Hypnea musciformis del Caribe colombiano : perfil metabólico en ambiente natural y en cultivo, y su potencial cosmético

dc.contributor.advisorCastellanos Hernández, Leonardo
dc.contributor.advisorRozo Torres, Gladys
dc.contributor.authorGonzález Torres, Jessica
dc.contributor.orcidGonzález-Torres, Jessica [0009-0007-1302-1272]
dc.contributor.researchgroupEstudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.coverage.countryColombia
dc.date.accessioned2025-09-30T16:59:33Z
dc.date.available2025-09-30T16:59:33Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEn los últimos años, el interés por implementar estilos de vida más saludables ha generado una creciente demanda de ingredientes naturales, seguros y sostenibles, especialmente en la industria cosmética. Este contexto ha impulsado la búsqueda de nuevas fuentes de compuestos bioactivos que reemplacen ingredientes sintéticos, poco aceptados por los consumidores. Bajo este marco, la presente tesis de maestría se centra en la identificación de compuestos de interés dermocosmético a partir de la macroalga roja Hypnea musciformis, recolectada en el Caribe colombiano. Esta especie, tradicionalmente reconocida como fuente de carragenina, ha sido poco estudiada y no se ha cultivado comercialmente en Colombia, lo cual abre una oportunidad para evaluar tanto su potencial biotecnológico como su aplicación en formulaciones cosméticas innovadoras y sostenibles. La presente investigación, la primera que busca establecer el potencial cosmético de H. musciformis en Colombia, se desarrolló en tres etapas: (1) el establecimiento de un sistema semicerrado de cultivo en canaletas para la producción de biomasa, (2) la identificación de metabolitos de interés mediante el perfilado químico de muestras silvestres y cultivadas, y (3) la validación de su aplicación en un prototipo cosmético. En la fase de cultivo, se implementaron experimentos variando nutrientes, luz y sustratos. Aunque se evidenció una adaptación inicial positiva de la macroalga, la contaminación por otros organismos limitó el mantenimiento del sistema más allá de 15 días. El perfil químico de los extractos obtenidos con diferentes disolventes mostró bajos rendimientos, y la presencia de ácidos grasos, y polisacáridos. Los metabolitos de mayor interés identificados fueron los aminoácidos tipo micosporinas (MAAs) y las carrageninas. Los MAAs, conocidos por su actividad fotoprotectora, se analizaron en muestras de diferentes regiones del Caribe colombiano. Se encontró una variabilidad significativa en su concentración, destacándose las muestras de La Guajira y, particularmente, la muestra Wt-0309-23 de Santa Marta, que presentó los mayores valores, superiores a los reportados previamente en Brasil para la misma especie. Esto confirma la presencia y el potencial aprovechamiento de MAAs en Hypnea. Sin embargo, las muestras cultivadas mostraron concentraciones mucho menores, lo que indica que el sistema semicerrado no favoreció su producción. De forma complementaria, se detectaron MAAs en algas de arribazón, lo que abre la posibilidad de valorizar esta biomasa residual como fuente alternativa. En cuanto a la carragenina, los análisis FT-IR y SEC-HPLC confirmaron que todas las muestras de H. musciformis producen carragenina del tipo κ (kappa), altamente demandada en la industria. Además, se observó un aumento en el peso molecular de estas carrageninas cuando el alga es cultivada, posiblemente como respuesta a factores de estrés o a procesos de maduración. Estas características posicionan al cultivo de H. musciformis como un recurso prometedor para aplicaciones industriales. Finalmente, dada la abundancia e importancia de la κ-carragenina, se exploró su aplicación en la formulación de un prototipo cosmético: una mascarilla facial tipo hidrogel. Este producto aprovechó tanto su capacidad gelificante como sus propiedades hidratantes, actuando como ingrediente activo y excipiente. Se evaluaron variaciones de concentración y la incorporación de otros componentes, hasta obtener una formulación estable con adecuada textura, elasticidad y adaptabilidad al rostro. Los ensayos de eficacia cosmética in vivo (corneometría) mostraron una mejora en la hidratación y en la pérdida transepidermal de agua, especialmente en personas de entre 35 y 40 años. A su vez, las pruebas sensoriales reportaron alta aceptación del prototipo, coherente con los resultados fisicoquímicos. En conclusión, esta investigación aporta evidencia del potencial cosmético de Hypnea musciformis del Caribe colombiano, destacando la riqueza de sus MAAs en condiciones naturales y la calidad de su κ-carragenina para aplicaciones industriales. Además, constituye un primer paso hacia el desarrollo de bioproductos sostenibles basados en macroalgas, con perspectivas de innovación científica y económica en el país (Texto tomado de la fuente).spa
dc.description.abstractIn recent years, the pursuit of healthier lifestyles has driven an increasing demand for natural, safe, and sustainable ingredients, particularly in the cosmetic industry. This trend has encouraged the search for new sources of bioactive compounds to replace synthetic ingredients that are less accepted by consumers. Within this context, the present Master’s thesis focuses on the identification of dermocosmetic compounds from the red macroalga Hypnea musciformis, collected in the Colombian Caribbean. This species, traditionally recognized as a source of carrageenan, has been little studied nor cultivated commercially in Colombia, which presents an opportunity to evaluate both its biotechnological potential and its application in innovative and sustainable cosmetic formulations. This research, the first in Colombia to explore the cosmetic potential of H. musciformis, was conducted in three stages: (1) the establishment of a semicontrolled troughs cultivation system for biomass production, (2) the identification of metabolites of interest through chemical profiling of wild and cultivated samples, and (3) the validation of their application in a cosmetic prototype. In the cultivation phase, experiments were carried out by varying nutrients, light, and substrates. Although the macroalga initially showed positive adaptation, contamination by other organisms limited the maintenance of the system beyond 15 days. Chemical profiling of extracts obtained with different solvents revealed low yields, with the main presence of fatty acids and polysaccharides. The most relevant metabolites identified were mycosporine-like amino acids (MAAs) and carrageenans. MAAs, known for their photoprotective activity, were analyzed in samples collected from different regions of the Colombian Caribbean. Significant variability in their concentration was observed, with samples from La Guajira and, in particular, sample Wt-0309-23 from Santa Marta showing the highest values, exceeding those previously reported for this specie in Brazil. These results confirm the presence and potential of MAAs in Hypnea. However, cultivated samples exhibited much lower concentrations, indicating that the semicontrolled system did not favor their production. Additionally, MAAs were also detected in drift algae, suggesting the possibility of valorizing this residual biomass as an alternative source. Regarding carrageenan, FT-IR and SEC-HPLC analyses confirmed that all H. musciformis samples produced κ-carrageenan, which is highly valued by industry. Moreover, an increase in molecular weight was observed in carrageenans obtained from cultivated algae, possibly due to stress factors or maturation processes. These characteristics highlight the potential of H. musciformis cultivation as a promising resource for industrial applications. Finally, given the abundance and importance of κ-carrageenan, its application was explored in the formulation of a cosmetic prototype: a hydrogel facial sheet-mask. This product capitalized on both the gelling capacity and hydrating properties of κ-carrageenan, functioning as both an active ingredient and an excipient. Different concentrations and additional components were tested until a stable formulation was achieved, with suitable texture, elasticity, and adaptability to the face. In vivo cosmetic efficacy assays (corneometry) demonstrated improved skin hydration and reduced transepidermal water loss, particularly in individuals aged 35–40 years. Sensory tests further revealed high acceptance of the prototype, consistent with the physicochemical results. In conclusion, this study provides evidence of the cosmetic potential of Hypnea musciformis from the Colombian Caribbean, underscoring the richness of its MAAs under natural conditions and the industrial quality of its κ-carrageenan. Moreover, it represents an initial step toward the development of sustainable macroalgae-based bioproducts, with promising scientific and economic implications for the country.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Química
dc.description.researchareaProductos naturales
dc.format.extentxxvii, 161 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88987
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesAlves, A., Sousa, E., Kijjoa, A., & Pinto, M. (2020). Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules, 25(11), 2536. https://doi.org/10.3390/molecules25112536
dc.relation.referencesAslam, A., Bahadar, A., Liaquat, R., Saleem, M., Waqas, A., & Zwawi, M. (2021). Algae as an attractive source for cosmetics to counter environmental stress. Science of The Total Environment, 772, 144905. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144905
dc.relation.referencesDeepika, B., Ganesan, P., Sivaraman, B., Neethiselvan, N., & Padmavathy, P. (2024). Formulation and evaluation of physicochemical properties of Hypnea pannosa incorporated bathing bar for unveiling its potential impact on bioactive properties. South African Journal of Botany, 167, 1–11. https://doi.org/https://doi.org/10.1016/j.sajb.2024.02.004
dc.relation.referencesHonari, G., Andersen, R., & Maibach, H. I. (2017). Sensitive Skin Syndrome (second). CRC Press. https://doi.org/https://doi.org/10.1201/9781315121048
dc.relation.referencesKalasariya, H. S., Yadav, V. K., Yadav, K. K., Tirth, V., Algahtani, A., Islam, S., Gupta, N., & Jeon, B.-H. (2021). Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. In Molecules (Vol. 26, Issue 17, p. 5313). https://doi.org/10.3390/molecules26175313
dc.relation.referencesPimentel, F. B., Alves, R. C., Rodrigues, F., & P. P. Oliveira, M. B. (2018). Macroalgae-Derived Ingredients for Cosmetic Industry—An Update. In Cosmetics (Vol. 5, Issue 1). https://doi.org/10.3390/cosmetics5010002
dc.relation.referencesSen, S., & Mallick, N. (2021). Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. Algal Research, 58, 102425. https://doi.org/https://doi.org/10.1016/j.algal.2021.102425
dc.relation.referencesWorld Health Organization. (2017). https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer#:~:text=Currently%2C between 2 and 3,skin cancer in their lifetime.
dc.relation.referencesYokoya, N. S., Nauer, F., & Oliveira, M. C. (2020). Concise review of the genus Hypnea J.V.Lamouroux, 1813. Journal of Applied Phycology, 32(6), 3585–3603. https://doi.org/10.1007/s10811-020-02209-x
dc.relation.referencesAbril Poveda, S. P. (2023). Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/84241
dc.relation.referencesAlves, M. G. D. C. F., Almeida-Lima, J., Paiva, A. A. O., Leite, E. L., & Rocha, H. A. O. (2016). Extraction process optimization of sulfated galactan-rich fractions from Hypnea musciformis in order to obtain antioxidant, anticoagulant, or immunomodulatory polysaccharides. Journal of Applied Phycology, 28(3), 1931–1942. https://doi.org/10.1007/s10811-015-0705-3
dc.relation.referencesAlves, M. G. D. C. F., Dore, C. M. P. G., Castro, A. J. G., do Nascimento, M. S., Cruz, A. K. M., Soriano, E. M., Benevides, N. M. B., & Leite, E. L. (2012). Antioxidant, cytotoxic and hemolytic effects of sulfated galactans from edible red alga Hypnea musciformis . Journal of Applied Phycology, 24(5), 1217–1227. https://doi.org/10.1007/s10811-011-9763-3
dc.relation.referencesAlves, M. G. D. C. F., Nobre, L. T. D. B., Monteiro, N. D. K. V., Moura, G. E. D. D. D., Dore, C. M. P. G., de Medeiros, V. P., & Leite, E. L. (2012). Effects of heparinoids from algae on hemostasis and their action on the cycle cell. Biomedicine and Preventive Nutrition, 2(3), 163–168. https://doi.org/10.1016/j.bionut.2012.03.005
dc.relation.referencesAndrade, C. T., Azero, E. G., Luciano, L., & Gonçalves, M. P. (2000). Rheological properties of mixtures of κ-carrageenan from Hypnea musciformis and galactomannan from Cassia javanica . International Journal of Biological Macromolecules, 27(5), 349–353. https://doi.org/https://doi.org/10.1016/S0141-8130(00)00139-2
dc.relation.referencesAnunciato Casarini, T. P., Frank, L. A., Pohlmann, A. R., & Guterres, S. S. (2020). Dermatological applications of the flavonoid phloretin. European Journal of Pharmacology, 889, 173593. https://doi.org/https://doi.org/10.1016/j.ejphar.2020.173593
dc.relation.referencesArias-Echeverri, J. P., Zapata-Ramírez, P. A., Ramírez-Carmona, M., Rendón-Castrillón, L., & Ocampo-López, C. (2022). Present and Future of Seaweed Cultivation and Its Applications in Colombia. In Journal of Marine Science and Engineering (Vol. 10, Issue 2, p. 243). https://doi.org/10.3390/jmse10020243
dc.relation.referencesArman, M., & Qader, S. A. U. (2012). Structural analysis of Kappa-carrageenan isolated from Hypnea musciformis (red algae) and evaluation as an elicitor of plant defense mechanism. Carbohydrate Polymers, 88(4), 1264–1271. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.02.003
dc.relation.referencesArteaga C., M., & De Silvestri S., J. (1985). ESTUDIO DE LAS SUSTANCIAS CON PROPIEDADES ANTIMICROBIANAS EXTRAORDINARIAS DE ALGAS MARINAS PERTENECIENTES AL LITORAL ATLANTICO COLOMBIANO I. Evaluación de la actividad antimicrobiana de las sustancias extraídas de Hypnea musciformis, Enteromorphae sp. Revista Colombiana de Ciencias Químico-Farmacéuticas, 4(2), 47–52. https://revistas.unal.edu.co/index.php/rccquifa/article/view/56647
dc.relation.referencesAshkenazi, D. Y., Israel, A., & Abelson, A. (2019). A novel two-stage seaweed integrated multι-trophic aquaculture. Reviews in Aquaculture, 11(1), 246–262. https://doi.org/10.1111/raq.12238
dc.relation.referencesBalamurugan, M., Selvam, G., Selvam, T., Thinakaran, K., & Kathiresan, S. (2013). Biochemical Study and GC-MS Analysis of Hypnea musciformis (Wulf.) Lamouroux. American-Eurasian Journal of Scientific Research, 8, 117–123. https://doi.org/10.5829/idosi.aejsr.2013.8.3.12071
dc.relation.referencesBalamurugan, M., Sivakumar, K., Mariadoss, A. V. A., & Suresh, K. (2017). Modulating Effect of Hypnea musciformis (Red Seaweed) on Lipid Peroxidation, Antioxidants and Biotransforming Enzymes in 7,12‑Dimethylbenz (a) Anthracene Induced Mammary Carcinogenesis in Experimental Animals. Pharmacognosy Research, 9(1), 108–115.
dc.relation.referencesBi, F., Arman, M., Hassan, M.-, & Iqbal, S. (2006). Isolation and Characterization of Kappa-Carrageenan from Hypnea musciformis (Red Alga) Collected from Karachi Coast, Pakistan. Pakistan Journal of Scientific and Industrial Research, 49(5), 330–334. https://v2.pjsir.org/index.php/biological-sciences/article/view/1242
dc.relation.referencesBi, F., & Iqbal, S. (2000). Estimation of induced secondary metabolites in Chickpea tissues in response to elicitor preparation of seaweeds. Pakistan Journal of Scientific and Industrial Research, 43(2), 123–126. https://www.articles.define.pk/article.php?jid=639&id=123845
dc.relation.referencesBi, F., & Iqbal, S. (2005). Estimation of induced secondary metabolites in carrot tissues in response to elicitor preparations from seaweeds. Pakistan Journal of Scientific and Industrial Research, 48(3), 216–219. https://pjsir.org/multidisciplinary-archive/Volume 48 2005/Issue 3/Article 13 Vol 48 Issue 3 2005 pp 216-219.pdf
dc.relation.referencesBi, F., Iqbal, S., Ahmed, S., & Usmani, N. F. (2001). Studies on seaweed extracted elicitors and their analysis for antimicrobial activity in chickpea cotyledons. Pakistan Journal of Scientific and Industrial Research, 44(1), 18–21. https://v2.pjsir.org/index.php/biological-sciences/article/view/1864
dc.relation.referencesBi, F., Iqbal, S., Arman, M., Ali, A., & Hassan, M.-U. (2011). Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. Journal of Saudi Chemical Society, 15(3), 269–273. https://doi.org/10.1016/j.jscs.2010.10.003
dc.relation.referencesBi, F., Mahmoodul-ul-Hassan, Arman, M., & Iqbal, S. (2007). Chemical and thermodynamic studies of Κ- carrageenan isolated from Hypnea musciformis (Red Algae) of Karachi Coast. Trends in Applied Sciences Research, 2(5), 395–403.
dc.relation.referencesBlunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2018). Marine natural products. Natural Product Reports, 35(1), 8–53. https://doi.org/10.1039/c7np00052a
dc.relation.referencesBlunt, J. W., Copp, B. R., Munro, M. H. G., Northcote, P. T., & Prinsep, M. R. (2004). Marine natural products. Nat. Prod. Rep., 21(1), 1–49. https://doi.org/10.1039/B305250H
dc.relation.referencesBravin, I. C., & Yoneshigue-Valentin, Y. (2002). Influência de fatores ambientais sobre o crescimento in vitro de Hypnea musciformis (Wulfen) Lamouroux (Rhodophyta). Brazilian Journal of Botany, 25(4), 469–474. https://doi.org/https://doi.org/10.1590/S0100-84042002012000011
dc.relation.referencesCamacho, O., & Montaña Fernández, J. (2012). CULTIVO EXPERIMENTAL EN EL MAR DEL ALGA ROJA Hypnea Musciformis EN EL AREA DE SANTA MARTA, CARIBE COLOMBIANO. Boletín de Investigaciones Marinas y Costeras, 41(1 SE-Articulos de investigación). https://doi.org/10.25268/bimc.invemar.2012.41.1.71
dc.relation.referencesCaroca-Valencia, S., Rivas, J., Araya, M., Núñez, A., Piña, F., Toro-Mellado, F., & Contreras-Porcia, L. (2023). Indoor and Outdoor Cultures of Gracilaria chilensis: Determination of Biomass Growth and Molecular Markers for Biomass Quality Evaluation. In Plants (Vol. 12, Issue 6, p. 1340). https://doi.org/10.3390/plants12061340
dc.relation.referencesCastellanos, L. (2023). Retos en el estudio de Productos Naturales Marinos: el suministro. In N. H. Campos Campos (Ed.), Colombia Bioazul: dos mares un país; territorios por explorar” (pp. 287–312). Universidad Nacional de Colombia (Sede Caribe). Instituto de Estudios en Ciencias del Mar (CECIMAR).
dc.relation.referencesChakraborty, K., Joseph, D., Joy, M., & Raola, V. K. (2016). Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants. Food Chemistry, 212, 778–788. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.06.039
dc.relation.referencesChen, J., Li, Q., Ye, Y., Huang, Z., Ruan, Z., & Jin, N. (2020). Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117642. https://doi.org/https://doi.org/10.1016/j.saa.2019.117642
dc.relation.referencesCosenza, V. A., Navarro, D. A., & Stortz, C. A. (2017). Minor polysaccharidic constituents from the red seaweed Hypnea musciformis . Appearance of a novel branched uronic acid. Carbohydrate Polymers, 157, 156–166. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.09.071
dc.relation.referencesCotas, J., Gomes, L., Pacheco, D., & Pereira, L. (2023). Ecosystem Services Provided by Seaweeds. Hydrobiology, 2(1), 75–96. https://doi.org/10.3390/hydrobiology2010006
dc.relation.referencesDamasceno, S. R. B., Rodrigues, J. C., Silva, R. O., Nicolau, L. A. D., Chaves, L. S., Freitas, A. L. P., Souza, M. H. L. P., Barbosa, A. L. R., & Medeiros, J.-V. R. (2013). Role of the NO/KATP pathway in the protective effect of a sulfated-polysaccharide fraction from the algae Hypnea musciformis against ethanol-induced gastric damage in mice. Revista Brasileira de Farmacognosia, 23(2), 320–328. https://doi.org/https://doi.org/10.1590/S0102-695X2013005000003
dc.relation.referencesDelgadillo Garzón, O., & Newmark, F. (2008). CULTIVO PILOTO DE MACROALGAS ROJAS (RHODOPHYTA) EN BAHÍA PORTETE, LA GUAJIRA, COLOMBIA. Boletín de Investigaciones Marinas y Costeras, 37(2 SE-Articulos de investigación). https://doi.org/10.25268/bimc.invemar.2008.37.2.188
dc.relation.referencesFaulkner, D. J. (1992). Marine natural products. Nat. Prod. Rep., 9(4), 323–364. https://doi.org/10.1039/NP9920900323
dc.relation.referencesFaulkner, D. J. (1997). Marine natural products. Nat. Prod. Rep., 14(3), 259–302. https://doi.org/10.1039/NP9971400259
dc.relation.referencesGhanbarzadeh, M., Golmoradizadeh, A., & Homaei, A. (2018). Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes. Phytochemistry Reviews, 17(3), 535–571. https://doi.org/10.1007/s11101-018-9548-2
dc.relation.referencesGhannam, A., Abbas, A., Alek, H., Al-Waari, Z., & Al-Ktaifani, M. (2013). Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga ( Hypnea musciformis ). Physiological and Molecular Plant Pathology, 84, 19–27. https://doi.org/https://doi.org/10.1016/j.pmpp.2013.07.001
dc.relation.referencesGnanavel, V., Roopan, S. M., & Rajeshkumar, S. (2019). Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture, 507, 1–6. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.04.004
dc.relation.referencesGrand View Research. (2022). Commercial Seaweed Market Size, Share & Trends Analysis Report By Product (Brown, Red, Green), By Application (Human Consumption, Animal Feed, Agriculture), By Form (Leaf, Powdered, Flakes), By Region, And Segment Forecasts, 2022 - 2030. https://www.grandviewresearch.com/industry-analysis/commercial-seaweed-market
dc.relation.referencesGreer, C. W., Shomer, I., Goldstein, M. E., & Yaphe, W. (1984). Analysis of carrageenan from Hypnea musciformis by using κ- and ι-carrageenanases and 13C-n.m.r. spectroscopy. Carbohydrate Research, 129, 189–196. https://doi.org/10.1016/0008-6215(84)85311-2
dc.relation.referencesGuist, G. G., Dawes, C. J., & Castle, J. R. (1982). Mariculture of the red seaweed, Hypnea musciformis . Aquaculture, 28(3), 375–384. https://doi.org/https://doi.org/10.1016/0044-8486(82)90079-5
dc.relation.referencesHafting, J., Critchley, A., Cornish, M., Hubley, S., & Archibald, A. (2012). On-land cultivation of functional seaweed products for human usage. Journal of Applied Phycology, 24, 385–392. https://doi.org/10.1007/s10811-011-9720-1
dc.relation.referencesHamilton, R. D., & Carroll, J. J. (1962). A Comparison of Polysaccharides of Hypnea musciformis and Chondrus crispus. Nature, 196(4860), 1200–1201. https://doi.org/10.1038/1961200a0
dc.relation.referencesHayee-memon, A., & Shameel, M. (1996). a Taxonomic Study of Some Red Algae Commonly Growing on the Coast of Karachi. Pakistan Journal of Marine Sciences, 5(2), 113–137. https://aquadocs.org/items/f4934425-dde4-4805-93c7-22614c5e6721
dc.relation.referencesImran, M., Bhuiyan, F., Ahmed, S., Shanzana, P., Moli, M., Foysal, S., Dabi, S., & Hasan, M. (2021). Phytochemical constituency profiling and antimicrobial activity screening of seaweed extracts collected from the Bay of Bengal Sea coasts. Journal of Advanced Biotechnology and Experimental Therapeutics, 4(1), 25. https://doi.org/10.5455/jabet.2021.d103
dc.relation.referencesJean Jose, J., Lipton, A. P., & Subhash, S. K. (2008). Impact of Marine Secondary Metabolites (MSM) from Hypnea musciformis as an Immunostimulant on Hemogram Count and Vibrio alginolyticus Infection in the Shrimp, Penaeus monodon, at Different Salinities. Israeli Journal of Aquaculture - Bamidgeh, 60(1), 65–69. https://eprints.cmfri.org.in/8742/
dc.relation.referencesJiménez, C. (2018). Marine Natural Products in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 9(10), 959–961. https://doi.org/10.1021/acsmedchemlett.8b00368
dc.relation.referencesKaradeniz, F., Karagozlu, M. Z., & Kim, S.-K. (2015). Antiviral Activities of Marine Algal Extracts. In Marine Algae Extracts (pp. 371–380). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9783527679577.ch23
dc.relation.referencesLangton, R. W., Haines, K. C., & Lyon, R. E. (1977). Ammonia-nitrogen production by the bivalve molluscTapes japonica and its recovery by the red seaweed Hypnea musciformis in a tropical mariculture system. Helgoländer Wissenschaftliche Meeresuntersuchungen, 30(1), 217–229. https://doi.org/10.1007/BF02207837
dc.relation.referencesLapointe, B. E., Williams, L. D., Goldman, J. C., & Ryther, J. H. (1976). The mass outdoor culture of macroscopic marine algae. Aquaculture, 8(1), 9–21. https://doi.org/10.1016/0044-8486(76)90015-6
dc.relation.referencesGanesan, M., Thiruppathi, S., & Jha, B. (2006). Mariculture of Hypnea musciformis (Wulfen) Lamouroux in South east coast of India. Aquaculture, 256(1), 201–211. https://doi.org/https://doi.org/10.1016/j.aquaculture.2006.01.039
dc.relation.referencesGarcía-Poza, S., Leandro, A., Cotas, C., Cotas, J., Marques, J. C., Pereira, L., & Gonçalves, A. M. M. (2020). The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 18, p. 6528). https://doi.org/10.3390/ijerph17186528
dc.relation.referencesMac Monagail, M., Lynn, C., Liam, M., Rita, A., & and Critchley, A. T. (2017). Sustainable harvesting of wild seaweed resources. European Journal of Phycology, 52(4), 371–390. https://doi.org/10.1080/09670262.2017.1365273
dc.relation.referencesMendes, G., Bravin, I., Yoneshigue-Valentin, Y., Yokoya, N. ., & Romanos, M. (2012). Antι-HSV activity of Hypnea musciformis cultured with different phytohormones. Revista Brasileira de Farmacognosia, 22(4), 789–794. https://doi.org/10.1590/S0102-695X2012005000054
dc.relation.referencesMolina-Vargas, J. N., & Álvarez-León, R. (2014). Resultados preliminares del cultivo experimental de Gracilaria verrucosa (Hudson) Papenfuss (=G. caudata J. Agardh) (Rhodophyta: Gracilariaceae) en la Costa Caribe de Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(146), 79–87. https://doi.org/10.18257/raccefyn.41
dc.relation.referencesMorais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? In Cosmetics (Vol. 8, Issue 1, p. 8). https://doi.org/10.3390/cosmetics8010008
dc.relation.referencesMoses Babu, J., Mathur, H. H., & Trivedi, G. K. (1990). An hydroxy diketosteroid from the marine red alga Hypnea musciformis . Phytochemistry, 29(6), 2029–2031. https://doi.org/10.1016/0031-9422(90)85064-M
dc.relation.referencesMosquera-Murillo, Z., & Pena-Salamanca, E. J. (2016). Effect of salinity on growth of the green alga Caulerpa sertularioides (Bryopsidales, Chlorophyta) under laboratory conditions. Hidrobiologica, 26(2), 277–282. https://doi.org/10.24275/uam/izt/dcbs/hidro/2016v26n2/mosquera
dc.relation.referencesNagano, C. S., Debray, H., Nascimento, K. S., Pinto, V. P. T., Cavada, B. S., Saker-Sampaio, S., Farias, W. R. L., Sampaio, A. H., & Calvete, J. J. (2005). HCA and HML isolated from the red marine algae Hypnea cervicornis and Hypnea musciformis define a novel lectin family. Protein Science, 14(8), 2167–2176. https://doi.org/https://doi.org/10.1110/ps.051498505
dc.relation.referencesNagano, C. S., Gallego Del Sol, F., Cavada, B. S., Nascimento, K. S. D., Nunes, E. V., Sampaio, A. H., & Calvete, J. J. (2005). Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis . Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 61(pt 11), 997–999. https://doi.org/10.1107/S1744309105033671
dc.relation.referencesNagano, C. S., Moreno, F. B. M. B., Bloch Jr., C., Prates, M. V, Calvete, J. J., Sampaio, S., Farias, W. R. L., Tavares, T. D., Nascimento, K. S., Grangeiro, T. B., Cavada, B. S., & Saker-Sampaio, A. H. (2002). Purification and Characterization of a new Lectin from the Red Marine Alga Hypnea Musciformis . In Protein & Peptide Letters (Vol. 9, Issue 2, pp. 159–165). https://doi.org/http://dx.doi.org/10.2174/0929866023408931
dc.relation.referencesNajam, R., Ahmed, S. P., & Azhar, I. (2010). Pharmacological Activities of Hypnea musciformis . African Journal of Biomedical Research, 13(1), 69–74. https://doi.org/10.4314/
dc.relation.referencesNauer, F., Amorim, A. M., Santos, J. P., Chow, F., & Oliveira, M. C. (2018). Physiological plasticity in morphological variations of red seaweed Hypnea pseudomusciformis (Gigartinales, Rhodophyta) uncovered by molecular, antioxidant capacity and pigments content data. Revista Brasileira de Botanica, 41(3), 567–577. https://doi.org/10.1007/s40415-018-0487-3
dc.relation.referencesNauer, F., Ayres-Ostrock, L., Amorim, A. M., Santos, J. P., Chow, F., Plastino, E. M., & Oliveira, M. C. (2019). Life history, growth, and pigment content of two morphological variants of Hypnea pseudomusciformis (Gigartinales, Rhodophyta). Journal of Applied Phycology, 31(2), 1271–1284. https://doi.org/10.1007/s10811-018-1630-z
dc.relation.referencesNauer, F., Cassano, V., & Oliveira, M. C. (2015). Description of Hypnea pseudomusciformis sp. nov., a new species based on molecular and morphological analyses, in the context of the H. musciformis complex (Gigartinales, Rhodophyta). Journal of Applied Phycology, 27(6), 2405–2417. https://doi.org/10.1007/s10811-014-0488-y
dc.relation.referencesNeori, A., Bronfman, Y., van Rijn, J., Guttman, L., Krupnik, N., Shpigel, M., Samocha, T. M., Davis, D. A., Qiu, X., Abelin, P., & Israel, Á. (2020). The suitability of Ulva fasciata, Ulva compressa, and Hypnea musciformis for production in an outdoor spray cultivation system, with respect to biomass yield and protein content. Journal of Applied Phycology, 32(5), 3183–3197. https://doi.org/10.1007/s10811-020-02130-3
dc.relation.referencesNil Gopalakrishnan, C., & T, B. (2016). Preliminary studies on the eff ect of bioactive substances of Hypnea musciformis (Wulf.) Lamour. on the growth of seedlings in green gram, Vigna radiata L. Journal of Phytology, 8, 1–6. https://doi.org/10.19071/jp.2016.v8.2973
dc.relation.referencesOliveira, E. C. de, & Berchez, F. (1986). Ensayos sobre el cultivo de la alga roja Hypnea musciformis ( Rhodophyta, Gigartinales )en São Paulo, Brasil. In Taller de Trabajo sobre Acuicultura en Latinoamerica PP - Lima.
dc.relation.referencesPangestuti, R., Getachew, A. T., Siahaan, E. A., & Chun, B.-S. (2019). Characterization of functional materials derived from tropical red seaweed Hypnea musciformis produced by subcritical water extraction systems. Journal of Applied Phycology, 31(4), 2517–2528. https://doi.org/10.1007/s10811-019-1754-9
dc.relation.referencesPaoli, R., Bjarnason, B., Ilmjärv, T., & Romagnoli, F. (2023). Off-Shore and On-Shore Macroalgae Cultivation and Wild Harvesting: an LCA-Based Evaluation from Baltic Sea Region Case Studies. Environmental and Climate Technologies, 27(1), 606–626. https://doi.org/10.2478/rtuect-2023-0045
dc.relation.referencesPaul, J. J. P., & Fredrick Raja, E. (2019). Evaluation of Phytochemicals in Methanolic Extract of Hypnea musciformis (Wulf.) Lamouroux Collected from Manapad in the South East Coast of Tamil Nadu, India. Journal of Drug Delivery and Therapeutics, 9(4-A), 591–593. https://doi.org/10.22270/jddt.v9i4-A.3529
dc.relation.referencesPereira, S. A., Kimpara, J. M., & Valenti, W. C. (2020). A simple substrate to produce the tropical epiphytic algae Hypnea pseudomusciformis. Aquacultural Engineering, 89, 102066. https://doi.org/https://doi.org/10.1016/j.aquaeng.2020.102066
dc.relation.referencesPosada, V., Gómez, O. M., Colorado, J., & Gavio, B. (2024). Macroalgas del género Hypnea, y su potencial para el cultivo en plataforma arrecifal de las islas Providencia y Santa Catalina, Reserva de Biosfera Seaflower. LAQUA 2024. Latin American & Caribbean Aquaculture. https://was.org/Meeting/Program/PaperDetail/164257
dc.relation.referencesRafiquzzaman, S. M., Ahmad, M. U., Lee, J. M., Kim, E.-Y., Kim, Y.-O., Kim, D.-G., & Kong, I.-S. (2016). Phytochemical Composition and Antioxidant Activity of Edible Red Alga ypnea musciformis from Bangladesh. Journal of Food Processing and Preservation, 40(5), 1074–1083. https://doi.org/https://doi.org/10.1111/jfpp.12688
dc.relation.referencesRincón Díaz, M. N., & Gavio, B. (2020). Diversidad de Macroalgas Marinas del Caribe colombiano. Instituto de Investigaciones Marinas y Costeras - Invemar. https://doi.org/https://doi.org/10.15472/alecqe
dc.relation.referencesRincón Valencia, S. (2025). Evaluación de aplicaciones cosméticas de extractos de las macroalgas del caribe colombiano Sargassum filipendula y Gracilariopsis tenuifrons con un enfoque en fotoprotección, actividad antioxidante, antι-edad y agentes reológicos. Universidad de Antioquia.
dc.relation.referencesRozo, G., Bohorques, L., & Santamaría, J. (2019). Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel. Polimeros, 29(3), 2–8. https://doi.org/10.1590/0104-1428.02719
dc.relation.referencesRozo, G., Rozo, C., Escobar, H., & Gonzalez, L. (2009). Adición de hidrogeles al suelo para germinación y cultivo de Lactuca sativa variedad Green Forest. https://doi.org/10.13140/RG.2.2.32587.08481
dc.relation.referencesRozo, G., Rozo, C., Puyana, M., Ramos, F., Almonacid, C., & Castro-Vargas, H. (2019). Two compounds of the Colombian algae Hypnea musciformis prevent oxidative damage in human low density lipoproteins LDLs. Journal of Functional Foods, 60, 103399. https://doi.org/10.1016/j.jff.2019.06.001
dc.relation.referencesSaavedra, S., Henríquez-Antipa, L., Leal, P., Francisco, G., Cook, S., & Cárcamo, P. (2019). Cutivo de Macroalgas: Diversificación de la Acuicultura de Pequeña Escala en Chile. https://www.ifop.cl/ifop-realiza-novedoso-manual-sobre-cultivos-de-macroalgas/
dc.relation.referencesSantamaría Vanegas, J., Rozo, G., & Barreto Campos, B. (2019). Characterization of a κ-Carrageenan Hydrogel and its Evaluation as a Coating Material for Fertilizers. Journal of Polymers and the Environment, 27(4), 774–783. https://doi.org/10.1007/s10924-019-01384-4
dc.relation.referencesSantos, M. G. M., Lagrota, M. H. C., Miranda, M. M. F. S., Yoneshigue-Valentin, Y., & Wigg, M. D. (1999). A Screening for the Antiviral Effect of Extracts from Brazilian Marine Algae against Acyclovir Resistant Herpes Simplex Virus Type 1. Botanica Marina, 42(3), 227–230. https://doi.org/doi:10.1515/BOT.1999.026
dc.relation.referencesSchnetter, R., & Schnetter, M. L. (1967). NOTAS SOBRE UNAS ESPECIES DEL ORDEN GIGARTINALES (RHODOPHYCEAE) EN LA COSTA ATLÁNTICA DE COLOMBIA. Boletín de Investigaciones Marinas y Costeras, 1. https://doi.org/10.25268/bimc.invemar.1967.1.0.605
dc.relation.referencesSenthilkumar, K., & Kim, S.-K. (2015). Marine Algae and Chronic Diseases. In Marine Algae Extracts (pp. 557–574). https://doi.org/https://doi.org/10.1002/9783527679577.ch32
dc.relation.referencesSepúlveda Sánchez, L. J. (2022). Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/84624
dc.relation.referencesShafie, M. H., Kamal, M. L., Zulkiflee, F. F., Hasan, S., Uyup, N. H., Abdullah, S., Mohamed Hussin, N. A., Tan, Y. C., & Zafarina, Z. (2022). Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. Journal of the Indian Chemical Society, 99(9), 100613. https://doi.org/https://doi.org/10.1016/j.jics.2022.100613
dc.relation.referencesSudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91, 165–179. https://doi.org/https://doi.org/10.1016/j.rser.2018.03.100
dc.relation.referencesTullberg, R. M., Nguyen, H. P., & Wang, C. M. (2022). Review of the Status and Developments in Seaweed Farming Infrastructure. In Journal of Marine Science and Engineering (Vol. 10, Issue 10). https://doi.org/10.3390/jmse10101447
dc.relation.referencesUsov, A. I. (2011). Chapter 4 - Polysaccharides of the red algae (D. B. T.-A. in C. C. and B. Horton (Ed.); Vol. 65, pp. 115–217). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-385520-6.00004-2
dc.relation.referencesV. Brito, T., Barros, F. C. N., Silva, R. O., Dias Júnior, G. J., C. Júnior, J. S., Franco, Á. X., Soares, P. M. G., Chaves, L. S., Abreu, C. M. W. S., de Paula, R. C. M., Freitas, A. L. P., & R. Barbosa, A. L. (2016). Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats. Carbohydrate Polymers, 151, 957–964. https://doi.org/10.1016/j.carbpol.2016.06.047
dc.relation.referencesValderrama, D., Junning, C., Nathanael, H., Neil, R., Iain C., N., Anicia Q., H., Flower E., M., M., K., R., N., Mechthild, K., Daniel, R., Eucario, G.-L., & and Fraga, J. (2015). The Economics of Kappaphycus Seaweed Cultivation in Developing Countries: A Comparative Analysis of Farming Systems. Aquaculture Economics & Management, 19(2), 251–277. https://doi.org/10.1080/13657305.2015.1024348
dc.relation.referencesVargas Aya, P. A., & Rozo Torres, G. (2020). Sunscreen and moisturizer cream effects of cosmetic formulations containing extracts of Hypnea musciformis collected in the Colombian Caribbean. Pharmacy & Pharmacology International Journal, 8(3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296
dc.relation.referencesVillamil, L., Infante Villamil, S., Rozo Torres, G., & Rojas, J. (2019). Effect of dietary administration of kappa carrageenan extracted from Hypnea musciformis on innate immune response, growth, and survival of Nile tilapia (Oreochromis niloticus). Aquaculture International, 27(1), 53–62. https://doi.org/10.1007/s10499-018-0306-7
dc.relation.referencesWallner, M., Lobo, S., Boccanera, N., & Da Silva, E. M. (1992). Biomass, carrageenan yield and reproductive state of Hypnea musciformis (Rhodophyta: Gigartinales) under natural and experimental cultivated condition. Aquaculture Research, 23(4), 443–451. https://doi.org/https://doi.org/10.1111/j.1365-2109.1992.tb00788.x
dc.relation.referencesWijesekara, I., & Kim, S.-K. (2015). Application of Marine Algae Derived Nutraceuticals in the Food Industry. In Marine Algae Extracts (pp. 627–638). https://doi.org/https://doi.org/10.1002/9783527679577.ch35
dc.relation.referencesZia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095
dc.relation.referencesFaulkner, D. J. (1991). Marine natural products. Natural Product Reports, 8(2), 97. https://doi.org/10.1039/np9910800097
dc.relation.referencesAhmed, Z. U., Hasan, O., Rahman, M. M., Akter, M., Rahman, M. S., & Sarker, S. (2022). Seaweeds for the sustainable blue economy development: A study from the south east coast of Bangladesh. Heliyon, 8(3), e09079. https://doi.org/10.1016/j.heliyon.2022.e09079
dc.relation.referencesÁlvarez-Viñas, M., Domínguez, H., & Torres, M. D. (2024). Evaluation of carrageenans extracted by an eco-friendly technology as source for gelled matrices with potential food application. International Journal of Biological Macromolecules, 279, 135288. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.135288
dc.relation.referencesAndersen, R. (Ed.). (2005). Algal Culturing Techniques (1st ed.). Academic Press.
dc.relation.referencesAshkenazi, D. Y., Figueroa, F. L., Korbee, N., García-Sánchez, M., Vega, J., Ben-Valid, S., Paz, G., Salomon, E., Israel, Á., & Abelson, A. (2022). Enhancing Bioproducts in Seaweeds via Sustainable Aquaculture: Antioxidant and Sun-Protection Compounds. In Marine Drugs (Vol. 20, Issue 12, p. 767). https://doi.org/10.3390/md20120767
dc.relation.referencesBerchez, F. A. S., Pereira, R. T. L., & Kamiya, N. F. (1993). Culture of Hypnea musciformis (Rhodophyta, Gigartinales) on artificial substrates attached to linear ropes. Hydrobiologia, 260(1), 415–420. https://doi.org/10.1007/BF00049050
dc.relation.referencesBuschmann, A. H., Carolina, C., Javier, I., Amir, N., Álvaro, I., María C., H.-G., Sandra V., P., Juan Luis, G.-P., Alexander, G., Niva, T.-S., & and Critchley, A. T. (2017). Seaweed production: overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52(4), 391–406. https://doi.org/10.1080/09670262.2017.1365175
dc.relation.referencesFirdayanti, L., Yanti, R., Rahayu, E. S., & Hidayat, C. (2023). Carrageenan extraction from red seaweed ( Kappaphycopsis cottonii ) using the bead mill method. Algal Research, 69, 102906. https://doi.org/https://doi.org/10.1016/j.algal.2022.102906
dc.relation.referencesGarcia, C., & Diaz-Pulido, G. (2006). Dynamics of a Macroalgal Rocky Intertidal Community in the Colombian Caribbean. Boletin de Investigaciones Marinas y Costeras, 35. https://doi.org/10.25268/bimc.invemar.2006.35.0.213
dc.relation.referencesGómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25(6), 1514–1520. https://doi.org/https://doi.org/10.1016/j.foodhyd.2011.02.009
dc.relation.referencesHayashi, L., Oliveira, E. C., Bleicher-Lhonneur, G., Boulenguer, P., Pereira, R. T. L., von Seckendorff, R., Shimoda, V. T., Leflamand, A., Vallée, P., & Critchley, A. T. (2007). The effects of selected cultivation conditions on the carrageenan characteristics of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, São Paulo, Brazil. Journal of Applied Phycology, 19(5), 505–511. https://doi.org/10.1007/s10811-007-9163-x
dc.relation.referencesHurtado, A. Q., Iain C., N., & and Critchley, A. T. (2019). Phyconomy: the extensive cultivation of seaweeds, their sustainability and economic value, with particular reference to important lessons to be learned and transferred from the practice of eucheumatoid farming. Phycologia, 58(5), 472–483. https://doi.org/10.1080/00318884.2019.1625632
dc.relation.referencesJagtap, A. S., & Meena, S. N. (2022). Chapter 23 - Seaweed farming: A perspective of sustainable agriculture and socio-economic development (M. K. Jhariya, R. S. Meena, A. Banerjee, & S. N. B. T.-N. R. C. and A. for S. Meena (Eds.); pp. 493–501). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822976-7.00022-3
dc.relation.referencesKnutsen, S. H., Murano, E., D’Amato, M., Toffanin, R., Rizzo, R., & Paoletti, S. (1995). Modified procedures for extraction and analysis of carrageenan applied to the red alga Hypnea musciformis . Journal of Applied Phycology, 7(6), 565–576. https://doi.org/10.1007/BF00003944
dc.relation.referencesLi, L., Ni, R., Shao, Y., & Mao, S. (2014). Carrageenan and its applications in drug delivery. Carbohydrate Polymers, 103, 1–11. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.12.008
dc.relation.referencesMendoza, W. G., Ganzon-Fortes, E. T., Villanueva, R. D., Romero, J. B., & Montaño, M. N. E. (2006). Tissue age as a factor affecting carrageenan quantity and quality in farmed Kappaphycus striatum (Schmitz) Doty ex Silva. 49(1), 57–64. https://doi.org/doi:10.1515/BOT.2006.007
dc.relation.referencesPacheco-Quito, E. M., Ruiz-Caro, R., & Veiga, M. D. (2020). Carrageenan: Drug delivery systems and other biomedical applications. Marine Drugs, 18(11). https://doi.org/10.3390/md18110583
dc.relation.referencesRafiquzzaman, S. M., Ahmed, R., Lee, J. M., Noh, G., Jo, G., & Kong, I.-S. (2016). Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. Journal of Applied Phycology, 28(2), 1265–1274. https://doi.org/10.1007/s10811-015-0605-6
dc.relation.referencesSekkal, M., & Legrand, P. (1993). A spectroscopic investigation of the carrageenans and agar in the 1500-100 cm−1 spectral range. Spectrochimica Acta Part A: Molecular Spectroscopy, 49(2A), 209–221. https://doi.org/https://doi.org/10.1016/0584-8539(93)80176-B
dc.relation.referencesShodex HPLC columns. (2022). Operation Manual Shodex STANDARD P-82. https://www.shodex.com/en/download/result?code=P-82+%5BSTANDARD%5D&serial=12100
dc.relation.referencesSNS Insider. (2025). Carrageenan Market Size Share & Industry Analysis, 2024-2032. https://www.snsinsider.com/reports/carrageenan-market-2693
dc.relation.referencesSpeciale, I., Notaro, A., Garcia-Vello, P., Di Lorenzo, F., Armiento, S., Molinaro, A., Marchetti, R., Silipo, A., & De Castro, C. (2022). Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker’s guide. Carbohydrate Polymers, 277, 118885. https://doi.org/https://doi.org/10.1016/j.carbpol.2021.118885
dc.relation.referencesSpillias, S., Kelly, R., Cottrell, R. S., O’Brien, K. R., Im, R.-Y., Kim, J. Y., Lei, C., Leung, R. W. S., Matsuba, M., Reis, J. A., Sato, Y., Sempert, K., & McDonald-Madden, E. (2023). The empirical evidence for the social-ecological impacts of seaweed farming. PLOS Sustainability and Transformation, 2(2), e0000042. https://doi.org/https://doi.org/10.1371/journal. pstr.0000042
dc.relation.referencesUdo, T., Mummaleti, G., Mohan, A., Singh, R. K., & Kong, F. (2023). Current and emerging applications of carrageenan in the food industry. Food Research International, 173, 113369. https://doi.org/https://doi.org/10.1016/j.foodres.2023.113369
dc.relation.referencesVandanjon, L., Burlot, A.-S., Zamanileha, E. F., Douzenel, P., Ravelonandro, P. H., Bourgougnon, N., & Bedoux, G. (2023). The Use of FTIR Spectroscopy as a Tool for the Seasonal Variation Analysis and for the Quality Control of Polysaccharides from Seaweeds. In Marine Drugs (Vol. 21, Issue 9, p. 482). https://doi.org/10.3390/md21090482
dc.relation.referencesVargas, D. (2025). Cultivo semicerrado de Hypnea musciformis (Rhodophyta): evaluación de la tasa de crecimiento. Universidad Jorge Tadeo Lozano.
dc.relation.referencesVillanueva, R. D., Romero, J. B., Montaño, M. N. E., & de la Peña, P. O. (2011). Harvest optimization of four Kappaphycus species from the Philippines. Biomass and Bioenergy, 35(3), 1311–1316. https://doi.org/https://doi.org/10.1016/j.biombioe.2010.12.044
dc.relation.referencesVolery, P., Besson, R., & Schaffer-Lequart, C. (2004). Characterization of Commercial Carrageenans by Fourier Transform Infrared Spectroscopy Using Single-Reflection Attenuated Total Reflection. Journal of Agricultural and Food Chemistry, 52(25), 7457–7463. https://doi.org/10.1021/jf040229o
dc.relation.referencesZhang, L., Liao, W., Huang, Y., Wen, Y., Chu, Y., & Zhao, C. (2022). Global seaweed farming and processing in the past 20 years. Food Production, Processing and Nutrition, 4(1), 23. https://doi.org/10.1186/s43014-022-00103-2
dc.relation.referencesBandaranayake, W. M. (1998). Mycosporines: are they nature’s sunscreens? Natural Product Reports, 15(2), 159–172. https://doi.org/10.1039/A815159Y
dc.relation.referencesBautista, C. A., Puentes, C. A., Vargas-Peláez, C. M., Santos-Acevedo, M., Ramos, F. A., Gómez-León, J., & Castellanos, L. (2022). The state of the art of marine natural products in Colombia. In Revista Colombiana de Química (Vol. 51, pp. 24–39). scieloco. https://doi.org/10.15446/rev.colomb.quim.v51n1.100644
dc.relation.referencesBenavides Ballesteros, H. O., Simbaqueva Fonseca, O., & Zapata Lesmes, H. J. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. In IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales) - UPME (Unidad de Planeación Minero Energética). Imprenta Nacional de Colombia. https://www.ideam.gov.co/sites/default/files/temas/tiempo-y-clima/documentos/atlas/ATLAS+RADIACION+SOLAR+UV+Y+OZONO+DE+COLOMBIA.pdf
dc.relation.referencesBlaustein, A. R., & Searle, C. (2013). Ultraviolet Radiation. In S. A. B. T. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition) (pp. 296–303). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384719-5.00147-7
dc.relation.referencesBriani, B., Sissini, M. N., Lucena, L. A., Batista, M. B., Costa, I. O., Nunes, J. M. C., Schmitz, C., Ramlov, F., Maraschin, M., Korbee, N., Rörig, L., Horta, P. A., Figueroa, F. L., & Barufi, J. B. (2018). The influence of environmental features in the content of mycosporine-like amino acids in red marine algae along the Brazilian coast. Journal of Phycology, 54(3), 380–390. https://doi.org/https://doi.org/10.1111/jpy.12640
dc.relation.referencesCardozo, K., Marques, L., Carvalho, V., Carignan, M., Pinto, E., Marinho-Soriano, E., & Colepicolo, P. (2011). Analyses of photoprotective compounds in red algae from the Brazilian coast. Revista Brasileira De Farmacognosia-Brazilian Journal of Pharmacognosy, 21, 202–208. https://doi.org/10.1590/s0102-695x2011005000047
dc.relation.referencesChrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., & Bialczyk, J. (2017). Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. In Marine Drugs (Vol. 15, Issue 10, p. 326). https://doi.org/10.3390/md15100326
dc.relation.referencesCosenza, V. A., Navarro, D. A., Fissore, E. N., Rojas, A. M., & Stortz, C. A. (2014). Chemical and rheological characterization of the carrageenans from Hypnea musciformis (Wulfen) Lamoroux. Carbohydrate Polymers, 102, 780–789. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.10.090
dc.relation.referencesde la Coba, F., Aguilera, J., Korbee, N., de Gálvez, M. V, Herrera-Ceballos, E., Álvarez-Gómez, F., & Figueroa, F. L. (2019). UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (MAAs) through Different Biological Effective Protection Factors (BEPFs). In Marine Drugs (Vol. 17, Issue 1, p. 55). https://doi.org/10.3390/md17010055
dc.relation.referencesElhady, S. S., Habib, E. S., Abdelhameed, R. F. A., Goda, M. S., Hazem, R. M., Mehanna, E. T., Helal, M. A., Hosny, K. M., Diri, R. M., Hassanean, H. A., Ibrahim, A. K., Eltamany, E. E., Abdelmohsen, U. R., & Ahmed, S. A. (2022). Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae Hypnea musciformis in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling. Marine Drugs, 20(1), 63. https://doi.org/10.3390/md20010063
dc.relation.referencesFigueroa, F. L., Korbee, N., Abdala, R., Jerez, C. G., López-de la Torre, M., Güenaga, L., Larrubia, M. A., & Gómez-Pinchetti, J. L. (2012). Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta). Marine Pollution Bulletin, 64(2), 310–318. https://doi.org/https://doi.org/10.1016/j.marpolbul.2011.11.012
dc.relation.referencesGeraldes, V., Jacinavicius, F. R., Genuário, D. B., & Pinto, E. (2019). Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 34(S3), e8634. https://doi.org/https://doi.org/10.1002/rcm.8634
dc.relation.referencesGeraldes, V., & Pinto, E. (2021). Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. In Pharmaceuticals (Vol. 14, Issue 1, p. 63). https://doi.org/10.3390/ph14010063
dc.relation.referencesGNPS: Global Natural Products Social Molecular Networking. (n.d.-a). Shinorine- Library Spectrum. https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00005436494
dc.relation.referencesGNPS: Global Natural Products Social Molecular Networking. (n.d.-b). Palythine-Library Spectrum. https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000574579
dc.relation.referencesGuiry, M., & Guiry, W. (n.d.). AlgaeBase. https://www.algaebase.org/
dc.relation.referencesHudson, L., Rashdan, E., Bonn, C. A., Chavan, B., Rawlings, D., & Birch-Machin, M. A. (2020). Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. The FASEB Journal, 34(3), 3874–3883. https://doi.org/https://doi.org/10.1096/fj.201902351RR
dc.relation.referencesKarsten, U., Franklin, L. A., Lüning, K., & Wiencke, C. (1998). Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta). Planta, 205(2), 257–262. https://doi.org/10.1007/s004250050319
dc.relation.referencesKim, W., Kim, J. Y., Jeong, S. J., Yang, H. C., & Cho, J.-Y. (2021). Physicochemical characteristics and antioxidant activities of laver cultivars harvested at different times. Korean Journal of Food Preservation, 28(6), 705–715. https://doi.org/10.11002/kjfp.2021.28.6.705
dc.relation.referencesLa Barre, S., Roullier, C., & Boustie, J. (2014). Mycosporine-Like Amino Acids (MAAs) in Biological Photosystems. In Outstanding Marine Molecules (pp. 333–360). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9783527681501.ch15
dc.relation.referencesLagunas-Solar, M. C. (2014). Food Technologies: Pulsed Ultraviolet Radiation Processing. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety (pp. 225–238). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-378612-8.00261-4
dc.relation.referencesLittler, D., Littler, M., Bucher, K., & Norris, J. (1989). Marine Plants of the Caribbean: A Field Guide from Florida to Brazil (First). Smithsonian.
dc.relation.referencesLombardini, E. D., Pacheco-Thompson, M. E., & Melanson, M. A. (2013). Chapter 44 - Radiation and Other Physical Agents. In W. M. Haschek, C. G. Rousseaux, & M. A. Wallig (Eds.), Haschek and Rousseaux’s Handbook of Toxicologic Pathology (Third Edition) (pp. 1421–1503). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-415759-0.00044-3
dc.relation.referencesMishra, S., Richa, & Sinha, R. P. (2022). Biotechnological exploitation of cyanobacterial photoprotective metabolites. Vegetos, 35(2), 281–297. https://doi.org/10.1007/s42535-022-00347-w
dc.relation.referencesMohiuddin, M., Banik, U., Iqbal, M. Z., Chamily, F. A., Rahman, M. M., Nahiduzzaman, M., Wahab, M. A., Rahman, M. A., & Asaduzzaman, M. (2023). Influence of cultivation systems and associated environmental factors on the growth performance of Hypnea musciformis seaweed at the south-east coast of the Bay of Bengal, Bangladesh. Aquaculture Reports, 32, 101718. https://doi.org/https://doi.org/10.1016/j.aqrep.2023.101718
dc.relation.referencesNauer, F., Jesus, P. B., Cassano, V., Nunes, J. M. C., Schnadelbach, A. S., & Oliveira, M. C. (2019). A taxonomic review of the genus Hypnea (Gigartinales, Rhodophyta) in Brazil based on DNA barcode and morphology. Brazilian Journal of Botany, 42(3), 561–574. https://doi.org/10.1007/s40415-019-00544-z
dc.relation.referencesSaewan, N., & Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology, 14(1), 47–63. https://doi.org/https://doi.org/10.1111/jocd.12123
dc.relation.referencesSchnetter, R., & Schnetter, M. L. (1967). NOTAS SOBRE UNAS ESPECIES DEL ORDEN GIGARTINALES (RHODOPHYCEAE) EN LA COSTA ATLÁNTICA DE COLOMBIA. Boletín de Investigaciones Marinas y Costeras, 1. https://doi.org/10.25268/bimc.invemar.1967.1.0.605
dc.relation.referencesSingh, J. (2015). International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. Journal of Pharmacology and Pharmacotherapeutics, 6(3), 185–187. https://doi.org/10.4103/0976-500X.162004
dc.relation.referencesSun, Y., Zhang, N., Zhou, J., Dong, S., Zhang, X., Guo, L., & Guo, G. (2020). Distribution, Contents, and Types of Mycosporine-Like Amino Acids (MAAs) in Marine Macroalgae and a Database for MAAs Based on These Characteristics. In Marine Drugs (Vol. 18, Issue 1). https://doi.org/10.3390/md18010043
dc.relation.referencesUrrea-Victoria, V., Costa, G., Gavio, B., Ramos, F., & Castellanos, L. (2025). Mycosporine-like amino acids profile in red algae from high UV-index geographical areas (San Andrés Island and La Guajira) of the Colombian Caribbean coast. Algal Research, 86, 103927. https://doi.org/10.1016/j.algal.2025.103927
dc.relation.referencesUrrea-Victoria, V., Geraldes, V., Pinto, E., & Castellanos, L. (2023). Photosynthetic pigments and photoprotective metabolites of Colombian pacific marine macroalgae in response to contrasting ultraviolet-index periods. Journal of Experimental Marine Biology and Ecology, 564, 151908. https://doi.org/https://doi.org/10.1016/j.jembe.2023.151908
dc.relation.referencesWhitehead, K., & Vernet, M. (2000). Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay. Limnology and Oceanography, 45(8), 1788–1796. https://doi.org/https://doi.org/10.4319/lo.2000.45.8.1788
dc.relation.referencesZaytseva, A., Chekanov, K., Zaytsev, P., Bakhareva, D., Gorelova, O., Kochkin, D., & Lobakova, E. (2021). Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation. In Plants (Vol. 10, Issue 12, p. 2601). https://doi.org/10.3390/plants10122601
dc.relation.referencesAhsan, H. (2019). The significance of complex polysaccharides in personal care formulations. Journal of Carbohydrate Chemistry, 38(4), 213–233. https://doi.org/10.1080/07328303.2019.1615498
dc.relation.referencesAko, K. (2015). Influence of elasticity on the syneresis properties of κ-carrageenan gels. Carbohydrate Polymers, 115, 408–414. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.08.109
dc.relation.referencesAl-Hassan, A. A. (2024). Development and characterization of camel gelatin films: Influence of camel bone age and glycerol or sorbitol on film properties. Heliyon, 10(9), e30338. https://doi.org/10.1016/j.heliyon.2024.e30338
dc.relation.referencesBenitez, J. J., Florido-Moreno, P., Porras-Vázquez, J. M., Tedeschi, G., Athanassiou, A., Heredia-Guerrero, J. A., & Guzman-Puyol, S. (2024). Transparent, plasticized cellulose-glycerol bioplastics for food packaging applications. International Journal of Biological Macromolecules, 273(February). https://doi.org/10.1016/j.ijbiomac.2024.132956
dc.relation.referencesChiaoprakobkij, N., Seetabhawang, S., Sanchavanakit, N., & Phisalaphong, M. (2019). Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film. Journal of Biomaterials Science, Polymer Edition, 30(11), 961–982. https://doi.org/10.1080/09205063.2019.1613292
dc.relation.referencesDréno, B., Zuberbier, T., Gelmetti, C., Gontijo, G., & Marinovich, M. (2019). Safety review of phenoxyethanol when used as a preservative in cosmetics. Journal of the European Academy of Dermatology and Venereology, 33(S7), 15–24. https://doi.org/https://doi.org/10.1111/jdv.15944
dc.relation.referencesFluhr, J. W., Darlenski, R., & Surber, C. (2008). Glycerol and the skin: holistic approach to its origin and functions. British Journal of Dermatology, 159(1), 23–34. https://doi.org/10.1111/j.1365-2133.2008.08643.x
dc.relation.referencesGoogle, 2025. Gemini (Imagen generada de una mujer en estilo dibujo usando una mascarilla facial de hidrogel). https://gemini.google.com/
dc.relation.referencesKanlayavattanakul, M., & Lourith, N. (2014). Biopolysaccharides for Skin Hydrating Cosmetics BT - Polysaccharides: Bioactivity and Biotechnology. In K. G. Ramawat & J.-M. Mérillon (Eds.), Polysaccharides (pp. 1–23). Springer International Publishing. https://doi.org/10.1007/978-3-319-03751-6_29-1
dc.relation.referencesKim, H., Kim, J. T., Barua, S., Yoo, S. Y., Hong, S. C., Lee, K. Bin, & Lee, J. (2018). Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization. Expert Opinion on Drug Delivery, 15(1), 17–31. https://doi.org/10.1080/17425247.2017.1306054
dc.relation.referencesLaboratorio de Procesos de Transformación de Materiales PTM, Universidad Nacional de Colombia. (2020). Procedimiento operativo del Dermoanalizador MPA 10 Courage-Khazaka (PE 07 versión 1.0.). Documento no publicado.
dc.relation.referencesMarasinghe, W. N., Jayathunge, K. G. L. R., Dassanayake, R. S., Liyanage, R., Bandara, P. C., Rajapaksha, S. M., & Gunathilake, C. (2024). Structure, Properties, and Recent Developments in Polysaccharide- and Aliphatic Polyester-Based Packaging—A Review. En Journal of Composites Science (Vol. 8, Número 3). https://doi.org/10.3390/jcs8030114
dc.relation.referencesMatsui, M. S., Muizzuddin, N., Arad, S., & Marenus, K. (2003). Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 104(1), 13–22. https://doi.org/10.1385/ABAB:104:1:13
dc.relation.referencesSaeed, H. A. M., & Yang, H. (2025). The versatile world of cosmetic facial masks in skincare: Fabrication, properties, and future directions: A review. Journal of Drug Delivery Science and Technology, 108, 106895. https://doi.org/https://doi.org/10.1016/j.jddst.2025.106895
dc.relation.referencesWilkinson, J. B., & Moore, R. J. (1990). Cosmetología de Harry (S. A. Ediciones Díaz de Santos (ed.)).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.lembALGAS-MEDIO DE CULTIVOspa
dc.subject.lembAlgae -Cultures and culture mediaeng
dc.subject.lembCULTIVO DE ALGASspa
dc.subject.lembAlgae cultureeng
dc.subject.lembINDUSTRIA DE COSMETICOSspa
dc.subject.lembCosmetics industryeng
dc.subject.lembPIROMENspa
dc.subject.lembPyromeneng
dc.subject.lembAGRICULTURA BIOLOGICAspa
dc.subject.lembOrganic farmingeng
dc.subject.lembTECNICAS DE CULTIVOspa
dc.subject.lembCultivation techniqueseng
dc.subject.proposalPerfilado químicospa
dc.subject.proposalAminoácidos tipo micosporinasspa
dc.subject.proposalKappa-carrageninaspa
dc.subject.proposalMascarilla facial tipo hidrogelspa
dc.subject.proposalCorneometríaspa
dc.subject.proposalSemicontrolled cultivationeng
dc.subject.proposalMAAseng
dc.subject.proposalHydrogel facial sheet-maskeng
dc.subject.proposalCorneometryeng
dc.subject.proposalK-carrageenaneng
dc.titleHypnea musciformis del Caribe colombiano : perfil metabólico en ambiente natural y en cultivo, y su potencial cosméticospa
dc.title.translatedHypnea musciformis from the Colombian Caribbean : metabolic profile in the natural and cultured environment, and its cosmetic potentialeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBALCAR-Q: Bioprospección y Química de Algas del Caribe
oaire.fundernameMinisterio de Ciencias

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Hypnea musciformis del Caribe colombiano perfil metabólico en ambiente natural y en cultivo, y su potencial cosmético..pdf
Tamaño:
5.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: