Potencial de bacterias endofíticas del género bacillus y priestia en el control biológico del añublo bacteriano de la panícula del arroz causado por Burkholderia glumae.

dc.contributor.advisorPeláez Peláez, Manuel José
dc.contributor.authorVivas Londoño, Sandra Ximena
dc.date.accessioned2025-09-16T16:14:57Z
dc.date.available2025-09-16T16:14:57Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografías, gráficas, tablas.spa
dc.description.abstractEl arroz (Oryza sativa), base de la seguridad alimentaria mundial, enfrenta serias amenazas fitosanitarias, entre ellas el añublo bacteriano de la panícula, causado por Burkholderia glumae. La dependencia del control químico ha generado problemas de resistencia y efectos ambientales, lo que impulsa el desarrollo de alternativas sostenibles como el biocontrol microbiano. Este estudio evaluó el potencial de bacterias endofíticas de los géneros Priestia y Bacillus, aisladas de plantas de arroz en Jamundí y Saldaña (Colombia). Se procesaron ocho muestras de raíces, tallos, hojas y semillas, obteniéndose 112 aislamientos, de los cuales cuatro mostraron mayor actividad antagónica frente a B. glumae en cultivos duales. Estos fueron caracterizados morfológica, bioquímica y molecularmente, identificándose dos como Priestia aryabhattai, uno como Priestia megaterium y otro como Bacillus sp. Los aislamientos seleccionados se evaluaron en invernadero bajo un diseño de bloques completamente al azar. Los tratamientos incluyeron un control inoculado con B. glumae, un testigo, cuatro tratamientos individuales (TM1 - P. megaterium, TM8 y TM16 - P. aryabhattai, TM17 - Bacillus sp.) y un consorcio bacteriano. Los resultados evidenciaron una reducción significativa en la severidad de la enfermedad respecto al control, aunque no se alcanzó una inhibición total del patógeno. Sin embargo, se observó una disminución en la expresión de síntomas y mejoras en el vigor y rendimiento de las plantas, confirmadas mediante pruebas no paramétricas. Estos hallazgos demuestran el potencial de Priestia megaterium, Priestia aryabhattai y Bacillus sp. como agentes de biocontrol para el manejo sostenible del añublo bacteriano en arroz (Texto tomado de la fuente).spa
dc.description.abstractRice (Oryza sativa), a cornerstone of global food security, faces serious phytosanitary threats, among which bacterial panicle blight caused by Burkholderia glumae is one of the most significant. The reliance on chemical control has generated resistance and environmental concerns, driving the search for sustainable alternatives such as microbial biocontrol. This study evaluated the potential of endophytic bacteria from the genera Priestia and Bacillus, isolated from rice plants in Jamundí and Saldaña (Colombia). Eight samples from roots, stems, leaves, and seeds were processed, yielding 112 isolates, of which four exhibited the strongest antagonistic activity against B. glumae in dual culture assays. These isolates were characterized morphologically, biochemically, and molecularly, and identified as two strains of Priestia aryabhattai, one strain of Priestia megaterium, and one strain of Bacillus sp. The selected isolates were subsequently evaluated in greenhouse trials under a randomized complete block design. Treatments included a control inoculated with B. glumae, a negative control, four individual biological treatments (TM1 - P. megaterium, TM8 and TM16 - P. aryabhattai, TM17 - Bacillus sp.), and a bacterial consortium. Results showed a significant reduction in disease severity compared to the control, although complete inhibition of the pathogen was not achieved. Nevertheless, a decrease in symptom expression and improvements in plant vigor and yield were observed, confirmed by nonparametric statistical tests. These findings demonstrate the promising potential of Priestia megaterium, Priestia aryabhattai, and Bacillus sp. as biocontrol agents for the sustainable management of bacterial panicle blight in rice.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmira
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.methodsEste estudio evaluó el potencial de bacterias endofíticas de los géneros Priestia y Bacillus, aisladas de plantas de arroz en Jamundí y Saldaña (Colombia). Se procesaron ocho muestras de raíces, tallos, hojas y semillas, obteniéndose 112 aislamientos, de los cuales cuatro mostraron mayor actividad antagónica frente a B. glumae en cultivos duales. Estos fueron caracterizados morfológica, bioquímica y molecularmente, identificándose dos como Priestia aryabhattai, uno como Priestia megaterium y otro como Bacillus sp. Los aislamientos seleccionados se evaluaron en invernadero bajo un diseño de bloques completamente al azar. Los tratamientos incluyeron un control inoculado con B. glumae, un testigo, cuatro tratamientos individuales (TM1 - P. megaterium, TM8 y TM16 - P. aryabhattai, TM17 - Bacillus sp.) y un consorcio bacteriano.
dc.description.notes
dc.description.technicalinfoTratamientos evaluados se utilizaron las pruebas Freidman y Mann–Whitney-Wilcoxon (post-Hoc) Todos los análisis fueron realizados mediante el programa R Statistical Software v4.3.1 Las secuencias obtenidas para los aislamientos bacterianos se alinearon entre sí utilizando el programa de alineamiento Clustal del software MEGA 11 Las secuencias de nucleótidos se compararon con las bases de datos del NCBI mediante la herramienta Basic Local Alignment Search Tool (BLAST) http://www.ncbi.nlm.nih.gov/BLAST Construccion del árbol filogenético utilizando el método de Neighbor-Joining (N-J)spa
dc.format.extentxvi, 103 páginas + anexos
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88806
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.relation.referencesAcevedo, M. A., Castrillo, W. A., & Belmonte, U. C. (2006a). Origen, evolución y diversidad del arroz. Agronomía Tropical, 56(2), 151-170.
dc.relation.referencesAcevedo, M. A., Castrillo, W. A., & Belmonte, U. C. J. A. T. (2006b). Origen, evolución y diversidad del arroz. 56(2), 151-170
dc.relation.referencesAkimoto-Tomiyama, C. (2021). Multiple endogenous seed-born bacteria recovered rice growth disruption caused by Burkholderia glumae. Scientific Reports, 11(1), 4177. https://doi.org/10.1038/s41598-021-83794-w
dc.relation.referencesAlmirón, C., Petitti, T. D., Ponso, M. A., Romero, A. M., Areco, V. A., Bianco, M. I.,…Yaryura, P. M. J. S. R. (2025). Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere. 15(1), 3498
dc.relation.referencesAmbrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F. G., Vargas, L. K., Passaglia, L. M. J. P., & Soil. (2012). Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). 356, 245-264
dc.relation.referencesAndert, S., Bürger, J., Stein, S., & Gerowitt, B. (2016). The influence of crop sequence on fungicide and herbicide use intensities in North German arable farming. European Journal of Agronomy, 77, 81-89. https://doi.org/10.1016/j.eja.2016.04.003
dc.relation.referencesAndreote, F. D., Rossetto, P. B., Souza, L. C., Marcon, J., Maccheroni Jr, W., Azevedo, J. L., & Araújo, W. L. J. J. o. b. m. (2008). Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. 48(5), 338-346
dc.relation.referencesAquino-Martínez, J. G., Vázquez-García, L. M., & Reyes-Reyes, B. G. J. R. m. d. f. (2008). Biocontrol in vitro e in vivo de Fusarium oxysporum Schlecht. f. sp. dianthi (Prill. y Delacr.) Snyder y Hans. Con hongos antagonistas nativos de la zona florícola de Villa Guerrero, Estado de México. 26(2), 127-137
dc.relation.referencesAraújo, J. M. d., Silva, A. C. d., Azevedo, J. L. J. B. A. o. B., & Technology. (2000). Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). 43, 447-451
dc.relation.referencesAricapa, M. G. F. C. V. G. A. P. (2010). PROTOCOLO DE INOCULACIÓN CON B. glumae EN PLANTULAS DE ARROZ
dc.relation.referencesBais, H. P., Fall, R., & Vivanco, J. M. J. P. p. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. 134(1), 307-319
dc.relation.referencesBeneduzi, A., Ambrosini, A., Passaglia, L. M. J. G., & biology, m. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. 35, 1044-1051
dc.relation.referencesBent, E., & Chanway, C. P. (1998). The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Canadian Journal of Microbiology, 44(10), 980-988. https://doi.org/10.1139/w98-097
dc.relation.referencesBerg, G., Zachow, C., Grosch, R., & Smalla, K. (2013). Endophytes-a source for biological control agents. 5th International Symposium on Plant Protection and Plant Health in Europe
dc.relation.referencesBertani, I., Abbruscato, P., Piffanelli, P., Subramoni, S., & Venturi, V. J. E. m. r. (2016). Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. 8(3), 388-398
dc.relation.referencesBockus, W., & Shroyer, J. J. A. r. o. p. (1998). The impact of reduced tillage on soilborne plant pathogens. 36(1), 485-500
dc.relation.referencesBogino, P., Oliva, M., Sorroche, F., & Giordano, W. (2013). The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations. International Journal of Molecular Sciences, 14(8), 15838-15859. https://doi.org/10.3390/ijms140815838
dc.relation.referencesBranda, S. S., Vik, Å., Friedman, L., & Kolter, R. J. T. i. m. (2005). Biofilms: the matrix revisited. 13(1), 20-26
dc.relation.referencesCaldera, M. A. (2011). Evaluación in vitro de actividad antimicrobial de 23 cepas bacteriales no identificadas en contra de Burkholderia glumae El Zamorano: Escuela Agricola Panamericana, 2012]
dc.relation.referencesCalonnec, A., Burie, J. B., Langlais, M., Guyader, S., Saint-Jean, S., Sache, I., & Tivoli, B. J. E. J. o. P. P. (2013). Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. 135, 479-497
dc.relation.referencesCastilla, L., Pineda, D., Ospina, J., Echeverry, J., Perafan, R., Garcés, G.,…Díaz, A. J. R. a. (2010). Cambio climático y producción de arroz. 58(489), 4-11
dc.relation.referencesChakraborty, S., & Datta, S. J. N. P. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? , 159(3), 733-742
dc.relation.referencesChakraborty, S., Murray, G., Magarey, P., Yonow, T., O’brien, R., Croft, B.,…Dudzinski, M. J. A. P. P. (1998). Potential impact of climate change on plant diseases of economic significance to Australia. 27, 15-35
dc.relation.referencesChoi, S. Y., Geum, C. O., Park, H.-S., Kim, S., Chung, H., Kim, S.-M.,…Meteorology, F. (2024). Impact of Temperature Changes on the Occurrence of Grain Rot Caused by Burkholderia species. 26(3), 151-160
dc.relation.referencesCoenye, T. J. L. f. P. M. G. U., Belgium. (2009). Modern bacterial systematics in practice: Polyphasic taxonomy of the Burkholderia cepacia complex
dc.relation.referencesCoombs, J. T., Franco, C. M. J. A., & microbiology, e. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. 69(9), 5603-5608
dc.relation.referencesCorrea-Victoria, F. J. c. i. (2006). Asociación de la bacteria Burkholderia glumae al complejo acaro-hongobacteria en Panamá. Observaciones sobre muestras afectadas por el complejo en campos de arroz de Panamá. Aislamientos y pruebas de patogenicidad. 50
dc.relation.referencesCosterton, J. W. J. J. o. I. M., & Biotechnology. (1995). Overview of microbial biofilms. 15(3), 137-140
dc.relation.referencesCuevas Medina, A. (2000). Manejo integrado de plagas en el cultivo del arroz. In: Instituto Colombiano Agropecuario-ICA
dc.relation.referencesDanhorn, T., & Fuqua, C. J. A. R. M. (2007). Biofilm formation by plant-associated bacteria. 61(1), 401-422
dc.relation.referencesDarwish, E., Testerink, C., Khalil, M., El-Shihy, O., & Munnik, T. (2009). Phospholipid Signaling Responses in Salt-Stressed Rice Leaves. Plant and Cell Physiology, 50(5), 986-997. https://doi.org/10.1093/pcp/pcp051
dc.relation.referencesDe Oliveira, A., Urquiaga, S., & Baldani, J. (2003). Processos e mecanismos envolvidos na influência de microrganismos sobre o crescimento vegetal
dc.relation.referencesDegiovanni Beltramo, V. M., Berrío Orozco, L. E., & Charry Mercado, R. E. (2010). Origen, taxonomía, anatomía y morfología de la planta de arroz (Oryza sativa L.)
dc.relation.referencesDeng, C., Liang, X., Zhang, N., Li, B., Wang, X., & Zeng, N. J. F. i. M. (2022). Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD. 13, 917382
dc.relation.referencesDiago, M., Ospina, J., Pérez, C., Saavedra, E., Echeverri, J., Cuevas, A.,…Bejarano, N. J. R. A. (2009). Un buen manejo del cultivo, verdadera barrera contra el añublo bacterial. 57(482), 30-38
dc.relation.referencesDill-Macky, R., & Jones, R. J. P. d. (2000). The effect of previous crop residues and tillage on Fusarium head blight of wheat. 84(1), 71-76
dc.relation.referencesDimkić, I., Živković, S., Berić, T., Ivanović, Ž., Gavrilović, V., Stanković, S., & Fira, D. J. B. C. (2013). Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. 65(3), 312-321
dc.relation.referencesEcheverri Rico, J. (2017). Estudio de la relación entre la bacteria Burkholderia glumae y el síndrome del vaneamiento del arroz en tres zonas arroceras de Colombia
dc.relation.referencesEl-Afry, M. M. J. A. B. S. (2012). Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. 56(2), 165-174
dc.relation.referencesElbeltagy, A., Nishioka, K., Suzuki, H., Sato, T., Sato, Y.-I., Morisaki, H.,…nutrition, p. (2000). Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. 46(3), 617-629
dc.relation.referencesEsquivel-Díaz, W. F., & Ortiz-Quintero, Y. L. (2019). Efectos de la aplicación de la Abamectina (Abacmetin), y el Dipel (Bacillus thurigiensis) como control biológico, en el vaneamiento de la espiga en el cultivo de arroz para el municipio de Campoalegre-Huila
dc.relation.referencesEsquivel Díaz, W. F., & Yandry Lorena, O. Q. (2019). Efectos de la aplicación de la Abamectina (Abacmetin), y el Dipel (Bacillus thurigiensis) como control biológico, en el vaneamiento de la espiga en el cultivo de arroz para el municipio de Campoalegre-Huila
dc.relation.referencesFarahat, M. G., Mahmoud, M. K., Youseif, S. H., Saleh, S. A., & Kamel, Z. J. P. A. (2020). Alleviation of salinity stress in wheat by ACC deaminase-producing Bacillus aryabhattai EWR29 with multifarious plant growth-promoting attributes. 20(1), 417-429
dc.relation.referencesFong, J. N. C., & Yildiz, F. H. (2015). Biofilm Matrix Proteins. 3(2), 10.1128/microbiolspec.mb-0004-2014. https://doi.org/doi:10.1128/microbiolspec.mb-0004-2014
dc.relation.referencesForchetti, G., Masciarelli, O., Izaguirre, M. J., Alemano, S., Alvarez, D., & Abdala, G. J. C. m. (2010). Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. 61, 485-493
dc.relation.referencesGaiero, J. R., McCall, C. A., Thompson, K. A., Day, N. J., Best, A. S., & Dunfield, K. E. J. A. j. o. b. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. 100(9), 1738-1750
dc.relation.referencesGao, L., Kantar, M. B., Moxley, D., Ortiz-Barrientos, D., & Rieseberg, L. H. J. M. P. (2023). Crop adaptation to climate change: An evolutionary perspective. 16(10), 1518-1546
dc.relation.referencesGlobal Burden of Disease Collaborative Network. (2024). Global Burden of Disease Study 2024. Institute for Health Metrics and Evaluation (IHME).Consultado el 15 de junio 2025
dc.relation.referencesGonzález, A. Q., & Santamaría, F. G. J. A. M. (2014). Burkholderia glumae en el cultivo de arroz en Costa Rica. 25(2), 371-381
dc.relation.referencesGonzález, J., Rosero, M., & Arregocés, O. (1985). Morphology of the rice plant
dc.relation.referencesGupta, R. S., Patel, S., Saini, N., Chen, S. J. I. j. o. s., & microbiology, e. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. 70(11), 5753-5798
dc.relation.referencesGusain, Y. S., Singh, U., & Sharma, A. J. A. J. o. B. (2015). Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). 14(9), 764-773
dc.relation.referencesGUSTAVO, P. M., LIDYA, S. S. M., & RICARDO, S. P. J. MANEJO INTEGRADO DE ENFERMEDADES
dc.relation.referencesHallmann, J., Quadt-Hallmann, A., Mahaffee, W., & Kloepper, J. J. C. j. o. m. (1997). Bacterial endophytes in agricultural crops. 43(10), 895-914
dc.relation.referencesHam, J. H., Melanson, R. A., & Rush, M. C. J. M. p. p. (2011). Burkholderia glumae: next major pathogen of rice? , 12(4), 329-339
dc.relation.referencesHardoim, P. R., Hardoim, C. C., van Overbeek, L. S., & van Elsas, J. D. J. P. o. (2012). Dynamics of seed-borne rice endophytes on early plant growth stages. 7(2), e30438
dc.relation.referencesHikichi, Y., Okuno, T., & Furusawa, I. J. J. P. S. (1994). Mode of action of oxolinic acid on bacterial grain rot of rice (Part 2). Susceptibility of rice spikelets to infection with Pseudomonas glumae and its population dynamics. 19, 11-17
dc.relation.referencesHung, P. Q., & Annapurna, K. (2004). ISOLATION AND CHARACTERIZATION OF ENDOPHYTIC BACTERIA IN SOYBEAN ( GLYCINE SP.)
dc.relation.referencesIwai, T., Kaku, H., Honkura, R., Nakamura, S., Ochiai, H., Sasaki, T., & Ohashi, Y. J. M. P.-M. I. (2002). Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. 15(6), 515-521
dc.relation.referencesJha, P., Panwar, J., & Jha, P. N. J. E. S. (2018). Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. 1, 25-38
dc.relation.referencesJing, R., Li, N., Wang, W., & Liu, Y. J. M. p. (2020). An endophytic strain JK of genus Bacillus isolated from the seeds of super hybrid rice (Oryza sativa L., Shenliangyou 5814) has antagonistic activity against rice blast pathogen. 147, 104422
dc.relation.referencesJiranek, J., Miller, I. F., An, R., Bruns, E., & Metcalf, C. J. E. J. P. T. o. t. R. S. B. (2023). Mechanistic models to meet the challenge of climate change in plant–pathogen systems. 378(1873), 20220017
dc.relation.referencesKerdraon, L., Laval, V., & Suffert, F. J. P. J. (2019). Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. 3(4), 246-255
dc.relation.referencesKhan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N.,…Hirsch, A. M. J. F. i. m. (2018). Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. 9, 2363
dc.relation.referencesKirchman, D. L., Yu, L., Cottrell, M. T. J. A., & Microbiology, E. (2003). Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware Estuary. 69(11), 6587-6596
dc.relation.referencesKluepfel, D. A. J. A. R. o. P. (1993). The behavior and tracking of bacteria in the rhizosphere. 31(1), 441-472
dc.relation.referencesKudela, V. J. P. P. S. (2009). Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. 45(Special Issue), S27-S32
dc.relation.referencesKurita, T., & Tabei, H. (1967). On the causal bacterium of grain rot of rice. Annals of the Phytopathological Society of Japan, 33, 111
dc.relation.referencesLimoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. 3(3), 10.1128/microbiolspec.mb-0011-2014. https://doi.org/doi:10.1128/microbiolspec.mb-0011-2014
dc.relation.referencesLof, M. E., & van der Werf, W. J. C. P. (2017). Modelling the effect of gene deployment strategies on durability of plant resistance under selection. 97, 10-17.
dc.relation.referencesLugtenberg, B., & Kamilova, F. J. A. r. o. m. (2009). Plant-growth-promoting rhizobacteria. 63(1), 541-556.
dc.relation.referencesLuo, J., Xie, G., Li, B., & Lihui, X. J. P. D. (2007). First report of Burkholderia glumae isolated from symptomless rice seeds in China. 91(10), 1363-1363
dc.relation.referencesMano, H., Morisaki, H. J. M., & environments. (2008). Endophytic bacteria in the rice plant. 23(2), 109-117
dc.relation.referencesManter, D. K., Delgado, J. A., Holm, D. G., & Stong, R. A. J. M. e. (2010). Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. 60, 157-166
dc.relation.referencesMarchão, R. L., Silva, G. C. d., Andrade, S. R. M. d., Junior, F. B. d. R., Júnior, M. P. d. B., Haphonsso, R. H., & Carvalho, A. M. d. J. P. (2025). Improving Soybean Development and Grain Yield by Complementary Inoculation with Growth-Promoting Bacteria Azospirillum, Pseudomonas, Priestia, and Bacillus. 14(3), 402
dc.relation.referencesMcInroy, J. A., Kloepper, J. W. J. P., & soil. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. 173, 337-342
dc.relation.referencesMedina, F. (2005). Manual para Educacion Agropecuaria Arroz area produccion vegetal 12
dc.relation.referencesMedina Medina, D. C. (2018). Impacto ambiental generado por la agricultura colombiana 1970 - 2014. Conexión Agropecuaria JDC, 8(1), 31-47. https://doi.org/10.38017/22487735.615
dc.relation.referencesMelnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., & Backman, P. A. J. B. c. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. 46(1), 46-56
dc.relation.referencesMendes, R., Pizzirani-Kleiner, A. A., Araujo, W. L., Raaijmakers, J. M. J. A., & microbiology, e. (2007). Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. 73(22), 7259-7267
dc.relation.referencesMéndez del V, P. (2021). Capítulo 11. Producción y comercialización mundial del arroz. 100 años del cultivo de arroz en Chile. In M. Paredes., V. Becerra, & G. Donoso (Eds.), 100 años del cultivo del arroz en Chile en un contexto internacional 1920-2020. Tomo I (Vol. 40, pp. 302-313). Colección Libros INIA - Instituto de Investigaciones Agropecuarias
dc.relation.referencesMéndez del V, P. (2021). Capítulo 11. Producción y comercialización mundial del arroz. 100 años del cultivo de arroz en Chile. In M. Paredes., V. Becerra, & G. Donoso (Eds.), 100 años del cultivo del arroz en Chile en un contexto internacional 1920-2020. Tomo I (Vol. 40, pp. 302-313). Colección Libros INIA - Instituto de Investigaciones Agropecuarias
dc.relation.referencesMikaberidze, A., McDonald, B. A., & Bonhoeffer, S. J. P. P. (2015). Developing smarter host mixtures to control plant disease. 64(4), 996-1004
dc.relation.referencesMingma, R., Pathom-aree, W., Trakulnaleamsai, S., Thamchaipenet, A., Duangmal, K. J. W. J. o. M., & Biotechnology. (2014). Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. 30, 271-280
dc.relation.referencesMonar, A. S. (2022). Descripción de la calidad molinera del cultivo de arroz (Oryza sativa L. ssp. japónico) Universidad Técnica de Babahoyo ]. Babahoyo – Los Ríos – Ecuador
dc.relation.referencesMonar Coello, Á. S. (2022). Descripción de la calidad molinera del cultivo de arroz (Oryza sativa L. ssp. japónico) BABAHOYO: UTB, 2022]
dc.relation.referencesMonds, R. D., & O’Toole, G. A. J. T. i. m. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. 17(2), 73-87
dc.relation.referencesMontañez, A., Blanco, A. R., Barlocco, C., Beracochea, M., & Sicardi, M. J. A. S. E. (2012). Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. 58, 21-28
dc.relation.referencesMoreno, L. Y., & Galvis, F. J. P. y. F. (2013). Potencial biofertilizante de bacterias diazótrofas aisladas de muestras de suelo rizosférico. 36(1), 33-37
dc.relation.referencesMorikawa, M. J. J. o. b., & bioengineering. (2006). Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. 101(1), 1-8
dc.relation.referencesMuhae-Ud-Din, G., Ali, M. A., Naveed, M., Naveed, K., Abbas, A., Anwar, J.,…Technology. (2018). Consortium application of endophytic bacteria and fungi improves grain yield and physiological attributes in advanced lines of bread wheat. 6(2), 136-144
dc.relation.referencesMuhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X.,…Huang, T. J. F. i. m. (2020). Beyond risk: bacterial biofilms and their regulating approaches. 11, 928
dc.relation.referencesMukhopadhyay, K., Garrison, N. K., Hinton, D. M., Bacon, C. W., Khush, G. S., Peck, H. D., & Datta, N. (1996). Identification and characterization of bacterial endophytes of rice. Mycopathologia, 134(3), 151-159. https://doi.org/10.1007/bf00436723
dc.relation.referencesMüller, M., Rakocevic, M., Caverzan, A., Boller, W., & Chavarria, G. J. C. S. (2018). Architectural characteristics and heliotropism may improve spray droplet deposition in the middle and low canopy layers in soybean. 58(5), 2029-2041
dc.relation.referencesMundt, C. C. J. A. r. o. p. (2002). Use of multiline cultivars and cultivar mixtures for disease management. 40(1), 381-410
dc.relation.referencesMundt, C. C. J. P. (2018). Pyramiding for resistance durability: theory and practice. 108(7), 792-802
dc.relation.referencesNandakumar, R., Shahjahan, A., Yuan, X., Dickstein, E., Groth, D., Clark, C.,…Rush, M. J. P. D. (2009). Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. 93(9), 896-905
dc.relation.referencesNawaz, A., Rehman, A. U., Rehman, A., Ahmad, S., Siddique, K. H. M., & Farooq, M. (2022). Increasing sustainability for rice production systems. Journal of Cereal Science, 103. https://doi.org/10.1016/j.jcs.2021.103400
dc.relation.referencesO'Connell, P. F. (1992). Sustainable Agriculture-a Valid Alternative. Outlook on Agriculture, 21(1), 5-12. https://doi.org/10.1177/003072709202100103
dc.relation.referencesOlmos, S. J. A.-M. p. (2007). Apunte de morfología, fenología, ecofisiología, y mejoramiento genético del arroz: Cátedra de Cultivos II. Facultad de Ciencias Agrarias
dc.relation.referencesOrganización Mundial de la Salud (OMS). (2023). Suicide prevention. World Health Organization. https://www.who.int/health-topics/suicide#tab=tab_1. Consultado el 15 de Junio 2025
dc.relation.referencesOrtega, L., & Rojas, C. M. (2021). Bacterial Panicle Blight and Burkholderia glumae: From Pathogen Biology to Disease Control. Phytopathology®, 111(5), 772-778. https://doi.org/10.1094/phyto-09-20-0401-rvw
dc.relation.referencesPageni, B. B., Lupwayi, N. Z., Larney, F. J., Kawchuk, L. M., & Gan, Y. J. C. J. o. P. S. (2013). Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. 93(6), 1125-1142
dc.relation.referencesPalleroni, N. J. J. B. s. M. o. S. o. A., & Bacteria. (2015). Burkholderia. 1-50
dc.relation.referencesPandin, C., Le Coq, D., Canette, A., Aymerich, S., & Briandet, R. J. M. B. (2017). Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? , 10(4), 719-734
dc.relation.referencesPangga, I., Hanan, J., & Chakraborty, S. J. P. P. (2011). Pathogen dynamics in a crop canopy and their evolution under changing climate. 60(1), 70-81
dc.relation.referencesParedes, M., Becerra, V., & Donoso, G. (2021). Capítulo 12. Historia de la producción de arroz en Chile. 1920-2020. In M. Paredes., V. Becerra, & G. Donoso (Eds.), 100 años del cultivo del arroz en Chile en un contexto internacional 1920-2020. Tomo I (Vol. 40, pp. 314-379). Colección Libros INIA - Instituto de Investigaciones Agropecuarias
dc.relation.referencesPedraza, D. F. (2012). Estado del arte de Burkholderia glumae Como patógeno de cultivos de arroz (Oryza sativa L.) Pontifica Universidad Javeriana]. Bogotá, Colombia
dc.relation.referencesPerea-Molina, P. A. (2020). Efecto de la cepa biocontroladora IBUN 2755 sobre la población de Burkholderia glumae en plantas de arroz (Oryza sativa L.) Universidad Nacional de Colombia]. Bogotá, Colombia
dc.relation.referencesPerea Molina, P. A. (2020). Efecto de la cepa biocontroladora IBUN 2755 sobre la población de Burkholderia glumae en plantas de arroz (Oryza sativa L.)
dc.relation.referencesPérez, A. F. (2013). Bacterias endófitas asociadas a cultivo de arroz con actividad antimicrobiana sobre Burkholderia glumae. Revista de la Asociación Colombiana de Ciencias Biológicas, 1(25)
dc.relation.referencesPerez C, C., & Saavedra, E. (2011). Avances en el manejo integrado de la bacteria burkholderia glumae en el cultivo de arroz en el caribe colombiano. Revista Colombiana de Ciencia Animal - RECIA, 3(1). https://doi.org/10.24188/recia.v3.n1.2011.344
dc.relation.referencesPéRez Cordero, A., Montes-Vergara, D. E., & Sierra, J. E. J. W. (2022). Evaluation Of The In Vitro Antagonistic Potential Of Rice Plant-Associated Endophytic Bacteria Against Burkholderia Glumae. 19(5)
dc.relation.referencesPesticide Action Network (PAN) International. (2024). Annual report on acute pesticide poisoning in children. PAN International.Consultado el 15 de junio 2025
dc.relation.referencesPinski, A., Betekhtin, A., Hupert-Kocurek, K., Mur, L. A., & Hasterok, R. J. I. J. o. M. S. (2019). Defining the genetic basis of plant–endophytic bacteria interactions. 20(8), 1947
dc.relation.referencesPiromyou, P., Greetatorn, T., Teamtisong, K., Okubo, T., Shinoda, R., Nuntakij, A.,…microbiology, e. (2015). Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. 81(9), 3049-3061
dc.relation.referencesQuadt-Hallmann, A., Kloepper, J., & Benhamou, N. J. C. j. o. m. (1997). Bacterial endophytes in cotton: mechanisms of entering the plant. 43(6), 577-582
dc.relation.referencesQuiñones-Pezo, L. C., Ríos-Ruiz, W. F., Pompa-Vásquez, D. F., Rios-Reategui, F., Hernández-Amasifuen, A. D., & Corazón-Guivin, M. A. J. I. J. o. P. B. (2024). In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice. 15(4), 988-1000
dc.relation.referencesRado, R., Andrianarisoa, B., Ravelomanantsoa, S., Rakotoarimanga, N., Rahetlah, V., Fienena, F.,…Development. (2015). Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. 15(1), 9762-9776
dc.relation.referencesRaza, M. M., & Bebber, D. P. J. C. O. i. M. (2022). Climate change and plant pathogens. 70, 102233
dc.relation.referencesReinhold-Hurek, B., & Hurek, T. J. T. i. m. (1998). Life in grasses: diazotrophic endophytes. 6(4), 139-144
dc.relation.referencesRimbaud, L., Fabre, F., Papaïx, J., Moury, B., Lannou, C., Barrett, L. G., & Thrall, P. H. J. A. r. o. p. (2021). Models of plant resistance deployment. 59(1), 125-152
dc.relation.referencesRimbaud, L., Papaïx, J., Rey, J.-F., Barrett, L. G., & Thrall, P. H. J. P. c. b. (2018). Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. 14(4), e1006067
dc.relation.referencesRinaudi, L. V., & González, J. E. J. J. o. b. (2009). The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. 191(23), 7216-7224
dc.relation.referencesRios Ruiz, W. F., Torres Delgado, J., & Valdez Nuñez, R. A. (2019). Selección de microorganismos endofíticos de arroz (Oryza sativa L.) con actividad inhibitoria in vitro frente a Burkholderia glumae en la zona norte del Perú
dc.relation.referencesRivera, M., Estrada, J., Quiñonez, R., & Moreno, R. J. M. R. C. M. (2019). Diversificación integral de cultivos para el desarrollo agrícola y económico. 9(2), 242-258
dc.relation.referencesRodríguez González, Y. E., Reyes Mujica, M. M., & Espinosa Galán, N. P. (2015). Sensibilizar a los arroceros del municipio de Arauca (Arauca) acerca del impacto ambiental en la producción de arroz
dc.relation.referencesRojas Granados, G. M. (2018). Efecto de la inoculación de bacterias endófitas en el cultivo de arroz, sobre la tolerancia al daño causado por Rhizoctonia solani Kühn
dc.relation.referencesRosenblueth, M., & Martínez-Romero, E. J. M. p.-m. i. (2006). Bacterial endophytes and their interactions with hosts. 19(8), 827-837
dc.relation.referencesRudrappa, T., Biedrzycki, M. L., & Bais, H. P. J. F. m. e. (2008). Causes and consequences of plant-associated biofilms. 64(2), 153-166
dc.relation.referencesRuiza, D., Agaras, B., de Werrab, P., Wall, L. G., & Valverde, C. (2011). Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. The Journal of Microbiology, 49(6), 902-912. https://doi.org/10.1007/s12275-011-1073-6
dc.relation.referencesRush, M., Shao, Q., Zhang, S., Shahjahan, A., O'Reilly, K., Shih, D.,…Linscombe, S. (2003). Biotechnology and control of rice diseases
dc.relation.referencesRusso, D. M. (2006). Factores extracelulares de Rhizobium leguminosarum y su rol en la formación de biofilms Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales]
dc.relation.referencesRyan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. J. F. m. l. (2008). Bacterial endophytes: recent developments and applications. 278(1), 1-9
dc.relation.referencesSaini, R., Kumar, V., Dudeja, S., & Pathak, D. J. I. J. C. M. A. S. (2015). Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. 4(10), 207-221
dc.relation.referencesSánchez Soto, V. (2017). Aislamiento e identificación de bacterias con potencial de biocontrol a Alternaria sp., asociadas a Solanum lycopersicum
dc.relation.referencesSantos, M. L. d., Berlitz, D. L., Wiest, S. L. F., Schünemann, R., Knaak, N., Fiuza, L. M. J. B. a. o. b., & technology. (2018). Benefits associated with the interaction of endophytic bacteria and plants. 61, e18160431
dc.relation.referencesSantoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. J. M. r. (2016). Plant growth-promoting bacterial endophytes. 183, 92-99
dc.relation.referencesSayler, R. J., Cartwright, R. D., & Yang, Y. J. P. d. (2006). Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. 90(5), 603-610
dc.relation.referencesScience, R. C. J. F. i. P. (2016). Combining selective pressures to enhance the durability of disease resistance genes. 7, 1916
dc.relation.referencesSeneviratne, G., Thilakaratne, R., Jayasekara, A., Seneviratne, K., Padmathilake, K. R. E., & De Silva, M. (2009). Developing Beneficial Microbial Biofilms on Roots of Non legumes: A Novel Biofertilizing Technique. In M. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial Strategies for Crop Improvement (pp. 51-62). Springer‐Verlag. https://doi.org/10.1007/978-3-642-01979-1_3
dc.relation.referencesSeneviratne, G., Weerasekara, M. L. M. A. W., Seneviratne, K. A. C. N., Zavahir, J. S., Kecskés, M. L., & Kennedy, I. R. (2010). Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action. In D. Maheshwari (Ed.), Plant Growth and Health Promoting Bacteria (Vol. 18, pp. 81-95). Springer. https://doi.org/10.1007/978-3-642-13612-2_4
dc.relation.referencesSenthilkumar, M., Anandham, R., Madhaiyan, M., Venkateswaran, V., & Sa, T. J. B. i. a. c. e. (2011). Endophytic bacteria: perspectives and applications in agricultural crop production. 61-96
dc.relation.referencesShahid, M., Zeyad, M. T., Syed, A., Singh, U. B., Mohamed, A., Bahkali, A. H.,…Pichtel, J. (2022). Stress-Tolerant Endophytic Isolate Priestia aryabhattai BPR-9 Modulates Physio-Biochemical Mechanisms in Wheat (Triticum aestivum L.) for Enhanced Salt Tolerance. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710883
dc.relation.referencesSheng, X. F., Jiang, C. Y., & He, L. Y. J. C. J. o. M. (2008). Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. 54(5), 417-422
dc.relation.referencesSingh, R. K., Mishra, R. P., Jaiswal, H. K., Kumar, V., Pandey, S. P., Rao, S. B., & Annapurna, K. J. C. M. (2006). Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. 52, 345-349
dc.relation.referencesSivan, A., & Chet, I. J. E. m. (1992). Microbial control of plant diseases. 335-354
dc.relation.referencesSolanki, M. K., Robert, A. S., Singh, R. K., Kumar, S., Pandey, A. K., Srivastava, A. K., & Arora, D. K. (2012). Characterization of Mycolytic Enzymes of Bacillus Strains and Their Bio-Protection Role Against Rhizoctonia solani in Tomato. Current Microbiology, 65(3), 330-336. https://doi.org/10.1007/s00284-012-0160-1
dc.relation.referencesStanley, N. R., & Lazazzera, B. A. J. M. m. (2004). Environmental signals and regulatory pathways that influence biofilm formation. 52(4), 917-924
dc.relation.referencesSteddom, K., Menge, J., Crowley, D., & Borneman, J. J. P. (2002). Effect of repetitive applications of the biocontrol bacterium Pseudomonas putida 06909-rif/nal on citrus soil microbial communities. 92(8), 857-862
dc.relation.referencesSuman, A., Shasany, A., Singh, M., Shahi, H., Gaur, A., Khanuja, S. J. W. J. o. M., & Biotechnology. (2001). Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. 17, 39-45
dc.relation.referencesSuman, A., Solomon, S., Yadav, D., Gaur, A., & Singh, M. J. S. T. (2000). Post-harvest loss in sugarcane quality due to endophytic microorganisms. 2, 21-25
dc.relation.referencesSuman, A., Yadav, A. N., & Verma, P. J. M. i. i. s. a. p. V. r. p. (2016). Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. 117-143
dc.relation.referencesSupanitsky, A. B., & Zorreguieta, Á. (2022). Estudio sobre formación de biofilms en bacterias del suelo
dc.relation.referencesSuyal, D. C., Yadav, A., Shouche, Y., & Goel, R. J. B. (2015). Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. 70, 305-313
dc.relation.referencesSwain, E., & Singh, S. K. J. E. S. (2020). BACTERIAL PANICLE BLIGHT: RECURRENCE OF MINOR DISEASE AS MAJOR DISEASE DUE TO GLOBAL WARMING. 765
dc.relation.referencesTagore, G., Namdeo, S., Sharma, S., & Kumar, N. J. I. J. o. A. (2013). Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. 2013(1), 581627
dc.relation.referencesTamura, K., Stecher, G., Kumar, S. J. M. b., & evolution. (2021). MEGA11: molecular evolutionary genetics analysis version 11. 38(7), 3022-3027
dc.relation.referencesThanh, D. T. N., & Diep, C. N. J. A. J. L. S. (2014). Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. 2(4), 224-233
dc.relation.referencesThanh, D. T. N., & Diep, C. N. J. A. J. L. S. (2014). Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. 2(4), 224-233
dc.relation.referencesTivoli, B., Calonnec, A., Richard, B., Ney, B., & Andrivon, D. J. E. J. o. P. P. (2013). Current knowledge on plant/canopy architectural traits that reduce the expression and development of epidemics. 135, 471-478
dc.relation.referencesTrébuil, G., & Hossain, M. (2004). Le riz: enjeux écologiques et économiques. Belin
dc.relation.referencesVan Elsas, J. D., Govaert, J. M., & Van Veen, J. A. (1987). Transfer of plasmid pFT30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biology and Biochemistry, 19(5), 639-647. https://doi.org/10.1016/0038-0717(87)90110-6
dc.relation.referencesVega, F. J. R. A. a. d. C. R. (2010). Añublo bacterial de la panícula. 5, 18p
dc.relation.referencesVelasco Belalcazar, M. L. (2016). Caracterización de bacterias antagónicas a Fusarium sp, asociadas a Capsicum frutescens en Guacarí y Bolivar, Valle del Cauca
dc.relation.referencesVerma, P., Yadav, A., Kazy, S., Saxena, A., & Suman, A. J. N. J. L. S. (2013). Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. 10(2), 219-226
dc.relation.referencesVerma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. J. I. J. C. M. A. S. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. 3(5), 432-447
dc.relation.referencesVerma, S. K., Kingsley, K., Bergen, M., English, C., Elmore, M., Kharwar, R. N.,…Soil. (2018). Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. 422, 223-238
dc.relation.referencesVurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
dc.relation.referencesWang, L., Dong, M., Hao, Z., & Tao, R. J. A. A. J. (2010). Preliminary study on resistance of rice varieties to rice false smut by using method of natural infection in Zhejiang province. 22(7), 73-74
dc.relation.referencesWhitman, W. B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P.,…Dedysh, S. (2015). Bergey's manual of systematics of archaea and bacteria (Vol. 410). Wiley Online Library
dc.relation.referencesWiyono, W., Ambawati, G. S., Priyadi, S., Daryanti, D., Aziez, A. F., Ali, M. J. B. J. o. B., & Education, B. (2024). The Role of Endophyte Bacteria in The Growth and Yield of Various Rice Varieties in Rainfed Rice Lands. 16(3), 473-480
dc.relation.referencesWuest, S. E., Peter, R., Niklaus, P. A. J. N. E., & Evolution. (2021). Ecological and evolutionary approaches to improving crop variety mixtures. 5(8), 1068-1077
dc.relation.referencesYang, X. J. G. A. S. (2007). Occurrence condition, forecasting and management of rice false smut in southeast of Guizhou Province. 35(1), 100-101
dc.relation.referencesYi, H.-S., Yang, J. W., & Ryu, C.-M. J. F. i. p. s. (2013). ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. 4, 122
dc.relation.referencesYuan, X. (2004). Identification of bacterial pathogens causing panicle blight of rice in Louisiana. Louisiana State University and Agricultural & Mechanical College
dc.relation.referencesZapata, N. M. V. F., & Vélez, D. U. J. R. F. N. d. A.-M. (2011). Determinación de la infección de Burkholderia glumae en semillas de variedades comerciales colombianas de arroz. 64(2), 6093-6104
dc.relation.referencesZehnder, G. W., Murphy, J. F., Sikora, E. J., & Kloepper, J. W. J. E. j. o. p. p. (2001). Application of rhizobacteria for induced resistance. 107, 39-50
dc.relation.referencesZhou-qi, C., Bo, Z., Guan-lin, X., Bin, L., & Shi-wen, H. J. R. S. (2016). Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. 23(3), 111-118
dc.relation.referencesZhou, X., McClung, A., Way, M., Jo, Y., Tabien, R., & Wilson, L. J. P. (2011). Severe outbreak of bacterial panicle blight across Texas Rice Belt in 2010. 101(6), S205
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.agrovocMétodo de control
dc.subject.agrovocControl methods
dc.subject.agrovocEnfermedad de las plantas
dc.subject.agrovocPlant diseases
dc.subject.agrovocEndofita
dc.subject.agrovocEndophytes
dc.subject.agrovocControl biológico de plagas
dc.subject.agrovocBiological pest control
dc.subject.agrovocEnfermedad bacteriana
dc.subject.agrovocBacterial diseases
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.subject.proposalArrozspa
dc.subject.proposalPriestiaspa
dc.subject.proposalBacillusspa
dc.subject.proposalBurkholderia glumaespa
dc.subject.proposalRiceeng
dc.subject.proposalPriestiaeng
dc.subject.proposalBacilluseng
dc.subject.proposalBurkholderia glumaeeng
dc.subject.proposalBiocontrolspa
dc.titlePotencial de bacterias endofíticas del género bacillus y priestia en el control biológico del añublo bacteriano de la panícula del arroz causado por Burkholderia glumae.spa
dc.title.translatedPotential of endophytic bacteria of the genera Bacillus and Priestia in the biological control of rice panicle bacterial blight caused by Burkholderia glumae.eng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestría en Ciencias Agrarias.pdf
Tamaño:
2.65 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Meaestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia_SXVL.pdf
Tamaño:
698.61 KB
Formato:
Adobe Portable Document Format
Descripción: