relation.referencesKarsten, U., Sawall, T., West, J., & Wiencke, C. (2000). Ultraviolet sunscreen compounds in epiphytic red algae from mangroves. Hydrobiologia, 432(1/3), 159-171. https://doi.org/10.1023/A:1004046909810
dc.relation.referencesKarsten, U., & Wiencke, C. (1999). Factors Controlling the Formation of UV-absorbing Mycosporine-like Amino Acids in the Marine Red Alga Palmaria palmata from Spitsbergen (Norway). Journal of Plant Physiology, 155(3), 407-415. https://doi.org/10.1016/S0176-1617(99)80124-2
dc.relation.referencesKasanah, N., Ulfah, M., Imania, O., Hanifah, A. N., & Marjan, M. I. D. (2022a). Rhodophyta as Potential Sources of Photoprotectants, Antiphotoaging Compounds, and Hydrogels for Cosmeceutical Application. Molecules, 27(22), Article 22. https://doi.org/10.3390/molecules27227788
dc.relation.referencesKhanipour Roshan, S., Farhangi, M., Emtyazjoo, M., & Rabbani, M. (2015). Effects of solar radiation on pigmentation and induction of a mycosporine-like amino acid in two cyanobacteria, Anabaena sp. And Nostoc sp. ISC26. European Journal of Phycology, 50(2), 173-181. https://doi.org/10.1080/09670262.2015.1021384
dc.relation.referencesKim, S. Y., Cho, W. K., Kim, H.-I., Paek, S. H., Jang, S. J., Jo, Y., Choi, H., Lee, J. H., & Moh, S. H. (2021). Transcriptome Profiling of Human Follicle Dermal Papilla Cells in response to Porphyra-334 Treatment by RNA-Seq. Evidence-Based Complementary and Alternative Medicine, 2021, e6637513. https://doi.org/10.1155/2021/6637513
dc.relation.referencesKim, S., You, D. H., Han, T., & Choi, E.-M. (2014). Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis). Journal of Photochemistry and Photobiology B: Biology, 141, 301-307. https://doi.org/10.1016/j.jphotobiol.2014.10.012
dc.relation.referencesKim, S.-R., Cha, M., Kim, T., Song, S., Kang, H. J., Jung, Y., Cho, J.-Y., Moh, S. H., & Kim, S.-J. (2022). Sustainable Production of Shinorine from Lignocellulosic Biomass by Metabolically Engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 70(50), 15848-15858. https://doi.org/10.1021/acs.jafc.2c07218
dc.relation.referencesKim, W., Kim, J. Y., Jeong, S. J., Yang, H. C., & Cho, J.-Y. (2021). Physicochemical characteristics and antioxidant activities of laver cultivars harvested at different times. Korean Journal of Food Preservation, 28(6), 705-715. https://doi.org/10.11002/kjfp.2021.28.6.705
dc.relation.referencesKitzing, C., & Karsten, U. (2015). Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Klebsormidiophyceae, Streptophyta). European Journal of Phycology, 50(3), 279-287. https://doi.org/10.1080/09670262.2015.1031190
dc.relation.referencesKitzing, C., Pröschold, T., & Karsten, U. (2014). UV-Induced Effects on Growth, Photosynthetic Performance and Sunscreen Contents in Different Populations of the Green Alga Klebsormidium fluitans (Streptophyta) from Alpine Soil Crusts. Microbial Ecology, 67(2), 327-340. https://doi.org/10.1007/s00248-013-0317-x
dc.relation.referencesKokabi, M., Yousefzadi, M., Nejad Ebrahimi, S., Soltani, M., & Malik, S. (2022). Evaluating the photoprotective potential of Leptolyngbya sp. Acta Physiologiae Plantarum, 44(9), 94. https://doi.org/10.1007/s11738-022-03416-4
dc.relation.referencesKorbee, N., Figueroa, F. L., & Aguilera, J. (2005). Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). Journal of Photochemistry and Photobiology B: Biology, 80(2), 71-78. https://doi.org/10.1016/j.jphotobiol.2005.03.002
dc.relation.referencesKorbee, N., Huovinen, P., Figueroa, F. L., Aguilera, J., & Karsten, U. (2005). Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Marine Biology, 146(4), 645-654. https://doi.org/10.1007/s00227-004-1484-6
dc.relation.referencesKulkarni, A., Seo, H. H., Song, M. Y., Cho, M. J., Lee, J. H., Kim, H. S., Suh, S.-S., Lee, T.-K., & Moh, S. H. (2014). Bioprocess Intensification for Production of Mycosporine-Like Amino Acids Through Radiofrequency Bioreactor. Materials Focus, 3(4), 272-275. https://doi.org/10.1166/mat.2014.1178
dc.relation.referencesKumar, A., Kaur, S., Sangwan, P. L., & Tasduq, S. A. (2023). Therapeutic and cosmeceutical role of glycosylated natural products in dermatology. Phytotherapy Research, 37(4), 1574-1589. https://doi.org/10.1002/ptr.7752
dc.relation.referencesKundu, A., Paul, S., Biswas, S. J., Halder, P., Prasad, R. K., Dey, R., Dhara, B., & Mitra, A. K. (2022). Nature to lab transfer story of the nutritious alga Catenella: A comprehensive review. Vegetos, 36(3), 743-749. https://doi.org/10.1007/s42535-022-00475-3
dc.relation.referencesLa Barre, S., & Kornprobst, J.-M. (Eds.). (2014). Outstanding Marine Molecules: Chemistry, Biology, Analysis. Wiley-VCH Verlag GmbH & Co. KGaA.
dc.relation.referencesLand, M., Lapidus, A., Mayilraj, S., Chen, F., Copeland, A., Del Rio, T. G., Nolan, M., Lucas, S., Tice, H., Cheng, J.-F., Chertkov, O., Bruce, D., Goodwin, L., Pitluck, S., Rohde, M., Göker, M., Pati, A., Ivanova, N., Mavromatis, K., … Klenk, H.-P. (2009). Complete genome sequence of Actinosynnema mirum type strain (101T). Standards in Genomic Sciences, 1(1), 46-53. https://doi.org/10.4056/sigs.21137
dc.relation.referencesLaurion, I., & Roy, S. (2009). Growth and photoprotection in three dinoflagellates (including two strains of alexandrium tamarense) and one diatom exposed to four weeks of natural and enhanced ultraviolet‐b radiation. Journal of Phycology, 45(1), 16-33. https://doi.org/10.1111/j.1529-8817.2008.00618.x
dc.relation.referencesLawrence, K. P., Gacesa, R., Long, P. F., & Young, A. R. (2018). Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine‐like amino acid palythine. British Journal of Dermatology, 178(6), 1353-1363. https://doi.org/10.1111/bjd.16125
dc.relation.referencesLawrence, K. P., Long, P. F., & Young, A. R. (2017). Mycosporine-Like Amino Acids for Skin Photoprotection. Current Medicinal Chemistry, 25(40), 5512-5527. https://doi.org/10.2174/0929867324666170529124237
dc.relation.referencesLlewellyn, C. A., & Airs, R. L. (2010). Distribution and Abundance of MAAs in 33 Species of Microalgae across 13 Classes. Marine Drugs, 8(4), 1273-1291. https://doi.org/10.3390/md8041273
dc.relation.referencesLlewellyn, C. A., Greig, C., Silkina, A., Kultschar, B., Hitchings, M. D., & Farnham, G. (2020). Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912. Scientific Reports, 10(1), 20638. https://doi.org/10.1038/s41598-020-77402-6
dc.relation.referencesMakarova, K. S., Aravind, L., Wolf, Y. I., Tatusov, R. L., Minton, K. W., Koonin, E. V., & Daly, M. J. (2001). Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics. Microbiology and Molecular Biology Reviews, 65(1), 44-79. https://doi.org/10.1128/mmbr.65.1.44-79.2001
dc.relation.referencesMishra, S., Richa, & Sinha, R. P. (2022). Biotechnological exploitation of cyanobacterial photoprotective metabolites. Vegetos, 35(2), 281-297. https://doi.org/10.1007/s42535-022-00347-w
dc.relation.referencesMosquera, T. S. (2023). Aplicaciones del green marketing dentro de la estrategia digital de comercialización de l’oréal garnier en Argentina análisis de caso: productos del cuidado de la cara [Universidad Nacional de la Plata]. http://sedici.unlp.edu.ar/bitstream/handle/10915/159658/Documento_completo.pdf?sequence=1&isAllowed=y
dc.relation.referencesMuñoz-Miranda, L. A., & Iñiguez-Moreno, M. (2023). An extensive review of marine pigments: Sources, biotechnological applications, and sustainability. Aquatic Sciences, 85(3), 68. https://doi.org/10.1007/s00027-023-00966-8
dc.relation.referencesMushir, S., & Fatma, T. (2011). Ultraviolet Radiation-absorbing Mycosporine-like Amino Acids in Cyanobacterium Aulosira fertilissima: Environmental Perspective and Characterization; 3(2); 165-171.
dc.relation.referencesNandagopal, P., Steven, A. N., Chan, L.-W., Rahmat, Z., Jamaluddin, H., & Mohd Noh, N. I. (2021). Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. Biology, 10(10), 1061. https://doi.org/10.3390/biology10101061
dc.relation.referencesNavarro, N. P., Figueroa, F. L., Korbee, N., Mansilla, A., & Plastino, E. M. (2016). Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation. Journal of Phycology, 52(3), 451-462. https://doi.org/10.1111/jpy.12407
dc.relation.referencesNgoennet, S., Nishikawa, Y., Hibino, T., Waditee-Sirisattha, R., & Kageyama, H. (2018). A Method for the Isolation and Characterization of Mycosporine-Like Amino Acids from Cyanobacteria. Methods and Protocols, 1(4), Article 4. https://doi.org/10.3390/mps1040046
dc.relation.referencesOrfanoudaki, M., Hartmann, A., Karsten, U., & Ganzera, M. (2019). Chemical profiling of mycosporine‐like amino acids in twenty‐three red algal species. Journal of Phycology, 55(2), 393-403. https://doi.org/10.1111/jpy.12827
dc.relation.referencesOyamada, C., Kaneniwa, M., Ebitani, K., Murata, M., & Ishihara, K. (2008). Mycosporine-Like Amino Acids Extracted from Scallop (Patinopecten yessoensis) Ovaries: UV Protection and Growth Stimulation Activities on Human Cells. Marine Biotechnology, 10(2), 141-150. https://doi.org/10.1007/s10126-007-9043-z
dc.relation.referencesPattanaik, B., Roleda, M. Y., Schumann, R., & Karsten, U. (2008). Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. Planta, 227(4), 907-916. https://doi.org/10.1007/s00425-007-0666-0
dc.relation.referencesPeinado, N. K., Abdala Díaz, R. T., Figueroa, F. L., & Helbling, E. W. (2004). Ammonium and UV radiation stimulate the accumulation of mycosporine‐like amino acids in Porphyra columbina (rhodophyta) from patagonia, argentina. Journal of Phycology, 40(2), 248-259. https://doi.org/10.1046/j.1529-8817.2004.03013.x
dc.relation.referencesPeng, J., Guo, F., Liu, S., Fang, H., Xu, Z., & Wang, T. (2023). Recent Advances and Future Prospects of Mycosporine-like Amino Acids. Molecules, 28(14), Article 14. https://doi.org/10.3390/molecules28145588
dc.relation.referencesPliego-Cortés, H., Bedoux, G., Boulho, R., Taupin, L., Freile-Pelegrín, Y., Bourgougnon, N., & Robledo, D. (2019). Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an Integrated Multi-Trophic Aquaculture system. Algal Research, 41, 101542. https://doi.org/10.1016/j.algal.2019.101542 Portwi
dc.relation.referencesPortwich, A., & Garcia-Pichel, F. (2003). Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. Strain PCC 6912. Phycologia, 42(4), 384-392. https://doi.org/10.2216/i0031-8884-42-4-384.1
dc.relation.referencesRastogi, R. P., & Incharoensakdi, A. (2014). UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556. Journal of Photochemistry and Photobiology B: Biology, 130, 287-292. https://doi.org/10.1016/j.jphotobiol.2013.12.001
dc.relation.referencesRastogi, R. P., Richa, Singh, S. P., Häder, D.-P., & Sinha, R. P. (2010). Mycosporine-like amino acids profile and their activity under PAR and UVR in a hot-spring cyanobacterium Scytonema sp. HKAR-3. Australian Journal of Botany, 58(4), 286. https://doi.org/10.1071/BT10004
dc.relation.referencesRastogi, R. P., Richa, Sinha, R. P., Singh, S. P., & Häder, D.-P. (2010). Photoprotective compounds from marine organisms. Journal of Industrial Microbiology & Biotechnology, 37(6), 537-558. https://doi.org/10.1007/s10295-010-0718-5
dc.relation.referencesRastogi, R. P., & Sinha, R. P. (2009). Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances, 27(4), 521-539. https://doi.org/10.1016/j.biotechadv.2009.04.009
dc.relation.referencesRastogi, R. P., Sonani, R. R., Madamwar, D., & Incharoensakdi, A. (2016). Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Research, 16, 110-118. https://doi.org/10.1016/j.algal.2016.03.009
dc.relation.referencesPrecedence Research. (2021, mayo 10). Cosmetics Market Size to Worth Around US$ 480.4 Bn by 2030. GlobeNewswire News Room. https://www.globenewswire.com/news-release/2021/10/05/2308851/0/en/Cosmetics-Market-Size-to-Worth-Around-US-480-4-Bn-by-2030.html
dc.relation.referencesRiegger, L., & Robinson, D. (1997). Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Marine Ecology Progress Series, 160, 13-25. https://doi.org/10.3354/meps160013
dc.relation.referencesRomero, M. (2021, enero 15). El potencial del mercado indio acorde con la creciente tendencia en cosmética tradicional, por Dilip Raghavan (HPCI India). Cocreando Belleza Natural. https://blog.weareprovital.com/es/el-potencial-del-mercado-indio-acorde-con-la-creciente-tendencia-en-cosmetica-tradicional-por-dilip-raghavan-hpci-india/
dc.relation.referencesRosic, N., Climstein, M., Boyle, G. M., Thanh Nguyen, D., & Feng, Y. (2023). Exploring Mycosporine-like Amino Acid UV-Absorbing Natural Products for a New Generation of Environmentally Friendly Sunscreens. Marine Drugs, 21(4), 253. https://doi.org/10.3390/md21040253
dc.relation.referencesRyu, J., Park, S.-J., Kim, I.-H., Choi, Y. H., & Nam, T.-J. (2014). Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. International Journal of Molecular Medicine, 34(3), 796-803. https://doi.org/10.3892/ijmm.2014.1815
dc.relation.referencesSadowska-Bartosz, I., & Bartosz, G. (2023). Antioxidant defense of Deinococcus radiodurans: How does it contribute to extreme radiation resistance? International Journal of Radiation Biology, 99(12), 1803-1829. https://doi.org/10.1080/09553002.2023.2241895
dc.relation.referencesSaha, S., Sen, A., Mandal, S., Adhikary, S. P., & Rath, J. (2021). Mycosporine-alanine, an oxo-mycosporine, protect Hassallia byssoidea from high UV and solar irradiation on the stone monument of Konark. Journal of Photochemistry and Photobiology B: Biology, 224, 112302. https://doi.org/10.1016/j.jphotobiol.2021.112302
dc.relation.referencesSandoval Salazar, I. A., Darwich Cedeño, M. T., Castañeda, M. D. R., Torres Munar, W. A., & Montenegro Ruiz, L. C. (2021). Aproximación al tratamiento de aguas residuales del lavado del café con las microalgas Parachlorella kessreli y Desmodesmus armatus. Revista Mutis, 11(2), 32-43. https://doi.org/10.21789/22561498.1755
dc.relation.referencesSantiesteban-Romero, B., Martínez-Ruiz, M., Sosa-Hernández, J. E., Parra-Saldívar, R., & Iqbal, H. M. N. (2022). Microalgae Photo-Protectants and Related Bio-Carriers Loaded with Bioactive Entities for Skin Applications—An Insight of Microalgae Biotechnology. Marine Drugs, 20(8), Article 8. https://doi.org/10.3390/md20080487
dc.relation.referencesSchmid, D., Schürch, C., & Zülli, F. (2006). Mycosporine-like Amino Acids from Red Algae Protect against Premature Skin-Aging. Euro Cosmetics, 9(1), 1-4.
dc.relation.referencesSen, S., & Mallick, N. (2021). Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. Algal Research, 58, 102425. https://doi.org/10.1016/j.algal.2021.102425
dc.relation.referencesShick, J. M., & Dunlap, W. C. (2002). Mycosporine-like amino acids and related Gadusols: Biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annual Review of Physiology, 64, 223-262. https://doi.org/10.1146/annurev.physiol.64.081501.155802
dc.relation.referencesShick, J. M., Romaine-Lioud, S., Romaine-Lioud, S., Ferrier-Pagès, C., & Gattuso, J.-P. (1999). Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnology and Oceanography, 44(7), 1667-1682. https://doi.org/10.4319/lo.1999.44.7.1667
dc.relation.referencesSingh, A., Tyagi, M. B., & Kumar, A. (2017). Cyanobacteria growing on tree barks possess high amount of sunscreen compound mycosporine-like amino acids (MAAs). Plant Physiology and Biochemistry, 119, 110-120. https://doi.org/10.1016/j.plaphy.2017.08.020
dc.relation.referencesSingh, D. K., Pathak, J., Pandey, A., Singh, V., Ahmed, H., Kumar, D., Rajneesh, & Sinha, R. P. (2021). Response of a rice-field cyanobacterium Anabaena sp. HKAR-7 upon exposure to ultraviolet-B radiation and ammonium chloride. Environmental Sustainability, 4(1), 95-105. https://doi.org/10.1007/s42398-020-00146-6
dc.relation.referencesSingh, G., Babele, P. K., Sinha, R. P., Tyagi, M. B., & Kumar, A. (2013). Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species. Process Biochemistry, 48(5-6), 796-802. https://doi.org/10.1016/j.procbio.2013.04.022
dc.relation.referencesSingh, S. K., Kaur, R., Rahman, Md. A., Mishra, M., & Sundaram, S. (2021). Evaluation of potent cyanobacteria species for UV-protecting compound synthesis using bicarbonate-based culture system. 3 Biotech, 11(9), 412. https://doi.org/10.1007/s13205-021-02945-y
dc.relation.referencesSingh, S. P., Klisch, M., Sinha, R. P., & Häder, D. (2008). Effects of Abiotic Stressors on Synthesis of the Mycosporine‐like Amino Acid Shinorine in the Cyanobacterium Anabaena variabilis PCC 7937. Photochemistry and Photobiology, 84(6), 1500-1505. https://doi.org/10.1111/j.1751-1097.2008.00376.x
dc.relation.referencesSingh, S. P., Klisch, M., Sinha, R. P., & Häder, D. (2010). Sulfur Deficiency Changes Mycosporine‐like Amino Acid (MAA) Composition of Anabaena variabilis PCC 7937: A Possible Role of Sulfur in MAA Bioconversion. Photochemistry and Photobiology, 86(4), 862-870. https://doi.org/10.1111/j.1751-1097.2010.00736.x
dc.relation.referencesSingh, S. P., Kumari, S., Rastogi, R. P., Singh, K. L., & Sinha, R. P. (2008). Mycosporine-like amino acids (MAAs): Chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. INDIAN J EXP BIOL.
dc.relation.referencesSingh, V., Pathak, J., Pandey, A., Ahmed, H., Rajneesh, Kumar, D., & Sinha, R. P. (2022). UV-induced physiological changes and biochemical characterization of mycosporine-like amino acid in a rice-field cyanobacterium Fischerella sp. Strain HKAR-13. South African Journal of Botany, 147, 81-97. https://doi.org/10.1016/j.sajb.2022.01.004
dc.relation.referencesSinha, R. P., Ambasht, N. K., Sinha, J. P., Klisch, M., & Häder, D.-P. (2003). UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). Journal of Photochemistry and Photobiology B: Biology, 71(1-3), 51-58. https://doi.org/10.1016/j.jphotobiol.2003.07.003
dc.relation.referencesSinha, R. P., Singh, S. P., & Häder, D.-P. (2007). Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. Journal of Photochemistry and Photobiology B: Biology, 89(1), 29-35. https://doi.org/10.1016/j.jphotobiol.2007.07.006
dc.relation.referencesSommaruga, R., Libkind, D., van Broock, M., & Whitehead, K. (2004). Mycosporine-glutaminol-glucoside, a UV-absorbing compound of two Rhodotorula yeast species. Yeast, 21(13), 1077-1081. https://doi.org/10.1002/yea.1148
dc.relation.referencesSuh, S.-S., Hwang, J., Park, M., Seo, H. H., Kim, H.-S., Lee, J. H., Moh, S. H., & Lee, T.-K. (2014). Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity. Marine Drugs, 12(10), Article 10. https://doi.org/10.3390/md12105174
dc.relation.referencesSuh, S.-S., Lee, S. G., Youn, U. J., Han, S. J., Kim, I.-C., & Kim, S. (2017). Comprehensive Expression Profiling and Functional Network Analysis of Porphyra-334, One Mycosporine-Like Amino Acid (MAA), in Human Keratinocyte Exposed with UV-radiation. Marine Drugs, 15(7), Article 7. https://doi.org/10.3390/md15070196
dc.relation.referencesSun, Y., Zhang, N., Zhou, J., Dong, S., Zhang, X., Guo, L., & Guo, G. (2020). Distribution, Contents, and Types of Mycosporine-Like Amino Acids (MAAs) in Marine Macroalgae and a Database for MAAs Based on These Characteristics. Marine Drugs, 18(1), 43. https://doi.org/10.3390/md18010043
dc.relation.referencesTaira, H., Goes, J. I., Gomes, H., Taguchi, S., & Yabe, K. (2004). Photoinduction of mycosporine-like amino acids and cell volume increases by ultraviolet radiation in the marine dinoflagellate Scrippsiella sweeneyae. Plankton Biology and Ecology, 51(2), 82-94.
dc.relation.referencesTarasuntisuk, S., Palaga, T., Kageyama, H., & Waditee-Sirisattha, R. (2019). Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Archives of Biochemistry and Biophysics, 662, 33-39. https://doi.org/10.1016/j.abb.2018.11.026
dc.relation.referencesTarasuntisuk, S., Patipong, T., Hibino, T., Waditee-Sirisattha, R., & Kageyama, H. (2018). Inhibitory effects of mycosporine-2-glycine isolated from a halotolerant cyanobacterium on protein glycation and collagenase activity. Letters in Applied Microbiology, 67(3), 314-320. https://doi.org/10.1111/lam.13041
dc.relation.referencesTartarotti, B., & Sommaruga, R. (2006). Seasonal and ontogenetic changes of mycosporine-like amino acids in planktonic organisms from an alpine lake. Limnology and oceanography, 51(3), 1530-1541.
dc.relation.referencesTorres, A., Enk, C. D., Hochberg, M., & Srebnik, M. (2006). Porphyra-334, a potential natural source for UVA protective sunscreens. Photochemical & Photobiological Sciences, 5(4), 432-435. https://doi.org/10.1039/b517330m
dc.relation.referencesTorres, A., Hochberg, M., Pergament, I., Smoum, R., Niddam, V., Dembitsky, V. M., Temina, M., Dor, I., Lev, O., Srebnik, M., & Enk, C. D. (2004). A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. European Journal of Biochemistry, 271(4), 780-784. https://doi.org/10.1111/j.1432-1033.2004.03981.x
dc.relation.referencesTorres, P. B., Chow, F., Ferreira, M. J. P., & Dos Santos, D. Y. A. C. (2016). Mycosporine-like amino acids from Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) and its variation under high light. Journal of Applied Phycology, 28(3), 2035-2040. https://doi.org/10.1007/s10811-015-0708-0
dc.relation.referencesUrrea-Victoria, V., Furlan, C. M., Dos Santos, D. Y. A. C., & Chow, F. (2022). Antioxidant potential of two Brazilian seaweeds in response to temperature: Pyropia spiralis (red alga) and Sargassum stenophyllum (brown alga). Journal of Experimental Marine Biology and Ecology, 549, 151706. https://doi.org/10.1016/j.jembe.2022.151706
dc.relation.referencesUrrea-Victoria, V., Gavio, B., Costa, G., Ramos, F., & Castellanos, L. (in press). Mycosporine-like-Amino Acids profile in Red Algae from Colombia’s Caribbean Coast, in Two High UV-Index Locations: Insights from San Andrés Island and La Guajira.
dc.relation.referencesUrrea-Victoria, V., Geraldes, V., Pinto, E., & Castellanos, L. (2023). Photosynthetic pigments and photoprotective metabolites of Colombian pacific marine macroalgae in response to contrasting ultraviolet-index periods. Journal of Experimental Marine Biology and Ecology, 564, 151908. https://doi.org/10.1016/j.jembe.2023.151908
dc.relation.referencesVega, J., Schneider, G., Moreira, B. R., Herrera, C., Bonomi-Barufi, J., & Figueroa, F. L. (2021). Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. Applied Sciences, 11(11), 5112. https://doi.org/10.3390/app11115112
dc.relation.referencesVillaró, S., Ciardi, M., Morillas-España, A., Sánchez-Zurano, A., Acién-Fernández, G., & Lafarga, T. (2021). Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods, 10(10), 2303. https://doi.org/10.3390/foods10102303
dc.relation.referencesVillegas Escobar, V., Perez, A., & Arredondo, C. (2007). Evaluación de la producción del hongo Lentinula edodes Pegler en bloques sint´eticos a base de residuos agroindustriales. Ingeniería y ciencia, 3(6), 23-39.
dc.relation.referencesWada, N., Sakamoto, T., & Matsugo, S. (2015). Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants. Antioxidants, 4(3), Article 3. https://doi.org/10.3390/antiox4030603
dc.relation.referencesWaditee-Sirisattha, R., Kageyama, H., Sopun, W., Tanaka, Y., & Takabe, T. (2014). Identification and Upregulation of Biosynthetic Genes Required for Accumulation of Mycosporine-2-Glycine under Salt Stress Conditions in the Halotolerant Cyanobacterium Aphanothece halophytica. American Society for Microbiology, 80(1), 1763-1769. https://doi.org/10.1128/AEM.03729-13
dc.relation.referencesWhite, D. A., Polimene, L., & Llewellyn, C. A. (2011). Effects of ultraviolet‐a radiation and nutrient availability on the cellular composition of photoprotective compounds in Glenodinium foliaceum (dinophyceae). Journal of Phycology, 47(5), 1078-1088. https://doi.org/10.1111/j.1529-8817.2011.01046.x
dc.relation.referencesWhitehead, K., & Vernet, M. (2000). Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay. Limnology and Oceanography, 45(8), 1788-1796. https://doi.org/10.4319/lo.2000.45.8.1788
dc.relation.referencesWulff, A., Mohlin, M., & Sundbäck, K. (2007). Intraspecific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV-B radiation. Harmful Algae, 6(3), 388-399. https://doi.org/10.1016/j.hal.2006.11.003
dc.relation.referencesYang, G., Cozad, M. A., Holland, D. A., Zhang, Y., Luesch, H., & Ding, Y. (2018). Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synthetic Biology, 7(2), 664-671. https://doi.org/10.1021/acssynbio.7b00397
dc.relation.referencesYuan, Y. V., Westcott, N. D., Hu, C., & Kitts, D. D. (2009). Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chemistry, 112(2), 321-328. https://doi.org/10.1016/j.foodchem.2008.05.066
dc.relation.referencesZainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta, 979, 1–23. https://doi.org/10.1016/j.aca.2017.05.012
dc.relation.referencesZanolla, M., Romanazzi, D., Svenson, J., Sherwood, A., & Stengel, D. B. (2022). Bromoform, mycosporine-like amino acids and phycobiliprotein content and stability in Asparagopsis armata during long-term indoor cultivation. Journal of Applied Phycology, 34(3), 1635-1647. https://doi.org/10.1007/s10811-022-02706-1
dc.relation.referencesZaytseva, A., Chekanov, K., Zaytsev, P., Bakhareva, D., Gorelova, O., Kochkin, D., & Lobakova, E. (2021). Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation. Plants, 10(12), 2601. https://doi.org/10.3390/plants10122601
dc.relation.referencesZhang, H., Jiang, Y., Zhou, C., Chen, Y., Yu, G., Zheng, L., Guan, H., & Li, R. (2022). Occurrence of Mycosporine-like Amino Acids (MAAs) from the Bloom-Forming Cyanobacteria Aphanizomenon Strains. Molecules, 27(5), 1734. https://doi.org/10.3390/molecules27051734
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.subject.ddc660 - Ingeniería química
dc.subject.lembAMINOACIDOSspa
dc.subject.lembAmino acidseng
dc.subject.lembMICROBIOLOGIA INDUSTRIALspa
dc.subject.lembIndustrial microbiologyeng
dc.subject.lembINDUSTRIA DE COSMETICOSspa
dc.subject.lembCosmetics industryeng
dc.subject.lembCIANOBACTERIASspa
dc.subject.lembCyanobacteriaeng
dc.subject.lembMICROALGASspa
dc.subject.lembMicroalgaeeng
dc.subject.proposalCultivo de organismosspa
dc.subject.proposalAminoácidos tipo micosporinaspa
dc.subject.proposalAlgasspa
dc.subject.proposalCianobacteriasspa
dc.subject.proposalCultivation of organismseng
dc.subject.proposalMycosporine-type amino acidseng
dc.subject.proposalAlgaeeng
dc.subject.proposalCyanobacteriaeng
dc.titleProducción de aminoácidos tipo-micosporinas mediante cultivo de macroorganismos y microorganismos : revisión de condiciones de cultivo, técnicas analíticas y usosspa
dc.title.translatedProduction of mycosporins-type amino acids by culture of macroorganisms and microorganisms : review of culture conditions, analytical techniques and useseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Garcia Ramirez, Natalia Katherine.pdf
Tamaño:
4.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: