Potencial de bacterias endofíticas del género bacillus y priestia en el control biológico del añublo bacteriano de la panícula del arroz causado por Burkholderia glumae.
dc.contributor.advisor | Peláez Peláez, Manuel José | |
dc.contributor.author | Vivas Londoño, Sandra Ximena | |
dc.date.accessioned | 2025-09-16T16:14:57Z | |
dc.date.available | 2025-09-16T16:14:57Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, fotografías, gráficas, tablas. | spa |
dc.description.abstract | El arroz (Oryza sativa), base de la seguridad alimentaria mundial, enfrenta serias amenazas fitosanitarias, entre ellas el añublo bacteriano de la panícula, causado por Burkholderia glumae. La dependencia del control químico ha generado problemas de resistencia y efectos ambientales, lo que impulsa el desarrollo de alternativas sostenibles como el biocontrol microbiano. Este estudio evaluó el potencial de bacterias endofíticas de los géneros Priestia y Bacillus, aisladas de plantas de arroz en Jamundí y Saldaña (Colombia). Se procesaron ocho muestras de raíces, tallos, hojas y semillas, obteniéndose 112 aislamientos, de los cuales cuatro mostraron mayor actividad antagónica frente a B. glumae en cultivos duales. Estos fueron caracterizados morfológica, bioquímica y molecularmente, identificándose dos como Priestia aryabhattai, uno como Priestia megaterium y otro como Bacillus sp. Los aislamientos seleccionados se evaluaron en invernadero bajo un diseño de bloques completamente al azar. Los tratamientos incluyeron un control inoculado con B. glumae, un testigo, cuatro tratamientos individuales (TM1 - P. megaterium, TM8 y TM16 - P. aryabhattai, TM17 - Bacillus sp.) y un consorcio bacteriano. Los resultados evidenciaron una reducción significativa en la severidad de la enfermedad respecto al control, aunque no se alcanzó una inhibición total del patógeno. Sin embargo, se observó una disminución en la expresión de síntomas y mejoras en el vigor y rendimiento de las plantas, confirmadas mediante pruebas no paramétricas. Estos hallazgos demuestran el potencial de Priestia megaterium, Priestia aryabhattai y Bacillus sp. como agentes de biocontrol para el manejo sostenible del añublo bacteriano en arroz (Texto tomado de la fuente). | spa |
dc.description.abstract | Rice (Oryza sativa), a cornerstone of global food security, faces serious phytosanitary threats, among which bacterial panicle blight caused by Burkholderia glumae is one of the most significant. The reliance on chemical control has generated resistance and environmental concerns, driving the search for sustainable alternatives such as microbial biocontrol. This study evaluated the potential of endophytic bacteria from the genera Priestia and Bacillus, isolated from rice plants in Jamundí and Saldaña (Colombia). Eight samples from roots, stems, leaves, and seeds were processed, yielding 112 isolates, of which four exhibited the strongest antagonistic activity against B. glumae in dual culture assays. These isolates were characterized morphologically, biochemically, and molecularly, and identified as two strains of Priestia aryabhattai, one strain of Priestia megaterium, and one strain of Bacillus sp. The selected isolates were subsequently evaluated in greenhouse trials under a randomized complete block design. Treatments included a control inoculated with B. glumae, a negative control, four individual biological treatments (TM1 - P. megaterium, TM8 and TM16 - P. aryabhattai, TM17 - Bacillus sp.), and a bacterial consortium. Results showed a significant reduction in disease severity compared to the control, although complete inhibition of the pathogen was not achieved. Nevertheless, a decrease in symptom expression and improvements in plant vigor and yield were observed, confirmed by nonparametric statistical tests. These findings demonstrate the promising potential of Priestia megaterium, Priestia aryabhattai, and Bacillus sp. as biocontrol agents for the sustainable management of bacterial panicle blight in rice. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ciencias Agrarias | |
dc.description.methods | Este estudio evaluó el potencial de bacterias endofíticas de los géneros Priestia y Bacillus, aisladas de plantas de arroz en Jamundí y Saldaña (Colombia). Se procesaron ocho muestras de raíces, tallos, hojas y semillas, obteniéndose 112 aislamientos, de los cuales cuatro mostraron mayor actividad antagónica frente a B. glumae en cultivos duales. Estos fueron caracterizados morfológica, bioquímica y molecularmente, identificándose dos como Priestia aryabhattai, uno como Priestia megaterium y otro como Bacillus sp. Los aislamientos seleccionados se evaluaron en invernadero bajo un diseño de bloques completamente al azar. Los tratamientos incluyeron un control inoculado con B. glumae, un testigo, cuatro tratamientos individuales (TM1 - P. megaterium, TM8 y TM16 - P. aryabhattai, TM17 - Bacillus sp.) y un consorcio bacteriano. | |
dc.description.notes | ||
dc.description.technicalinfo | Tratamientos evaluados se utilizaron las pruebas Freidman y Mann–Whitney-Wilcoxon (post-Hoc) Todos los análisis fueron realizados mediante el programa R Statistical Software v4.3.1 Las secuencias obtenidas para los aislamientos bacterianos se alinearon entre sí utilizando el programa de alineamiento Clustal del software MEGA 11 Las secuencias de nucleótidos se compararon con las bases de datos del NCBI mediante la herramienta Basic Local Alignment Search Tool (BLAST) http://www.ncbi.nlm.nih.gov/BLAST Construccion del árbol filogenético utilizando el método de Neighbor-Joining (N-J) | spa |
dc.format.extent | xvi, 103 páginas + anexos | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88806 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias | |
dc.relation.references | Acevedo, M. A., Castrillo, W. A., & Belmonte, U. C. (2006a). Origen, evolución y diversidad del arroz. Agronomía Tropical, 56(2), 151-170. | |
dc.relation.references | Acevedo, M. A., Castrillo, W. A., & Belmonte, U. C. J. A. T. (2006b). Origen, evolución y diversidad del arroz. 56(2), 151-170 | |
dc.relation.references | Akimoto-Tomiyama, C. (2021). Multiple endogenous seed-born bacteria recovered rice growth disruption caused by Burkholderia glumae. Scientific Reports, 11(1), 4177. https://doi.org/10.1038/s41598-021-83794-w | |
dc.relation.references | Almirón, C., Petitti, T. D., Ponso, M. A., Romero, A. M., Areco, V. A., Bianco, M. I.,…Yaryura, P. M. J. S. R. (2025). Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere. 15(1), 3498 | |
dc.relation.references | Ambrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F. G., Vargas, L. K., Passaglia, L. M. J. P., & Soil. (2012). Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). 356, 245-264 | |
dc.relation.references | Andert, S., Bürger, J., Stein, S., & Gerowitt, B. (2016). The influence of crop sequence on fungicide and herbicide use intensities in North German arable farming. European Journal of Agronomy, 77, 81-89. https://doi.org/10.1016/j.eja.2016.04.003 | |
dc.relation.references | Andreote, F. D., Rossetto, P. B., Souza, L. C., Marcon, J., Maccheroni Jr, W., Azevedo, J. L., & Araújo, W. L. J. J. o. b. m. (2008). Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. 48(5), 338-346 | |
dc.relation.references | Aquino-Martínez, J. G., Vázquez-García, L. M., & Reyes-Reyes, B. G. J. R. m. d. f. (2008). Biocontrol in vitro e in vivo de Fusarium oxysporum Schlecht. f. sp. dianthi (Prill. y Delacr.) Snyder y Hans. Con hongos antagonistas nativos de la zona florícola de Villa Guerrero, Estado de México. 26(2), 127-137 | |
dc.relation.references | Araújo, J. M. d., Silva, A. C. d., Azevedo, J. L. J. B. A. o. B., & Technology. (2000). Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). 43, 447-451 | |
dc.relation.references | Aricapa, M. G. F. C. V. G. A. P. (2010). PROTOCOLO DE INOCULACIÓN CON B. glumae EN PLANTULAS DE ARROZ | |
dc.relation.references | Bais, H. P., Fall, R., & Vivanco, J. M. J. P. p. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. 134(1), 307-319 | |
dc.relation.references | Beneduzi, A., Ambrosini, A., Passaglia, L. M. J. G., & biology, m. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. 35, 1044-1051 | |
dc.relation.references | Bent, E., & Chanway, C. P. (1998). The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Canadian Journal of Microbiology, 44(10), 980-988. https://doi.org/10.1139/w98-097 | |
dc.relation.references | Berg, G., Zachow, C., Grosch, R., & Smalla, K. (2013). Endophytes-a source for biological control agents. 5th International Symposium on Plant Protection and Plant Health in Europe | |
dc.relation.references | Bertani, I., Abbruscato, P., Piffanelli, P., Subramoni, S., & Venturi, V. J. E. m. r. (2016). Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. 8(3), 388-398 | |
dc.relation.references | Bockus, W., & Shroyer, J. J. A. r. o. p. (1998). The impact of reduced tillage on soilborne plant pathogens. 36(1), 485-500 | |
dc.relation.references | Bogino, P., Oliva, M., Sorroche, F., & Giordano, W. (2013). The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations. International Journal of Molecular Sciences, 14(8), 15838-15859. https://doi.org/10.3390/ijms140815838 | |
dc.relation.references | Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. J. T. i. m. (2005). Biofilms: the matrix revisited. 13(1), 20-26 | |
dc.relation.references | Caldera, M. A. (2011). Evaluación in vitro de actividad antimicrobial de 23 cepas bacteriales no identificadas en contra de Burkholderia glumae El Zamorano: Escuela Agricola Panamericana, 2012] | |
dc.relation.references | Calonnec, A., Burie, J. B., Langlais, M., Guyader, S., Saint-Jean, S., Sache, I., & Tivoli, B. J. E. J. o. P. P. (2013). Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. 135, 479-497 | |
dc.relation.references | Castilla, L., Pineda, D., Ospina, J., Echeverry, J., Perafan, R., Garcés, G.,…Díaz, A. J. R. a. (2010). Cambio climático y producción de arroz. 58(489), 4-11 | |
dc.relation.references | Chakraborty, S., & Datta, S. J. N. P. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? , 159(3), 733-742 | |
dc.relation.references | Chakraborty, S., Murray, G., Magarey, P., Yonow, T., O’brien, R., Croft, B.,…Dudzinski, M. J. A. P. P. (1998). Potential impact of climate change on plant diseases of economic significance to Australia. 27, 15-35 | |
dc.relation.references | Choi, S. Y., Geum, C. O., Park, H.-S., Kim, S., Chung, H., Kim, S.-M.,…Meteorology, F. (2024). Impact of Temperature Changes on the Occurrence of Grain Rot Caused by Burkholderia species. 26(3), 151-160 | |
dc.relation.references | Coenye, T. J. L. f. P. M. G. U., Belgium. (2009). Modern bacterial systematics in practice: Polyphasic taxonomy of the Burkholderia cepacia complex | |
dc.relation.references | Coombs, J. T., Franco, C. M. J. A., & microbiology, e. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. 69(9), 5603-5608 | |
dc.relation.references | Correa-Victoria, F. J. c. i. (2006). Asociación de la bacteria Burkholderia glumae al complejo acaro-hongobacteria en Panamá. Observaciones sobre muestras afectadas por el complejo en campos de arroz de Panamá. Aislamientos y pruebas de patogenicidad. 50 | |
dc.relation.references | Costerton, J. W. J. J. o. I. M., & Biotechnology. (1995). Overview of microbial biofilms. 15(3), 137-140 | |
dc.relation.references | Cuevas Medina, A. (2000). Manejo integrado de plagas en el cultivo del arroz. In: Instituto Colombiano Agropecuario-ICA | |
dc.relation.references | Danhorn, T., & Fuqua, C. J. A. R. M. (2007). Biofilm formation by plant-associated bacteria. 61(1), 401-422 | |
dc.relation.references | Darwish, E., Testerink, C., Khalil, M., El-Shihy, O., & Munnik, T. (2009). Phospholipid Signaling Responses in Salt-Stressed Rice Leaves. Plant and Cell Physiology, 50(5), 986-997. https://doi.org/10.1093/pcp/pcp051 | |
dc.relation.references | De Oliveira, A., Urquiaga, S., & Baldani, J. (2003). Processos e mecanismos envolvidos na influência de microrganismos sobre o crescimento vegetal | |
dc.relation.references | Degiovanni Beltramo, V. M., Berrío Orozco, L. E., & Charry Mercado, R. E. (2010). Origen, taxonomía, anatomía y morfología de la planta de arroz (Oryza sativa L.) | |
dc.relation.references | Deng, C., Liang, X., Zhang, N., Li, B., Wang, X., & Zeng, N. J. F. i. M. (2022). Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD. 13, 917382 | |
dc.relation.references | Diago, M., Ospina, J., Pérez, C., Saavedra, E., Echeverri, J., Cuevas, A.,…Bejarano, N. J. R. A. (2009). Un buen manejo del cultivo, verdadera barrera contra el añublo bacterial. 57(482), 30-38 | |
dc.relation.references | Dill-Macky, R., & Jones, R. J. P. d. (2000). The effect of previous crop residues and tillage on Fusarium head blight of wheat. 84(1), 71-76 | |
dc.relation.references | Dimkić, I., Živković, S., Berić, T., Ivanović, Ž., Gavrilović, V., Stanković, S., & Fira, D. J. B. C. (2013). Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. 65(3), 312-321 | |
dc.relation.references | Echeverri Rico, J. (2017). Estudio de la relación entre la bacteria Burkholderia glumae y el síndrome del vaneamiento del arroz en tres zonas arroceras de Colombia | |
dc.relation.references | El-Afry, M. M. J. A. B. S. (2012). Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. 56(2), 165-174 | |
dc.relation.references | Elbeltagy, A., Nishioka, K., Suzuki, H., Sato, T., Sato, Y.-I., Morisaki, H.,…nutrition, p. (2000). Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. 46(3), 617-629 | |
dc.relation.references | Esquivel-Díaz, W. F., & Ortiz-Quintero, Y. L. (2019). Efectos de la aplicación de la Abamectina (Abacmetin), y el Dipel (Bacillus thurigiensis) como control biológico, en el vaneamiento de la espiga en el cultivo de arroz para el municipio de Campoalegre-Huila | |
dc.relation.references | Esquivel Díaz, W. F., & Yandry Lorena, O. Q. (2019). Efectos de la aplicación de la Abamectina (Abacmetin), y el Dipel (Bacillus thurigiensis) como control biológico, en el vaneamiento de la espiga en el cultivo de arroz para el municipio de Campoalegre-Huila | |
dc.relation.references | Farahat, M. G., Mahmoud, M. K., Youseif, S. H., Saleh, S. A., & Kamel, Z. J. P. A. (2020). Alleviation of salinity stress in wheat by ACC deaminase-producing Bacillus aryabhattai EWR29 with multifarious plant growth-promoting attributes. 20(1), 417-429 | |
dc.relation.references | Fong, J. N. C., & Yildiz, F. H. (2015). Biofilm Matrix Proteins. 3(2), 10.1128/microbiolspec.mb-0004-2014. https://doi.org/doi:10.1128/microbiolspec.mb-0004-2014 | |
dc.relation.references | Forchetti, G., Masciarelli, O., Izaguirre, M. J., Alemano, S., Alvarez, D., & Abdala, G. J. C. m. (2010). Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. 61, 485-493 | |
dc.relation.references | Gaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S., & Dunfield, K. E. J. A. j. o. b. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. 100(9), 1738-1750 | |
dc.relation.references | Gao, L., Kantar, M. B., Moxley, D., Ortiz-Barrientos, D., & Rieseberg, L. H. J. M. P. (2023). Crop adaptation to climate change: An evolutionary perspective. 16(10), 1518-1546 | |
dc.relation.references | Global Burden of Disease Collaborative Network. (2024). Global Burden of Disease Study 2024. Institute for Health Metrics and Evaluation (IHME).Consultado el 15 de junio 2025 | |
dc.relation.references | González, A. Q., & Santamaría, F. G. J. A. M. (2014). Burkholderia glumae en el cultivo de arroz en Costa Rica. 25(2), 371-381 | |
dc.relation.references | González, J., Rosero, M., & Arregocés, O. (1985). Morphology of the rice plant | |
dc.relation.references | Gupta, R. S., Patel, S., Saini, N., Chen, S. J. I. j. o. s., & microbiology, e. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. 70(11), 5753-5798 | |
dc.relation.references | Gusain, Y. S., Singh, U., & Sharma, A. J. A. J. o. B. (2015). Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). 14(9), 764-773 | |
dc.relation.references | GUSTAVO, P. M., LIDYA, S. S. M., & RICARDO, S. P. J. MANEJO INTEGRADO DE ENFERMEDADES | |
dc.relation.references | Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., & Kloepper, J. J. C. j. o. m. (1997). Bacterial endophytes in agricultural crops. 43(10), 895-914 | |
dc.relation.references | Ham, J. H., Melanson, R. A., & Rush, M. C. J. M. p. p. (2011). Burkholderia glumae: next major pathogen of rice? , 12(4), 329-339 | |
dc.relation.references | Hardoim, P. R., Hardoim, C. C., van Overbeek, L. S., & van Elsas, J. D. J. P. o. (2012). Dynamics of seed-borne rice endophytes on early plant growth stages. 7(2), e30438 | |
dc.relation.references | Hikichi, Y., Okuno, T., & Furusawa, I. J. J. P. S. (1994). Mode of action of oxolinic acid on bacterial grain rot of rice (Part 2). Susceptibility of rice spikelets to infection with Pseudomonas glumae and its population dynamics. 19, 11-17 | |
dc.relation.references | Hung, P. Q., & Annapurna, K. (2004). ISOLATION AND CHARACTERIZATION OF ENDOPHYTIC BACTERIA IN SOYBEAN ( GLYCINE SP.) | |
dc.relation.references | Iwai, T., Kaku, H., Honkura, R., Nakamura, S., Ochiai, H., Sasaki, T., & Ohashi, Y. J. M. P.-M. I. (2002). Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. 15(6), 515-521 | |
dc.relation.references | Jha, P., Panwar, J., & Jha, P. N. J. E. S. (2018). Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. 1, 25-38 | |
dc.relation.references | Jing, R., Li, N., Wang, W., & Liu, Y. J. M. p. (2020). An endophytic strain JK of genus Bacillus isolated from the seeds of super hybrid rice (Oryza sativa L., Shenliangyou 5814) has antagonistic activity against rice blast pathogen. 147, 104422 | |
dc.relation.references | Jiranek, J., Miller, I. F., An, R., Bruns, E., & Metcalf, C. J. E. J. P. T. o. t. R. S. B. (2023). Mechanistic models to meet the challenge of climate change in plant–pathogen systems. 378(1873), 20220017 | |
dc.relation.references | Kerdraon, L., Laval, V., & Suffert, F. J. P. J. (2019). Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. 3(4), 246-255 | |
dc.relation.references | Khan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N.,…Hirsch, A. M. J. F. i. m. (2018). Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. 9, 2363 | |
dc.relation.references | Kirchman, D. L., Yu, L., Cottrell, M. T. J. A., & Microbiology, E. (2003). Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware Estuary. 69(11), 6587-6596 | |
dc.relation.references | Kluepfel, D. A. J. A. R. o. P. (1993). The behavior and tracking of bacteria in the rhizosphere. 31(1), 441-472 | |
dc.relation.references | Kudela, V. J. P. P. S. (2009). Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. 45(Special Issue), S27-S32 | |
dc.relation.references | Kurita, T., & Tabei, H. (1967). On the causal bacterium of grain rot of rice. Annals of the Phytopathological Society of Japan, 33, 111 | |
dc.relation.references | Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. 3(3), 10.1128/microbiolspec.mb-0011-2014. https://doi.org/doi:10.1128/microbiolspec.mb-0011-2014 | |
dc.relation.references | Lof, M. E., & van der Werf, W. J. C. P. (2017). Modelling the effect of gene deployment strategies on durability of plant resistance under selection. 97, 10-17. | |
dc.relation.references | Lugtenberg, B., & Kamilova, F. J. A. r. o. m. (2009). Plant-growth-promoting rhizobacteria. 63(1), 541-556. | |
dc.relation.references | Luo, J., Xie, G., Li, B., & Lihui, X. J. P. D. (2007). First report of Burkholderia glumae isolated from symptomless rice seeds in China. 91(10), 1363-1363 | |
dc.relation.references | Mano, H., Morisaki, H. J. M., & environments. (2008). Endophytic bacteria in the rice plant. 23(2), 109-117 | |
dc.relation.references | Manter, D. K., Delgado, J. A., Holm, D. G., & Stong, R. A. J. M. e. (2010). Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. 60, 157-166 | |
dc.relation.references | Marchão, R. L., Silva, G. C. d., Andrade, S. R. M. d., Junior, F. B. d. R., Júnior, M. P. d. B., Haphonsso, R. H., & Carvalho, A. M. d. J. P. (2025). Improving Soybean Development and Grain Yield by Complementary Inoculation with Growth-Promoting Bacteria Azospirillum, Pseudomonas, Priestia, and Bacillus. 14(3), 402 | |
dc.relation.references | McInroy, J. A., Kloepper, J. W. J. P., & soil. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. 173, 337-342 | |
dc.relation.references | Medina, F. (2005). Manual para Educacion Agropecuaria Arroz area produccion vegetal 12 | |
dc.relation.references | Medina Medina, D. C. (2018). Impacto ambiental generado por la agricultura colombiana 1970 - 2014. Conexión Agropecuaria JDC, 8(1), 31-47. https://doi.org/10.38017/22487735.615 | |
dc.relation.references | Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., & Backman, P. A. J. B. c. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. 46(1), 46-56 | |
dc.relation.references | Mendes, R., Pizzirani-Kleiner, A. A., Araujo, W. L., Raaijmakers, J. M. J. A., & microbiology, e. (2007). Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. 73(22), 7259-7267 | |
dc.relation.references | Méndez del V, P. (2021). Capítulo 11. Producción y comercialización mundial del arroz. 100 años del cultivo de arroz en Chile. In M. Paredes., V. Becerra, & G. Donoso (Eds.), 100 años del cultivo del arroz en Chile en un contexto internacional 1920-2020. Tomo I (Vol. 40, pp. 302-313). Colección Libros INIA - Instituto de Investigaciones Agropecuarias | |
dc.relation.references | Méndez del V, P. (2021). Capítulo 11. Producción y comercialización mundial del arroz. 100 años del cultivo de arroz en Chile. In M. Paredes., V. Becerra, & G. Donoso (Eds.), 100 años del cultivo del arroz en Chile en un contexto internacional 1920-2020. Tomo I (Vol. 40, pp. 302-313). Colección Libros INIA - Instituto de Investigaciones Agropecuarias | |
dc.relation.references | Mikaberidze, A., McDonald, B. A., & Bonhoeffer, S. J. P. P. (2015). Developing smarter host mixtures to control plant disease. 64(4), 996-1004 | |
dc.relation.references | Mingma, R., Pathom-aree, W., Trakulnaleamsai, S., Thamchaipenet, A., Duangmal, K. J. W. J. o. M., & Biotechnology. (2014). Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. 30, 271-280 | |
dc.relation.references | Monar, A. S. (2022). Descripción de la calidad molinera del cultivo de arroz (Oryza sativa L. ssp. japónico) Universidad Técnica de Babahoyo ]. Babahoyo – Los Ríos – Ecuador | |
dc.relation.references | Monar Coello, Á. S. (2022). Descripción de la calidad molinera del cultivo de arroz (Oryza sativa L. ssp. japónico) BABAHOYO: UTB, 2022] | |
dc.relation.references | Monds, R. D., & O’Toole, G. A. J. T. i. m. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. 17(2), 73-87 | |
dc.relation.references | Montañez, A., Blanco, A. R., Barlocco, C., Beracochea, M., & Sicardi, M. J. A. S. E. (2012). Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. 58, 21-28 | |
dc.relation.references | Moreno, L. Y., & Galvis, F. J. P. y. F. (2013). Potencial biofertilizante de bacterias diazótrofas aisladas de muestras de suelo rizosférico. 36(1), 33-37 | |
dc.relation.references | Morikawa, M. J. J. o. b., & bioengineering. (2006). Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. 101(1), 1-8 | |
dc.relation.references | Muhae-Ud-Din, G., Ali, M. A., Naveed, M., Naveed, K., Abbas, A., Anwar, J.,…Technology. (2018). Consortium application of endophytic bacteria and fungi improves grain yield and physiological attributes in advanced lines of bread wheat. 6(2), 136-144 | |
dc.relation.references | Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X.,…Huang, T. J. F. i. m. (2020). Beyond risk: bacterial biofilms and their regulating approaches. 11, 928 | |
dc.relation.references | Mukhopadhyay, K., Garrison, N. K., Hinton, D. M., Bacon, C. W., Khush, G. S., Peck, H. D., & Datta, N. (1996). Identification and characterization of bacterial endophytes of rice. Mycopathologia, 134(3), 151-159. https://doi.org/10.1007/bf00436723 | |
dc.relation.references | Müller, M., Rakocevic, M., Caverzan, A., Boller, W., & Chavarria, G. J. C. S. (2018). Architectural characteristics and heliotropism may improve spray droplet deposition in the middle and low canopy layers in soybean. 58(5), 2029-2041 | |
dc.relation.references | Mundt, C. C. J. A. r. o. p. (2002). Use of multiline cultivars and cultivar mixtures for disease management. 40(1), 381-410 | |
dc.relation.references | Mundt, C. C. J. P. (2018). Pyramiding for resistance durability: theory and practice. 108(7), 792-802 | |
dc.relation.references | Nandakumar, R., Shahjahan, A., Yuan, X., Dickstein, E., Groth, D., Clark, C.,…Rush, M. J. P. D. (2009). Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. 93(9), 896-905 | |
dc.relation.references | Nawaz, A., Rehman, A. U., Rehman, A., Ahmad, S., Siddique, K. H. M., & Farooq, M. (2022). Increasing sustainability for rice production systems. Journal of Cereal Science, 103. https://doi.org/10.1016/j.jcs.2021.103400 | |
dc.relation.references | O'Connell, P. F. (1992). Sustainable Agriculture-a Valid Alternative. Outlook on Agriculture, 21(1), 5-12. https://doi.org/10.1177/003072709202100103 | |
dc.relation.references | Olmos, S. J. A.-M. p. (2007). Apunte de morfología, fenología, ecofisiología, y mejoramiento genético del arroz: Cátedra de Cultivos II. Facultad de Ciencias Agrarias | |
dc.relation.references | Organización Mundial de la Salud (OMS). (2023). Suicide prevention. World Health Organization. https://www.who.int/health-topics/suicide#tab=tab_1. Consultado el 15 de Junio 2025 | |
dc.relation.references | Ortega, L., & Rojas, C. M. (2021). Bacterial Panicle Blight and Burkholderia glumae: From Pathogen Biology to Disease Control. Phytopathology®, 111(5), 772-778. https://doi.org/10.1094/phyto-09-20-0401-rvw | |
dc.relation.references | Pageni, B. B., Lupwayi, N. Z., Larney, F. J., Kawchuk, L. M., & Gan, Y. J. C. J. o. P. S. (2013). Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. 93(6), 1125-1142 | |
dc.relation.references | Palleroni, N. J. J. B. s. M. o. S. o. A., & Bacteria. (2015). Burkholderia. 1-50 | |
dc.relation.references | Pandin, C., Le Coq, D., Canette, A., Aymerich, S., & Briandet, R. J. M. B. (2017). Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? , 10(4), 719-734 | |
dc.relation.references | Pangga, I., Hanan, J., & Chakraborty, S. J. P. P. (2011). Pathogen dynamics in a crop canopy and their evolution under changing climate. 60(1), 70-81 | |
dc.relation.references | Paredes, M., Becerra, V., & Donoso, G. (2021). Capítulo 12. Historia de la producción de arroz en Chile. 1920-2020. In M. Paredes., V. Becerra, & G. Donoso (Eds.), 100 años del cultivo del arroz en Chile en un contexto internacional 1920-2020. Tomo I (Vol. 40, pp. 314-379). Colección Libros INIA - Instituto de Investigaciones Agropecuarias | |
dc.relation.references | Pedraza, D. F. (2012). Estado del arte de Burkholderia glumae Como patógeno de cultivos de arroz (Oryza sativa L.) Pontifica Universidad Javeriana]. Bogotá, Colombia | |
dc.relation.references | Perea-Molina, P. A. (2020). Efecto de la cepa biocontroladora IBUN 2755 sobre la población de Burkholderia glumae en plantas de arroz (Oryza sativa L.) Universidad Nacional de Colombia]. Bogotá, Colombia | |
dc.relation.references | Perea Molina, P. A. (2020). Efecto de la cepa biocontroladora IBUN 2755 sobre la población de Burkholderia glumae en plantas de arroz (Oryza sativa L.) | |
dc.relation.references | Pérez, A. F. (2013). Bacterias endófitas asociadas a cultivo de arroz con actividad antimicrobiana sobre Burkholderia glumae. Revista de la Asociación Colombiana de Ciencias Biológicas, 1(25) | |
dc.relation.references | Perez C, C., & Saavedra, E. (2011). Avances en el manejo integrado de la bacteria burkholderia glumae en el cultivo de arroz en el caribe colombiano. Revista Colombiana de Ciencia Animal - RECIA, 3(1). https://doi.org/10.24188/recia.v3.n1.2011.344 | |
dc.relation.references | PéRez Cordero, A., Montes-Vergara, D. E., & Sierra, J. E. J. W. (2022). Evaluation Of The In Vitro Antagonistic Potential Of Rice Plant-Associated Endophytic Bacteria Against Burkholderia Glumae. 19(5) | |
dc.relation.references | Pesticide Action Network (PAN) International. (2024). Annual report on acute pesticide poisoning in children. PAN International.Consultado el 15 de junio 2025 | |
dc.relation.references | Pinski, A., Betekhtin, A., Hupert-Kocurek, K., Mur, L. A., & Hasterok, R. J. I. J. o. M. S. (2019). Defining the genetic basis of plant–endophytic bacteria interactions. 20(8), 1947 | |
dc.relation.references | Piromyou, P., Greetatorn, T., Teamtisong, K., Okubo, T., Shinoda, R., Nuntakij, A.,…microbiology, e. (2015). Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. 81(9), 3049-3061 | |
dc.relation.references | Quadt-Hallmann, A., Kloepper, J., & Benhamou, N. J. C. j. o. m. (1997). Bacterial endophytes in cotton: mechanisms of entering the plant. 43(6), 577-582 | |
dc.relation.references | Quiñones-Pezo, L. C., Ríos-Ruiz, W. F., Pompa-Vásquez, D. F., Rios-Reategui, F., Hernández-Amasifuen, A. D., & Corazón-Guivin, M. A. J. I. J. o. P. B. (2024). In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice. 15(4), 988-1000 | |
dc.relation.references | Rado, R., Andrianarisoa, B., Ravelomanantsoa, S., Rakotoarimanga, N., Rahetlah, V., Fienena, F.,…Development. (2015). Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. 15(1), 9762-9776 | |
dc.relation.references | Raza, M. M., & Bebber, D. P. J. C. O. i. M. (2022). Climate change and plant pathogens. 70, 102233 | |
dc.relation.references | Reinhold-Hurek, B., & Hurek, T. J. T. i. m. (1998). Life in grasses: diazotrophic endophytes. 6(4), 139-144 | |
dc.relation.references | Rimbaud, L., Fabre, F., Papaïx, J., Moury, B., Lannou, C., Barrett, L. G., & Thrall, P. H. J. A. r. o. p. (2021). Models of plant resistance deployment. 59(1), 125-152 | |
dc.relation.references | Rimbaud, L., Papaïx, J., Rey, J.-F., Barrett, L. G., & Thrall, P. H. J. P. c. b. (2018). Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. 14(4), e1006067 | |
dc.relation.references | Rinaudi, L. V., & González, J. E. J. J. o. b. (2009). The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. 191(23), 7216-7224 | |
dc.relation.references | Rios Ruiz, W. F., Torres Delgado, J., & Valdez Nuñez, R. A. (2019). Selección de microorganismos endofíticos de arroz (Oryza sativa L.) con actividad inhibitoria in vitro frente a Burkholderia glumae en la zona norte del Perú | |
dc.relation.references | Rivera, M., Estrada, J., Quiñonez, R., & Moreno, R. J. M. R. C. M. (2019). Diversificación integral de cultivos para el desarrollo agrícola y económico. 9(2), 242-258 | |
dc.relation.references | Rodríguez González, Y. E., Reyes Mujica, M. M., & Espinosa Galán, N. P. (2015). Sensibilizar a los arroceros del municipio de Arauca (Arauca) acerca del impacto ambiental en la producción de arroz | |
dc.relation.references | Rojas Granados, G. M. (2018). Efecto de la inoculación de bacterias endófitas en el cultivo de arroz, sobre la tolerancia al daño causado por Rhizoctonia solani Kühn | |
dc.relation.references | Rosenblueth, M., & Martínez-Romero, E. J. M. p.-m. i. (2006). Bacterial endophytes and their interactions with hosts. 19(8), 827-837 | |
dc.relation.references | Rudrappa, T., Biedrzycki, M. L., & Bais, H. P. J. F. m. e. (2008). Causes and consequences of plant-associated biofilms. 64(2), 153-166 | |
dc.relation.references | Ruiza, D., Agaras, B., de Werrab, P., Wall, L. G., & Valverde, C. (2011). Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. The Journal of Microbiology, 49(6), 902-912. https://doi.org/10.1007/s12275-011-1073-6 | |
dc.relation.references | Rush, M., Shao, Q., Zhang, S., Shahjahan, A., O'Reilly, K., Shih, D.,…Linscombe, S. (2003). Biotechnology and control of rice diseases | |
dc.relation.references | Russo, D. M. (2006). Factores extracelulares de Rhizobium leguminosarum y su rol en la formación de biofilms Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales] | |
dc.relation.references | Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. J. F. m. l. (2008). Bacterial endophytes: recent developments and applications. 278(1), 1-9 | |
dc.relation.references | Saini, R., Kumar, V., Dudeja, S., & Pathak, D. J. I. J. C. M. A. S. (2015). Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. 4(10), 207-221 | |
dc.relation.references | Sánchez Soto, V. (2017). Aislamiento e identificación de bacterias con potencial de biocontrol a Alternaria sp., asociadas a Solanum lycopersicum | |
dc.relation.references | Santos, M. L. d., Berlitz, D. L., Wiest, S. L. F., Schünemann, R., Knaak, N., Fiuza, L. M. J. B. a. o. b., & technology. (2018). Benefits associated with the interaction of endophytic bacteria and plants. 61, e18160431 | |
dc.relation.references | Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. J. M. r. (2016). Plant growth-promoting bacterial endophytes. 183, 92-99 | |
dc.relation.references | Sayler, R. J., Cartwright, R. D., & Yang, Y. J. P. d. (2006). Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. 90(5), 603-610 | |
dc.relation.references | Science, R. C. J. F. i. P. (2016). Combining selective pressures to enhance the durability of disease resistance genes. 7, 1916 | |
dc.relation.references | Seneviratne, G., Thilakaratne, R., Jayasekara, A., Seneviratne, K., Padmathilake, K. R. E., & De Silva, M. (2009). Developing Beneficial Microbial Biofilms on Roots of Non legumes: A Novel Biofertilizing Technique. In M. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial Strategies for Crop Improvement (pp. 51-62). Springer‐Verlag. https://doi.org/10.1007/978-3-642-01979-1_3 | |
dc.relation.references | Seneviratne, G., Weerasekara, M. L. M. A. W., Seneviratne, K. A. C. N., Zavahir, J. S., Kecskés, M. L., & Kennedy, I. R. (2010). Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action. In D. Maheshwari (Ed.), Plant Growth and Health Promoting Bacteria (Vol. 18, pp. 81-95). Springer. https://doi.org/10.1007/978-3-642-13612-2_4 | |
dc.relation.references | Senthilkumar, M., Anandham, R., Madhaiyan, M., Venkateswaran, V., & Sa, T. J. B. i. a. c. e. (2011). Endophytic bacteria: perspectives and applications in agricultural crop production. 61-96 | |
dc.relation.references | Shahid, M., Zeyad, M. T., Syed, A., Singh, U. B., Mohamed, A., Bahkali, A. H.,…Pichtel, J. (2022). Stress-Tolerant Endophytic Isolate Priestia aryabhattai BPR-9 Modulates Physio-Biochemical Mechanisms in Wheat (Triticum aestivum L.) for Enhanced Salt Tolerance. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710883 | |
dc.relation.references | Sheng, X. F., Jiang, C. Y., & He, L. Y. J. C. J. o. M. (2008). Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. 54(5), 417-422 | |
dc.relation.references | Singh, R. K., Mishra, R. P., Jaiswal, H. K., Kumar, V., Pandey, S. P., Rao, S. B., & Annapurna, K. J. C. M. (2006). Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. 52, 345-349 | |
dc.relation.references | Sivan, A., & Chet, I. J. E. m. (1992). Microbial control of plant diseases. 335-354 | |
dc.relation.references | Solanki, M. K., Robert, A. S., Singh, R. K., Kumar, S., Pandey, A. K., Srivastava, A. K., & Arora, D. K. (2012). Characterization of Mycolytic Enzymes of Bacillus Strains and Their Bio-Protection Role Against Rhizoctonia solani in Tomato. Current Microbiology, 65(3), 330-336. https://doi.org/10.1007/s00284-012-0160-1 | |
dc.relation.references | Stanley, N. R., & Lazazzera, B. A. J. M. m. (2004). Environmental signals and regulatory pathways that influence biofilm formation. 52(4), 917-924 | |
dc.relation.references | Steddom, K., Menge, J., Crowley, D., & Borneman, J. J. P. (2002). Effect of repetitive applications of the biocontrol bacterium Pseudomonas putida 06909-rif/nal on citrus soil microbial communities. 92(8), 857-862 | |
dc.relation.references | Suman, A., Shasany, A., Singh, M., Shahi, H., Gaur, A., Khanuja, S. J. W. J. o. M., & Biotechnology. (2001). Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. 17, 39-45 | |
dc.relation.references | Suman, A., Solomon, S., Yadav, D., Gaur, A., & Singh, M. J. S. T. (2000). Post-harvest loss in sugarcane quality due to endophytic microorganisms. 2, 21-25 | |
dc.relation.references | Suman, A., Yadav, A. N., & Verma, P. J. M. i. i. s. a. p. V. r. p. (2016). Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. 117-143 | |
dc.relation.references | Supanitsky, A. B., & Zorreguieta, Á. (2022). Estudio sobre formación de biofilms en bacterias del suelo | |
dc.relation.references | Suyal, D. C., Yadav, A., Shouche, Y., & Goel, R. J. B. (2015). Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. 70, 305-313 | |
dc.relation.references | Swain, E., & Singh, S. K. J. E. S. (2020). BACTERIAL PANICLE BLIGHT: RECURRENCE OF MINOR DISEASE AS MAJOR DISEASE DUE TO GLOBAL WARMING. 765 | |
dc.relation.references | Tagore, G., Namdeo, S., Sharma, S., & Kumar, N. J. I. J. o. A. (2013). Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. 2013(1), 581627 | |
dc.relation.references | Tamura, K., Stecher, G., Kumar, S. J. M. b., & evolution. (2021). MEGA11: molecular evolutionary genetics analysis version 11. 38(7), 3022-3027 | |
dc.relation.references | Thanh, D. T. N., & Diep, C. N. J. A. J. L. S. (2014). Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. 2(4), 224-233 | |
dc.relation.references | Thanh, D. T. N., & Diep, C. N. J. A. J. L. S. (2014). Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. 2(4), 224-233 | |
dc.relation.references | Tivoli, B., Calonnec, A., Richard, B., Ney, B., & Andrivon, D. J. E. J. o. P. P. (2013). Current knowledge on plant/canopy architectural traits that reduce the expression and development of epidemics. 135, 471-478 | |
dc.relation.references | Trébuil, G., & Hossain, M. (2004). Le riz: enjeux écologiques et économiques. Belin | |
dc.relation.references | Van Elsas, J. D., Govaert, J. M., & Van Veen, J. A. (1987). Transfer of plasmid pFT30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biology and Biochemistry, 19(5), 639-647. https://doi.org/10.1016/0038-0717(87)90110-6 | |
dc.relation.references | Vega, F. J. R. A. a. d. C. R. (2010). Añublo bacterial de la panícula. 5, 18p | |
dc.relation.references | Velasco Belalcazar, M. L. (2016). Caracterización de bacterias antagónicas a Fusarium sp, asociadas a Capsicum frutescens en Guacarí y Bolivar, Valle del Cauca | |
dc.relation.references | Verma, P., Yadav, A., Kazy, S., Saxena, A., & Suman, A. J. N. J. L. S. (2013). Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. 10(2), 219-226 | |
dc.relation.references | Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. J. I. J. C. M. A. S. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. 3(5), 432-447 | |
dc.relation.references | Verma, S. K., Kingsley, K., Bergen, M., English, C., Elmore, M., Kharwar, R. N.,…Soil. (2018). Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. 422, 223-238 | |
dc.relation.references | Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003 | |
dc.relation.references | Wang, L., Dong, M., Hao, Z., & Tao, R. J. A. A. J. (2010). Preliminary study on resistance of rice varieties to rice false smut by using method of natural infection in Zhejiang province. 22(7), 73-74 | |
dc.relation.references | Whitman, W. B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P.,…Dedysh, S. (2015). Bergey's manual of systematics of archaea and bacteria (Vol. 410). Wiley Online Library | |
dc.relation.references | Wiyono, W., Ambawati, G. S., Priyadi, S., Daryanti, D., Aziez, A. F., Ali, M. J. B. J. o. B., & Education, B. (2024). The Role of Endophyte Bacteria in The Growth and Yield of Various Rice Varieties in Rainfed Rice Lands. 16(3), 473-480 | |
dc.relation.references | Wuest, S. E., Peter, R., Niklaus, P. A. J. N. E., & Evolution. (2021). Ecological and evolutionary approaches to improving crop variety mixtures. 5(8), 1068-1077 | |
dc.relation.references | Yang, X. J. G. A. S. (2007). Occurrence condition, forecasting and management of rice false smut in southeast of Guizhou Province. 35(1), 100-101 | |
dc.relation.references | Yi, H.-S., Yang, J. W., & Ryu, C.-M. J. F. i. p. s. (2013). ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. 4, 122 | |
dc.relation.references | Yuan, X. (2004). Identification of bacterial pathogens causing panicle blight of rice in Louisiana. Louisiana State University and Agricultural & Mechanical College | |
dc.relation.references | Zapata, N. M. V. F., & Vélez, D. U. J. R. F. N. d. A.-M. (2011). Determinación de la infección de Burkholderia glumae en semillas de variedades comerciales colombianas de arroz. 64(2), 6093-6104 | |
dc.relation.references | Zehnder, G. W., Murphy, J. F., Sikora, E. J., & Kloepper, J. W. J. E. j. o. p. p. (2001). Application of rhizobacteria for induced resistance. 107, 39-50 | |
dc.relation.references | Zhou-qi, C., Bo, Z., Guan-lin, X., Bin, L., & Shi-wen, H. J. R. S. (2016). Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. 23(3), 111-118 | |
dc.relation.references | Zhou, X., McClung, A., Way, M., Jo, Y., Tabien, R., & Wilson, L. J. P. (2011). Severe outbreak of bacterial panicle blight across Texas Rice Belt in 2010. 101(6), S205 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.agrovoc | Método de control | |
dc.subject.agrovoc | Control methods | |
dc.subject.agrovoc | Enfermedad de las plantas | |
dc.subject.agrovoc | Plant diseases | |
dc.subject.agrovoc | Endofita | |
dc.subject.agrovoc | Endophytes | |
dc.subject.agrovoc | Control biológico de plagas | |
dc.subject.agrovoc | Biological pest control | |
dc.subject.agrovoc | Enfermedad bacteriana | |
dc.subject.agrovoc | Bacterial diseases | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales | |
dc.subject.proposal | Arroz | spa |
dc.subject.proposal | Priestia | spa |
dc.subject.proposal | Bacillus | spa |
dc.subject.proposal | Burkholderia glumae | spa |
dc.subject.proposal | Rice | eng |
dc.subject.proposal | Priestia | eng |
dc.subject.proposal | Bacillus | eng |
dc.subject.proposal | Burkholderia glumae | eng |
dc.subject.proposal | Biocontrol | spa |
dc.title | Potencial de bacterias endofíticas del género bacillus y priestia en el control biológico del añublo bacteriano de la panícula del arroz causado por Burkholderia glumae. | spa |
dc.title.translated | Potential of endophytic bacteria of the genera Bacillus and Priestia in the biological control of rice panicle bacterial blight caused by Burkholderia glumae. | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis Maestría en Ciencias Agrarias.pdf
- Tamaño:
- 2.65 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Meaestría en Ciencias Agrarias