Modelo de predicción de Viscosidad a partir del registro de Resonancia magnética Nuclear usando Machine Learning
dc.contributor.advisor | Ochoa Gutierrez, Luis Hernan | |
dc.contributor.advisor | Cundar Paredes, Cristiam David | |
dc.contributor.author | Guerrero Benavides, Christian David | |
dc.date.accessioned | 2021-09-28T19:41:33Z | |
dc.date.available | 2021-09-28T19:41:33Z | |
dc.date.issued | 2020-02-14 | |
dc.description | imágenes, ilustraciones, tablas | spa |
dc.description.abstract | La viscosidad es una propiedad física importante para la simulación del flujo en el medio poroso, producción, transporte y refinación de hidrocarburos. La medición directa de la viscosidad es obtenida mediante pruebas de laboratorio a una muestra de crudo de fondo de pozo. Estas muestras son difíciles de adquirir y las pruebas toman tiempo en realizarse. Por ello, existen diferentes técnicas para estimar la viscosidad, una de ellas mediante la relación empírica con el registro de Resonancia Magnética Nuclear. Este trabajo presenta una metodología para el desarrollo de un modelo predictivo de viscosidad representativo, de acuerdo con las condiciones del yacimiento a partir de mediciones de laboratorio y registros de pozo usando el aprendizaje de máquina. (Texto tomado de la fuente) | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Geofísica | spa |
dc.description.notes | Viscosity is a very important physical property to simulate how the fluid flows thru the porous space, hydrocarbon production, oil pipe transport and refination. The direct value of viscosity is measure thru lab test to an oil sample from bottom hole. That is why these samples are difficult to get and test takes time to perform; so, there are different techniques to estimate viscosity; one of them is by an empirical relationship of nuclear magnetic resonance log. This research presents a methodology to develop a predictive model to get a representative viscosity value at reservoir conditions from lab measures and petrophysical well logs using Machine Learning methods. | eng |
dc.format.extent | xvi, 89 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80331 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Geociencias | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá - Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Geofísica | spa |
dc.relation.references | Mohtadi, M., R. Heidemann, and A. Jeje, An introduction to the properties of fluids and solids. 1984. Yarranton, H., Development of viscosity model for petroleum industry applications. 2013. Alazard, N. and L. Montadert, Oil resources for the next century: What's ahead? Nonrenewable Resources, 1993. 2(3): p. 197-206. Betancourt, S., et al., Avances en las mediciones de las propiedades de los fluidos. Spanish Oilfield Review.. Schlumberger, 2007. Coates, G.R., L. Xiao, and M.G. Prammer, NMR logging: principles and applications. Vol. 234. 1999: Haliburton Energy Services Houston. Dunn, K.-J., D.J. Bergman, and G.A. LaTorraca, Nuclear magnetic resonance: Petrophysical and logging applications. 2002: Elsevier. Morriss, C., et al. Hydrocarbon saturation and viscosity estimation from NMR logging in the Belridge Diatomite. in SPWLA 35th Annual Logging Symposium. 1994. Society of Petrophysicists and Well-Log Analysts. LaTorraca, G., et al. Heavy oil viscosity determination using NMR logs. in SPWLA 40th Annual Logging Symposium. 1999. Society of Petrophysicists and Well-Log Analysts. Yang, Z., Viscosity Evaluation of Heavy Oils from NMR Well Logging. 2011. Jang, J.-S., ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 1993. 23(3): p. 665-685. Speight, J.G., The chemistry and technology of petroleum. 2014: CRC press. Kidnay, A.J., W.R. Parrish, and D.G. McCartney, Fundamentals of natural gas processing. 2011: CRC press. McCain Jr, W., The Properties of Petroleum Fluids, secondedition. Tulsa, Oklahoma: PennWell Publishing Company, 1990. Handbook, B., Standard Guide for Petroleum Measurement Tables1. Okandan, E., Heavy crude oil recovery. Vol. 76. 2012: Springer Science & Business Media. Hein, F.J., Heavy oil and oil (tar) sands in North America: an overview & summary of contributions. Natural Resources Research, 2006. 15(2): p. 67-84. Zéberg-Mikkelsen, C.K., S.E. Quiñones-Cisneros, and E.H. Stenby, Viscosity prediction of hydrocarbon mixtures based on the friction theory. Petroleum science and technology, 2001. 19(7-8): p. 899-909. Ellis, D.V. and J.M. Singer, Well logging for earth scientists. Vol. 692. 2007: Springer. Rops, E., Predicting heavy oil and bitumen viscosity from well logs and calculated seismic properties. 2017, Graduate Studies. Schlumberger, Log interpretation charts. Houston, Texas, USA, 2009. Rider, M. and M. Kennedy, The geological interpretation of well logs: Rider-French Consulting Limited. 2011, Bell and Bain, Glasgow. Bendeck, J., Perfiles eléctricos una herramienta para la evaluación de formaciones. Memorias de Curso ACGGP, Bogotá, Colombia, 1992. Dasgupta, T. and S. Mukherjee, Sediment compaction and applications in petroleum geoscience. 2020: Springer. Schlumberger, Oilfield Glossary. 2020. Shukla, A.K. and J. Wiley, Analytical Characterization Methods for Crude Oil and Related Products. 2018: Wiley Online Library. Bloembergen, N., E.M. Purcell, and R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Physical review, 1948. 73(7): p. 679. Freedman, R., Formation evaluation using magnetic resonance logging measurements. 2001, Google Patents. Bryan, J., A. Kantzas, and C. Bellehumeur, Oil-viscosity predictions from low-field NMR measurements. SPE Reservoir Evaluation & Engineering, 2005. 8(01): p. 44-52. Morriss, C., et al., Core analysis by low-field NMR. The log analyst, 1997. 38(02). Bird, R., W. Stewart, and E. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, NY, USA. 2002. Kenyon, W., Petrophysical principles of applications of NMR logging. The Log Analyst, 1997. 38(02). Brown, R., Proton relaxation in crude oils. Nature, 1961. 189(4762): p. 387-388. Vinegar, H. NMR fluid properties: NMR Short Course. in SPWLA 36th Annual Symposium. 1995. Zhang, Y., et al. Oil and gas NMR properties: The light and heavy ends. in SPWLA 43rd Annual Logging Symposium. 2002. Society of Petrophysicists and Well-Log Analysts. Lo, S.-W., et al. Correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratio of methane/hydrocarbon mixtures. in SPE Annual Technical Conference and Exhibition. 2000. Society of Petroleum Engineers. Bryan, J., D. Moon, and A. Kantzas, In situ viscosity of oil sands using low field NMR. Journal of Canadian Petroleum Technology, 2005. 44(09). Freedman, R. and N. Heaton, Fluid characterization using nuclear magnetic resonance logging. Petrophysics, 2004. 45(03). Nicot, B., M. Fleury, and J. Leblond. A New Methodology For Better Viscosity Prediction Using Nmr Relaxation. in SPWLA 47th Annual Logging Symposium. 2006. Society of Petrophysicists and Well-Log Analysts. Cheng, Y., et al. Power-law Relationship between the Viscosity of Heavy Oils and NMR Relaxation. in SPWLA 50th Annual Logging Symposium. 2009. Society of Petrophysicists and Well-Log Analysts. Nikravesh, M., Soft computing-based computational intelligent for reservoir characterization. Expert Systems with Applications, 2004. 26(1): p. 19-38. Alpaydin, E., Introduction to machine learning. 2014: MIT press. Tan, P.-N., M. Steinbach, and V. Kumar, Introduction to data mining. 2016: Pearson Education India. Drucker, H., et al. Support vector regression machines. in Advances in neural information processing systems. 1997. Smola, A.J. and B. Schölkopf, A tutorial on support vector regression. Statistics and computing, 2004. 14(3): p. 199-222. Alboudwarej, H, Felix, JJ, Taylor, S (2006) La importancia del petróleo pesado. Oilfield Review 18: 38–59. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::532 - Mecánica de fluidos | spa |
dc.subject.ddc | 550 - Ciencias de la tierra | spa |
dc.subject.proposal | Viscosidad | spa |
dc.subject.proposal | Petrofisica | spa |
dc.subject.proposal | PVT | spa |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Nuclear Magnetic | eng |
dc.subject.proposal | Regression | eng |
dc.subject.proposal | Nuclear Magnetic Resonance | eng |
dc.subject.proposal | Viscosity | eng |
dc.title | Modelo de predicción de Viscosidad a partir del registro de Resonancia magnética Nuclear usando Machine Learning | spa |
dc.title.translated | Viscosity predicted model from Resonance Magnetic Log using Machine Learning | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Modelo de predicción de Viscosidad a partir del registro de Resonancia magnética Nuclear usando Machine Learning.pdf
- Tamaño:
- 12.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestria en Geofisica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: