Modelo de predicción de Viscosidad a partir del registro de Resonancia magnética Nuclear usando Machine Learning

dc.contributor.advisorOchoa Gutierrez, Luis Hernan
dc.contributor.advisorCundar Paredes, Cristiam David
dc.contributor.authorGuerrero Benavides, Christian David
dc.date.accessioned2021-09-28T19:41:33Z
dc.date.available2021-09-28T19:41:33Z
dc.date.issued2020-02-14
dc.descriptionimágenes, ilustraciones, tablasspa
dc.description.abstractLa viscosidad es una propiedad física importante para la simulación del flujo en el medio poroso, producción, transporte y refinación de hidrocarburos. La medición directa de la viscosidad es obtenida mediante pruebas de laboratorio a una muestra de crudo de fondo de pozo. Estas muestras son difíciles de adquirir y las pruebas toman tiempo en realizarse. Por ello, existen diferentes técnicas para estimar la viscosidad, una de ellas mediante la relación empírica con el registro de Resonancia Magnética Nuclear. Este trabajo presenta una metodología para el desarrollo de un modelo predictivo de viscosidad representativo, de acuerdo con las condiciones del yacimiento a partir de mediciones de laboratorio y registros de pozo usando el aprendizaje de máquina. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geofísicaspa
dc.description.notesViscosity is a very important physical property to simulate how the fluid flows thru the porous space, hydrocarbon production, oil pipe transport and refination. The direct value of viscosity is measure thru lab test to an oil sample from bottom hole. That is why these samples are difficult to get and test takes time to perform; so, there are different techniques to estimate viscosity; one of them is by an empirical relationship of nuclear magnetic resonance log. This research presents a methodology to develop a predictive model to get a representative viscosity value at reservoir conditions from lab measures and petrophysical well logs using Machine Learning methods.eng
dc.format.extentxvi, 89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80331
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesMohtadi, M., R. Heidemann, and A. Jeje, An introduction to the properties of fluids and solids. 1984. Yarranton, H., Development of viscosity model for petroleum industry applications. 2013. Alazard, N. and L. Montadert, Oil resources for the next century: What's ahead? Nonrenewable Resources, 1993. 2(3): p. 197-206. Betancourt, S., et al., Avances en las mediciones de las propiedades de los fluidos. Spanish Oilfield Review.. Schlumberger, 2007. Coates, G.R., L. Xiao, and M.G. Prammer, NMR logging: principles and applications. Vol. 234. 1999: Haliburton Energy Services Houston. Dunn, K.-J., D.J. Bergman, and G.A. LaTorraca, Nuclear magnetic resonance: Petrophysical and logging applications. 2002: Elsevier. Morriss, C., et al. Hydrocarbon saturation and viscosity estimation from NMR logging in the Belridge Diatomite. in SPWLA 35th Annual Logging Symposium. 1994. Society of Petrophysicists and Well-Log Analysts. LaTorraca, G., et al. Heavy oil viscosity determination using NMR logs. in SPWLA 40th Annual Logging Symposium. 1999. Society of Petrophysicists and Well-Log Analysts. Yang, Z., Viscosity Evaluation of Heavy Oils from NMR Well Logging. 2011. Jang, J.-S., ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 1993. 23(3): p. 665-685. Speight, J.G., The chemistry and technology of petroleum. 2014: CRC press. Kidnay, A.J., W.R. Parrish, and D.G. McCartney, Fundamentals of natural gas processing. 2011: CRC press. McCain Jr, W., The Properties of Petroleum Fluids, secondedition. Tulsa, Oklahoma: PennWell Publishing Company, 1990. Handbook, B., Standard Guide for Petroleum Measurement Tables1. Okandan, E., Heavy crude oil recovery. Vol. 76. 2012: Springer Science & Business Media. Hein, F.J., Heavy oil and oil (tar) sands in North America: an overview & summary of contributions. Natural Resources Research, 2006. 15(2): p. 67-84. Zéberg-Mikkelsen, C.K., S.E. Quiñones-Cisneros, and E.H. Stenby, Viscosity prediction of hydrocarbon mixtures based on the friction theory. Petroleum science and technology, 2001. 19(7-8): p. 899-909. Ellis, D.V. and J.M. Singer, Well logging for earth scientists. Vol. 692. 2007: Springer. Rops, E., Predicting heavy oil and bitumen viscosity from well logs and calculated seismic properties. 2017, Graduate Studies. Schlumberger, Log interpretation charts. Houston, Texas, USA, 2009. Rider, M. and M. Kennedy, The geological interpretation of well logs: Rider-French Consulting Limited. 2011, Bell and Bain, Glasgow. Bendeck, J., Perfiles eléctricos una herramienta para la evaluación de formaciones. Memorias de Curso ACGGP, Bogotá, Colombia, 1992. Dasgupta, T. and S. Mukherjee, Sediment compaction and applications in petroleum geoscience. 2020: Springer. Schlumberger, Oilfield Glossary. 2020. Shukla, A.K. and J. Wiley, Analytical Characterization Methods for Crude Oil and Related Products. 2018: Wiley Online Library. Bloembergen, N., E.M. Purcell, and R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Physical review, 1948. 73(7): p. 679. Freedman, R., Formation evaluation using magnetic resonance logging measurements. 2001, Google Patents. Bryan, J., A. Kantzas, and C. Bellehumeur, Oil-viscosity predictions from low-field NMR measurements. SPE Reservoir Evaluation & Engineering, 2005. 8(01): p. 44-52. Morriss, C., et al., Core analysis by low-field NMR. The log analyst, 1997. 38(02). Bird, R., W. Stewart, and E. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, NY, USA. 2002. Kenyon, W., Petrophysical principles of applications of NMR logging. The Log Analyst, 1997. 38(02). Brown, R., Proton relaxation in crude oils. Nature, 1961. 189(4762): p. 387-388. Vinegar, H. NMR fluid properties: NMR Short Course. in SPWLA 36th Annual Symposium. 1995. Zhang, Y., et al. Oil and gas NMR properties: The light and heavy ends. in SPWLA 43rd Annual Logging Symposium. 2002. Society of Petrophysicists and Well-Log Analysts. Lo, S.-W., et al. Correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratio of methane/hydrocarbon mixtures. in SPE Annual Technical Conference and Exhibition. 2000. Society of Petroleum Engineers. Bryan, J., D. Moon, and A. Kantzas, In situ viscosity of oil sands using low field NMR. Journal of Canadian Petroleum Technology, 2005. 44(09). Freedman, R. and N. Heaton, Fluid characterization using nuclear magnetic resonance logging. Petrophysics, 2004. 45(03). Nicot, B., M. Fleury, and J. Leblond. A New Methodology For Better Viscosity Prediction Using Nmr Relaxation. in SPWLA 47th Annual Logging Symposium. 2006. Society of Petrophysicists and Well-Log Analysts. Cheng, Y., et al. Power-law Relationship between the Viscosity of Heavy Oils and NMR Relaxation. in SPWLA 50th Annual Logging Symposium. 2009. Society of Petrophysicists and Well-Log Analysts. Nikravesh, M., Soft computing-based computational intelligent for reservoir characterization. Expert Systems with Applications, 2004. 26(1): p. 19-38. Alpaydin, E., Introduction to machine learning. 2014: MIT press. Tan, P.-N., M. Steinbach, and V. Kumar, Introduction to data mining. 2016: Pearson Education India. Drucker, H., et al. Support vector regression machines. in Advances in neural information processing systems. 1997. Smola, A.J. and B. Schölkopf, A tutorial on support vector regression. Statistics and computing, 2004. 14(3): p. 199-222. Alboudwarej, H, Felix, JJ, Taylor, S (2006) La importancia del petróleo pesado. Oilfield Review 18: 38–59.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::532 - Mecánica de fluidosspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalViscosidadspa
dc.subject.proposalPetrofisicaspa
dc.subject.proposalPVTspa
dc.subject.proposalMachine Learningeng
dc.subject.proposalNuclear Magneticeng
dc.subject.proposalRegressioneng
dc.subject.proposalNuclear Magnetic Resonanceeng
dc.subject.proposalViscosityeng
dc.titleModelo de predicción de Viscosidad a partir del registro de Resonancia magnética Nuclear usando Machine Learningspa
dc.title.translatedViscosity predicted model from Resonance Magnetic Log using Machine Learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Modelo de predicción de Viscosidad a partir del registro de Resonancia magnética Nuclear usando Machine Learning.pdf
Tamaño:
12.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Geofisica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: