Evaluación de la inestabilidad cromosómica y heterogeneidad tumoral en cáncer de seno HER2+ y TNBC mediante secuenciación de ARN de células únicas

dc.contributor.advisorRondón Lagos, Sandra Milena
dc.contributor.advisorOrtega Recalde, Oscar Javier
dc.contributor.authorMeléndez Flórez, María Paula
dc.contributor.cvlacMeléndez Flórez, María Paula
dc.date.accessioned2025-09-09T13:12:14Z
dc.date.available2025-09-09T13:12:14Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractIntroducción: El cáncer de seno (CS) es la neoplasia más frecuentemente diagnosticada y una de las principales causas de muerte por cáncer en mujeres a nivel mundial. Esta patología se caracteriza por ser una enfermedad altamente heterogénea y dinámica. Numerosos estudios han mostrado que la inestabilidad cromosómica (IC), definida como la variabilidad célula a célula en el número o en la estructura de los cromosomas, es especialmente relevante en esta patología. Esta inestabilidad constituye una fuente de variabilidad genética que puede favorecer la adaptación del tumor a entornos estresantes, lo que se ha relacionado estrechamente con la respuesta a diferentes tipos de terapia. Actualmente, existen numerosas metodologías para cuantificar la IC, sin embargo, estas técnicas presentan diferentes limitaciones. Metodología: Se realizó un estudio observacional descriptivo en el que se caracterizaron muestras de tejido sano, así como tumores de CS HER2+ y triple negativo (TNBC) utilizando datos de secuenciación de ARN de células individuales (scRNA-seq) obtenidos de las bases de datos Gene Expression Omnibus (GEO) y European Genome-Phenome Archive (EGA). La caracterización incluyó el análisis de los tipos celulares presentes en las muestras y la cuantificación de la IC mediante la aplicación de la firma de expresión CIN87. Adicionalmente, se evaluó la heterogeneidad clonal (HC) empleando medidas de diversidad. Adicionalmente, se llevó a cabo un análisis de expresión diferencial con el fin de identificar genes diferencialmente expresados entre grupos con distintos niveles de IC. Posteriormente, se realizó un análisis de enriquecimiento funcional para determinar las ontologías biológicas asociadas a dichos genes. Finalmente, se exploraron posibles correlaciones entre los niveles de IC, HC y diversas características clínico-patológicas, con el propósito de evaluar la relación entre la IC y el comportamiento tumoral en los subtipos HER2+ y triple negativo de CS. Resultados: El análisis evidenció una marcada heterogeneidad tanto intertumoral como intratumoral. Se observaron diferencias estadísticamente significativas en los niveles de IC entre pacientes con TNBC y aquellos con cáncer de seno HER2+, así como en comparación con el control. Además, se identificaron genes diferencialmente expresados en células con niveles de IC muy bajos y extremos, relacionados con procesos de división celular. La desregulación de estos genes podría desempeñar un papel clave en la dinámica de la IC y su implicación en la progresión tumoral. Discusión: Los resultados obtenidos son concordantes con lo reportado en estudios previos, los cuales han documentado una relación estrecha entre IC y HC. En particular, nuestros hallazgos refuerzan la evidencia de que los niveles de IC varían significativamente entre los distintos subtipos tumorales, siendo notablemente más elevados en TNBC, lo que sugiere un papel clave de la IC en la biología de este subtipo tumoral. El uso de datos de scRNA-seq permitió profundizar en la comprensión de los mecanismos moleculares y las vías de señalización implicadas en la IC y en la fisiopatología del CS, facilitando además sugerir posibles genes biomarcadores asociados a la progresión y pronóstico tumoral y al pronóstico clínico (Texto tomado de la fuente).spa
dc.description.abstractIntroduction: Breast cancer is the most frequently diagnosed neoplasm and one of the leading causes of cancer-related mortality in women worldwide. This disease is characterized by high heterogeneity and genomic instability. Numerous studies have demonstrated that chromosomal instability (CIN), defined as cell-to-cell variability in chromosome number or structure, plays a crucial role in breast cancer. CIN serves as a source of genetic variation, facilitating tumor adaptation to stressful environments and contributing to therapeutic response. Although, several methodologies have been developed to quantify CIN; each technique has specific limitations. Methodology: A descriptive observational study was conducted to characterize normal samples, HER2+ and triple negative (TNBC) breast cancer tumors using single-cell RNA sequencing (scRNA-seq) data obtained from the Gene Expression Omnibus (GEO) and European Genome-Phenome archive (EGA) databases. Cellular characterization was performed and CIN levels were quantified using the CIN87 expression signature, while tumor heterogeneity (TH) was assessed using accurate diversity metrics. Differential expression analysis was conducted to identify genes differentially expressed among groups with varying CIN levels, followed by functional enrichment analysis to determine the main biological pathways associated with these genes. Finally, correlations between CIN, TH levels, and various clinicopathological characteristics were explored to evaluate the relationship between chromosomal instability and tumor behavior in these breast cancer subtypes. Results: The analysis revealed marked inter- and intratumoral heterogeneity. Statistically significant differences were observed in CIN levels between TNBC and HER2+ breast cancer patients and compared to the control group. Differentially expressed genes were identified in cells with extremely low and high CIN levels, many of which are involved in cell division processes. The dysregulation of these genes may play a key role in CIN dynamics and its impact on tumor progression. Discussion: This study's findings align with previous research demonstrating the relationship between CIN and TH. Specifically, our results support evidence that CIN levels vary significantly between tumor subtypes, with higher instability observed in TNBC, suggesting a critical role for CIN in this cancer subtype. The application of scRNA-seq provided a more detailed understanding of the mechanisms and signaling pathways involved in CIN and breast cancer pathophysiology, enabling the identification of potential biomarker genes associated with disease progression and prognosis.
dc.description.degreelevelMaestría
dc.description.degreenameMasgister en Genética Humana
dc.description.methodsSe realizó un estudio observacional descriptivo en el que se caracterizaron muestras de tejido sano, así como tumores de CS HER2+ y triple negativo (TNBC) utilizando datos de secuenciación de ARN de células individuales (scRNA-seq) obtenidos de las bases de datos Gene Expression Omnibus (GEO) y European Genome-Phenome Archive (EGA). La caracterización incluyó el análisis de los tipos celulares presentes en las muestras y la cuantificación de la IC mediante la aplicación de la firma de expresión CIN87. Adicionalmente, se evaluó la heterogeneidad clonal (HC) empleando medidas de diversidad. Adicionalmente, se llevó a cabo un análisis de expresión diferencial con el fin de identificar genes diferencialmente expresados entre grupos con distintos niveles de IC. Posteriormente, se realizó un análisis de enriquecimiento funcional para determinar las ontologías biológicas asociadas a dichos genes. Finalmente, se exploraron posibles correlaciones entre los niveles de IC, HC y diversas características clínico-patológicas, con el propósito de evaluar la relación entre la IC y el comportamiento tumoral en los subtipos HER2+ y triple negativode CS.
dc.description.researchareaGenética del cáncer
dc.format.extent112 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88660
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Medicina - Maestría en Genética Humana
dc.relation.references1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2024;74(3):229–63.
dc.relation.references2. Mahdi AF, Malacrida B, Nolan J, McCumiskey ME, Merrigan AB, Lal A, Tormey S, Lowery AJ, McGourty K, Kiely PA. Expression of Annexin A2 Promotes Cancer Progression in Estrogen Receptor Negative Breast Cancers. Cells [Internet]. 2020 Jul [cited 2023 Nov 21];9(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407301/
dc.relation.references3. Alton EWFW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield EV, Boyd AC, Brand J, Buchan R, Calcedo R, Carvelli P, Chan M, Cheng SH, Collie DDS, Cunningham S, Davidson HE, Davies G, Davies JC, Davies LA, Dewar MH, Doherty A, Donovan J, Dwyer NS, Elgmati HI, Featherstone RF, Gavino J, Gea-Sorli S, Geddes DM, Gibson JSR, Gill DR, Greening AP, Griesenbach U, Hansell DM, Harman K, Higgins TE, Hodges SL, Hyde SC, Hyndman L, Innes JA, Jacob J, Jones N, Keogh BF, Limberis MP, Lloyd-Evans P, Maclean AW, Manvell MC, McCormick D, McGovern M, McLachlan G, Meng C, Montero MA, Milligan H, Moyce LJ, Murray GD, Nicholson AG, Osadolor T, Parra-Leiton J, Porteous DJ, Pringle IA, Punch EK, Pytel KM, Quittner AL, Rivellini G, Saunders CJ, Scheule RK, Sheard S, Simmonds NJ, Smith K, Smith SN, Soussi N, Soussi S, Spearing EJ, Stevenson BJ, Sumner-Jones SG, Turkkila M, Ureta RP, Waller MD, Wasowicz MY, Wilson JM, Wolstenholme-Hogg P. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. The Lancet Respiratory Medicine. 2015 Sep 1;3(9):684–91.
dc.relation.references4. Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, Perou CM, Regan MM, Rimm DL, Symmans WF, Torlakovic EE, Varella L, Viale G, Weisberg TF, McShane LM, Wolff AC. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J Clin Oncol. 2020 Apr 20;38(12):1346–66.
dc.relation.references5. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice 90 Guideline Focused Update. Arch Pathol Lab Med. 2018 Nov;142(11):1364–82.
dc.relation.references6. Berry DA, Muss HB, Thor AD, Dressler L, Liu ET, Broadwater G, Budman DR, Henderson IC, Barcos M, Hayes D, Norton L. HER-2/neu and p53 Expression Versus Tamoxifen Resistance in Estrogen Receptor–Positive, Node-Positive Breast Cancer. JCO. 2000 Oct 20;18(20):3471–9.
dc.relation.references7. Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Coombes RC, Filipovic A, Warner M, Gustafsson JÅ. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1933–8.
dc.relation.references8. Jönsson G, Staaf J, Vallon-Christersson J, Ringnér M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA, Kilpivaara O, Luts L, Heikkilä P, Aittomäki K, Blomqvist C, Loman N, Malmström P, Olsson H, Th Johannsson O, Arason A, Nevanlinna H, Barkardottir RB, Borg Å. Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Research. 2010 Jun 24;12(3):R42.
dc.relation.references9. Parisot JP, Hu XF, DeLuise M, Zalcberg JR. Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer. 1999 Feb;79(5–6):693–700.
dc.relation.references10. Reed AD, Pensa S, Steif A, Stenning J, Kunz DJ, Porter LJ, Hua K, He P, Twigger AJ, Siu AJQ, Kania K, Barrow-McGee R, Goulding I, Gomm JJ, Speirs V, Jones JL, Marioni JC, Khaled WT. A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human breast. Nat Genet. 2024 Apr;56(4):652–62.
dc.relation.references11. Jennifer Welsh. Triple Positive Breast Cancer Prognosis [Internet]. Verywell Health. 2022 [cited 2023 Nov 27]. Available from: https://www.verywellhealth.com/triple-positive-breast-cancer-prognosis-6824 183
dc.relation.references12. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, Duran M, Pauli C, Shaw C, Chadalavada K, Rajasekhar VK, Genovese G, Venkatesan S, Birkbak NJ, McGranahan N, Lundquist M, LaPlant Q, Healey JH, Elemento O, Chung CH, Lee NY, Imielenski M, Nanjangud G, Pe’er D, Cleveland DW, Powell SN, Lammerding J, Swanton C, Cantley LC. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018 Jan 25;553(7689):467–72.
dc.relation.references13. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012 Jun;13(6):528–38.
dc.relation.references14. Jamal-Hanjani M, A’Hern R, Birkbak NJ, Gorman P, Grönroos E, Ngang S, Nicola P, Rahman L, Thanopoulou E, Kelly G, Ellis P, Barrett-Lee P, Johnston SRD, Bliss J, Roylance R, Swanton C. Extreme chromosomal instability forecasts improved outcome in ER-negative breast cancer: a prospective validation cohort study from the TACT trial. Annals of Oncology. 2015 Jul 1;26(7):1340–6.
dc.relation.references15. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P, Tan IB, Richardson AL, Szallasi Z, Swanton C. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 2011 May 15;71(10):3447–52.
dc.relation.references16. Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J, Tomlinson I, Hanby AM, Speirs V, Richardson AL, Birkbak NJ, Eklund AC, Downward J, Kschischo M, Szallasi Z, Swanton C. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev. 2011 Oct;20(10):2183–94.
dc.relation.references17. Baker DJ, Jin F, Jeganathan KB, van Deursen JM. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell. 2009 Dec 8;16(6):475–86.
dc.relation.references18. Schvartzman JM, Sotillo R, Benezra R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer. 2010 Feb;10(2):102–15.
dc.relation.references19. Vargas-Rondón N, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines. Cancer Biol Med. 2020 Nov 15;17(4):970–85.
dc.relation.references20. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014 Jun 20;344(6190):1396–401.
dc.relation.references21. Li Q, Wang R, Yang Z, Li W, Yang J, Wang Z, Bai H, Cui Y, Tian Y, Wu Z, Guo Y, Xu J, Wen L, He J, Tang F, Wang J. Molecular profiling of human non-small cell lung cancer by single-cell RNA-seq. Genome Medicine. 2022 Aug 13;14(1):87.
dc.relation.references22. Yu W, Wang C, Shang Z, Tian J. Unveiling novel insights in prostate cancer through single-cell RNA sequencing. Front Oncol. 2023 Sep 8;13:1224913.
dc.relation.references23. Erenpreisa J, Cragg MS. Life-Cycle Features of Tumour Cells. In: Pontarotti P, editor. Evolutionary Biology from Concept to Application [Internet]. Berlin, Heidelberg: Springer; 2008 [cited 2023 Sep 28]. p. 61–71. Available from: https://doi.org/10.1007/978-3-540-78993-2_4
dc.relation.references24. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2021;71(3):209–49.
dc.relation.references25. Ministerio de Salud y Protección Social de Colombia. Cáncer de mama [Internet]. 2020 [cited 2023 Sep 27]. Available from: https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-mama.as px
dc.relation.references26. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.
dc.relation.references27. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, Hammond EH, Kuderer NM, Liu MC, Mennel RG, Van Poznak C, Bast RC, Hayes DF, American Society of Clinical Oncology. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2016 Apr 1;34(10):1134–50.
dc.relation.references28. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017 Oct 2;50(1):33.
dc.relation.references29. Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011 Nov 19;378(9805):1812–23.
dc.relation.references30. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research. 2010 Sep 2;12(5):R68.
dc.relation.references31. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019 Sep 23;5(1):1–31.
dc.relation.references32. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SAW, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clinical Cancer Research. 2015 Mar 31;21(7):1688–98.
dc.relation.references33. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS One. 2016;11(6):e0157368.
dc.relation.references34. Wei Z, Sijia F, Rui T, Yang L, Jianjun H, Bin W, Jing X. Analysis of differentially expressed proteins between HER2 positive and triple negative breast cancer and their prognostic significance. Annals of Diagnostic Pathology. 2021 Dec 1;55:151834.
dc.relation.references35. Aysola K, Desai A, Welch C, Xu J, Qin Y, Reddy V, Matthews R, Owens C, Okoli J, Beech DJ, Piyathilake CJ, Reddy SP, Rao VN. Triple Negative Breast Cancer – An Overview. Hereditary Genet. 2013;2013(Suppl 2):001.
dc.relation.references36. Zhou S, Huang Y e, Liu H, Zhou X, Yuan M, Hou F, Wang L, Jiang W. Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Mol Ther Nucleic Acids. 2021 Jan 1;23:682–90.
dc.relation.references37. American Cancer Society. Triple-negative Breast Cancer | Details, Diagnosis, and Signs [Internet]. 2022 [cited 2023 Sep 28]. Available from: https://www.cancer.org/cancer/types/breast-cancer/about/types-of-breast-ca ncer/triple-negative.html
dc.relation.references38. Yin L, Duan JJ, Bian XW, Yu S cang. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research. 2020 Jun 9;22(1):61.
dc.relation.references39. Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015 Jun;12(2):106–16.
dc.relation.references40. Callahan R, Hurvitz S. HER2-Positive Breast Cancer: Current Management of Early, Advanced, and Recurrent Disease. Curr Opin Obstet Gynecol. 2011 Feb;23(1):37–43.
dc.relation.references41. Rodríguez M, González DM, El-Sharkawy F, Castaño M, Madrid J. Pathological complete response in patients with HER2 positive breast cancer treated with neoadjuvant therapy in Colombia. Biomédica [Internet]. 2023 Aug 16 [cited 2023 Sep 28];43(3). Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6665
dc.relation.references42. Abramson Cancer Center. HER2 Positive Breast Cancer | Penn Medicine [Internet]. Penn Medicine - Abramson Cancer Center. 2022 [cited 2023 Sep 28]. Available from: https://www.pennmedicine.org/cancer/types-of-cancer/breast-cancer/types-o f-breast-cancer/her2-positive-breast-cancer
dc.relation.references43. Korkaya H, Kim G il, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D’Angelo R, Paulson AK, Chung S, Luther T, Paholak HJ, Liu S, Hassan KA, Zen Q, Clouthier SG, Wicha MS. Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population. Molecular Cell. 2012 Aug;47(4):570–84.
dc.relation.references44. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010 Sep 15;146(3):264–75.
dc.relation.references45. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E, Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 2020 Jul;84:106535.
dc.relation.references46. Khoobchandani M, Katti KK, Karikachery AR, Thipe VC, Srisrimal D, Dhurvas Mohandoss DK, Darshakumar RD, Joshi CM, Katti KV. New Approaches in Breast Cancer Therapy Through Green Nanotechnology and Nano-Ayurvedic Medicine - Pre-Clinical and Pilot Human Clinical Investigations. Int J Nanomedicine. 2020;15:181–97.
dc.relation.references47. Le Du F, Diéras V, Curigliano G. The role of tyrosine kinase inhibitors in the treatment of HER2+ metastatic breast cancer. Eur J Cancer. 2021 Sep;154:175–89.
dc.relation.references48. Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother. 2022 Jan;145:112375.
dc.relation.references49. Matthiessen LW, Keshtgar M, Curatolo P, Kunte C, Grischke EM, Odili J, Muir T, Mowatt D, Clover JP, Liew SH, Dahlstroem K, Newby J, Letulé V, Stauss E, Humphreys A, Banerjee S, Klein A, Rotunno R, de Terlizzi F, Gehl J. Electrochemotherapy for Breast Cancer-Results From the INSPECT Database. Clin Breast Cancer. 2018 Oct;18(5):e909–17.
dc.relation.references50. Piezzo M, Cocco S, Caputo R, Cianniello D, Gioia GD, Lauro VD, Fusco G, Martinelli C, Nuzzo F, Pensabene M, Laurentiis MD. Targeting Cell Cycle in Breast Cancer: CDK4/6 Inhibitors. Int J Mol Sci. 2020 Sep 4;21(18):6479.
dc.relation.references51. Vahidian F, Mohammadi H, Ali-Hasanzadeh M, Derakhshani A, Mostaan M, Hemmatzadeh M, Baradaran B. MicroRNAs and breast cancer stem cells: 95 Potential role in breast cancer therapy. J Cell Physiol. 2019 Apr;234(4):3294–306.
dc.relation.references52. Pikor L, Thu K, Vucic E, Lam W. The detection and implication of genome instability in cancer. Cancer Metastasis Rev. 2013 Dec;32(3–4):341–52.
dc.relation.references53. Gagos S, Irminger-Finger I. Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol. 2005 May;37(5):1014–33.
dc.relation.references54. Lee AJX, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, Downward J, Szallasi Z, Tomlinson IPM, Howell M, Kschischo M, Swanton C. Chromosomal Instability Confers Intrinsic Multidrug Resistance. Cancer Research. 2011 Mar 1;71(5):1858–70.
dc.relation.references55. Vargas-Rondón N, Villegas VE, Rondón-Lagos M. The Role of Chromosomal Instability in Cancer and Therapeutic Responses. Cancers (Basel). 2017 Dec 28;10(1):4.
dc.relation.references56. Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol. 2018 Mar;15(3):139–50.
dc.relation.references57. Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR. Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol. 2010 Jun;4(3):255–66.
dc.relation.references58. Carpenter NJ. Molecular cytogenetics. Seminars in Pediatric Neurology. 2001 Sep 1;8(3):135–46.
dc.relation.references59. Chowdhury MR, Dubey S. Role of Cytogenetics and Molecular Genetics in Human Health and Medicine. In: Animal Biotechnology [Internet]. Elsevier; 2014 [cited 2019 Sep 8]. p. 451–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780124160026000249
dc.relation.references60. Imataka G, Arisaka O. Chromosome Analysis Using Spectral Karyotyping (SKY). Cell Biochem Biophys. 2012;62(1):13–7.
dc.relation.references61. Trakhtenbrot L. Spectral Karyotyping. In: Schwab M, editor. Encyclopedia of Cancer [Internet]. Berlin, Heidelberg: Springer; 2011 [cited 2023 Nov 13]. p. 3472–6. Available from: https://doi.org/10.1007/978-3-642-16483-5_5433
dc.relation.references62. Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med (Berl). 2007 Mar;85(3):293–304.
dc.relation.references63. Thompson LL, Jeusset LMP, Lepage CC, McManus KJ. Evolving Therapeutic Strategies to Exploit Chromosome Instability in Cancer. Cancers. 2017 Nov;9(11):151.
dc.relation.references64. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006 Sep;38(9):1043–8.
dc.relation.references65. Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, Ryu HS, Kim S, Lee JE, Park YH, Kan Z, Han W, Park WY. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun. 2017 May 5;8(1):1–12.
dc.relation.references66. Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Research. 2014 Aug 18;42(14):8845–60.
dc.relation.references67. Rondón-Lagos M, Rangel N, Di Cantogno LV, Annaratone L, Castellano I, Russo R, Manetta T, Marchiò C, Sapino A. Effect of low doses of estradiol and tamoxifen on breast cancer cell karyotypes. Endocr Relat Cancer. 2016 Aug 1;23(8):635–50.
dc.relation.references68. Dayal JHS, Albergante L, Newman TJ, South AP. Quantitation of multiclonality in control and drug-treated tumour populations using high-throughput analysis of karyotypic heterogeneity. Converg Sci Phys Oncol. 2015 Dec;1(2):025001.
dc.relation.references69. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R. The Dynamic Structure of the Estrogen Receptor. J Amino Acids. 2011;2011:812540.
dc.relation.references70. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010 Nov 15;10(10):955–60.
dc.relation.references71. Bánkfalvi A, Simon R, Brandt B, Bürger H, Vollmer I, Dockhorn-Dworniczak B, Lellé RJ, Boecker W. Comparative methodological analysis of erbB-2/HER-2 gene dosage, chromosomal copy number and protein overexpression in breast carcinoma tissues for diagnostic use. Histopathology. 2000 Nov;37(5):411–9.
dc.relation.references72. Furrer D, Lemieux J, Côté MA, Provencher L, Laflamme C, Barabé F, Jacob S, Michaud A, Diorio C. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors. Breast. 2016 Dec;30:191–6.
dc.relation.references73. Seshadri R, Horsfall DJ, Firgaira F, McCaul K, Setlur V, Chalmers AH, Yeo R, Ingram D, Dawkins H, Hahnel R. The relative prognostic significance of total cathepsin D and HER-2/neu oncogene amplification in breast cancer. The South Australian Breast Cancer Study Group. Int J Cancer. 1994 Jan 2;56(1):61–5.
dc.relation.references74. Ross JS, Fletcher JA. The HER-2/neu Oncogene in Breast Cancer: Prognostic Factor, Predictive Factor, and Target for Therapy. STEM CELLS. 1998;16(6):413–28.
dc.relation.references75. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007 Jun;18(6):977–84.
dc.relation.references76. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007 Oct;12(4):395–402.
dc.relation.references77. Tamura N, Hasebe T, Okada N, Houjoh T, Akashi-Tanaka S, Shimizu C, Shibata T, Sasajima Y, Iwasaki M, Kinoshita T. Tumor histology in lymph vessels and lymph nodes for the accurate prediction of outcome among breast cancer patients treated with neoadjuvant chemotherapy. Cancer Sci. 2009 Oct;100(10):1823–33.
dc.relation.references78. Chandrakasan S, Ye CJ, Chitlur M, Mohamed AN, Rabah R, Konski A, Heng HHQ, Savaşan S. Malignant fibrous histiocytoma two years after autologous stem cell transplant for Hodgkin lymphoma: evidence for genomic instability. Pediatr Blood Cancer. 2011 Jul 1;56(7):1143–5.
dc.relation.references79. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013 Dec 1;32(3):325–40.
dc.relation.references80. Fedorenko IV, Wargo JA, Flaherty KT, Messina JL, Smalley KSM. BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape. J Invest Dermatol. 2015 Dec;135(12):3115–24.
dc.relation.references81. Teixeira MR, Pandis N, Heim S. Tumors of the breast. In: Cancer Cytogenetics [Internet]. John Wiley & Sons, Ltd; 2015 [cited 2023 Sep 27]. p. 426–46. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118795569.ch16
dc.relation.references82. Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M, Khanna KK. Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med. 2019 Jul;25(7):595–611.
dc.relation.references83. Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer. 2021 Jul;125(2):164–75.
dc.relation.references84. Roulot A, Héquet D, Guinebretière JM, Vincent-Salomon A, Lerebours F, Dubot C, Rouzier R. Tumoral heterogeneity of breast cancer. Ann Biol Clin (Paris). 2016 Dec 1;74(6):653–60.
dc.relation.references85. Bartlett JM, Munro AF, Dunn JA, McConkey C, Jordan S, Twelves CJ, Cameron DA, Thomas J, Campbell FM, Rea DW, Provenzano E, Caldas C, Pharoah P, Hiller L, Earl H, Poole CJ. Predictive markers of anthracycline benefit: a prospectively planned analysis of the UK National Epirubicin Adjuvant Trial (NEAT/BR9601). The Lancet Oncology. 2010 Mar 1;11(3):266–74.
dc.relation.references86. O’Malley FP, Chia S, Tu D, Shepherd LE, Levine MN, Bramwell VH, Andrulis IL, Pritchard KI. Topoisomerase II Alpha and Responsiveness of Breast Cancer to Adjuvant Chemotherapy. JNCI: Journal of the National Cancer Institute. 2009 May 6;101(9):644–50.
dc.relation.references87. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Medicine. 2017 Aug 18;9(1):75.
dc.relation.references88. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017 Nov 1;13(11):1387–97.
dc.relation.references89. Waks AG, Winer EP. Breast Cancer Treatment: A Review. JAMA. 2019 Jan 22;321(3):288–300.
dc.relation.references90. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–74.
dc.relation.references91. Tanaka K, Hirota T. Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim Biophys Acta. 2016 Aug;1866(1):64–75.
dc.relation.references92. Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR. Defining “chromosomal instability.” Trends Genet. 2008 Feb;24(2):64–9.
dc.relation.references93. Biermann J, Nemes S, Parris TZ, Engqvist H, Werner Rönnerman E, Kovács A, Karlsson P, Helou K. A 17-marker panel for global genomic instability in breast cancer. Genomics. 2020 Mar 1;112(2):1151–61.
dc.relation.references94. Hoffman P, Satija R, Collins D, Hao Y, Hartman A, Molla G, Butler A, Stuart T. SeuratObject: Data Structures for Single Cell Data [Internet]. 2024. Available from: https://CRAN.R-project.org/package=SeuratObject
dc.relation.references95. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of Single-Cell Data. Cell. 2019 Jun 13;177(7):1888-1902.e21.
dc.relation.references96. Timothy Tickle, Itay Tirosh, Christophe Georgescu, Maxwell Brown, Brian Haas. Visualizing Large-scale Copy Number Variation in Single-Cell RNA-Seq Expression Data [Internet]. BioConductor. 2025 [cited 2025 Feb 22]. Available from: https://www.bioconductor.org/packages/devel/bioc/vignettes/infercnv/inst/do c/inferCNV.html
dc.relation.references97. Andreatta M, Carmona SJ. UCell: Robust and scalable single-cell gene signature scoring. Computational and Structural Biotechnology Journal. 2021;19:3796–8.
dc.relation.references98. Bianchi I, Lleo A, Bernuzzi F, Caliari L, Smyk DS, Invernizzi P. The X-factor in primary biliary cirrhosis: monosomy X and xenobiotics. Autoimmun Highlights. 2012 Dec;3(3):127–32.
dc.relation.references99. Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL. Centrosome amplification drives chromosomal instability in breast tumor development. Proceedings of the National Academy of Sciences. 2002 Feb 19;99(4):1978–83.
dc.relation.references100. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biology. 2015 Dec 10;16(1):278.
dc.relation.references101. Carlson M. GO.db: A set of annotation maps describing the entire Gene Ontology. 2024.
dc.relation.references102. Yu G. Gene Ontology Semantic Similarity Analysis Using GOSemSim. Methods Mol Biol. 2020;2117:207–15.
dc.relation.references103. Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of 100 Breast Cancer. Breast Cancer: Targets and Therapy. 2023 Dec 31;15:189–211.
dc.relation.references104. Farkas G, Jurányi Z, Székely G, Kocsis ZS, Gundy S. Relationship between spontaneous frequency of aneuploidy and cancer risk in 2145 healthy Hungarian subjects. MUTAGE. 2016 Sep;31(5):583–8.
dc.relation.references105. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA, Paulson TG, Blount PL, Risques RA, Rabinovitch PS, Reid BJ. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006 Apr;38(4):468–73.
dc.relation.references106. Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Sig Transduct Target Ther. 2024 Mar 29;9(1):1–30.
dc.relation.references107. Huang N, Wu Z, Hong H, Wang X, Yang F, Li H. Overexpression of CKS2 is associated with a poor prognosis and promotes cell proliferation and invasion in breast cancer. Molecular Medicine Reports. 2019 Jun 1;19(6):4761–9.
dc.relation.references108. Tsantoulis P, Migliorini D, Martin-Lluesma S, Durigova A, Bodmer A, Dietrich P, Labidi-Galy I. 283P - Mad2L1 Overexpression Leads to Early Metastasis in Breast Cancer. Annals of Oncology. 2014 Sep 1;25:iv95.
dc.relation.references109. Wang D, Xu W, Huang M, Ma W, Liu Y, Zhou X, Yang Q, Mu K. CENPF knockdown inhibits adriamycin chemoresistance in triple-negative breast cancer via the Rb-E2F1 axis. Sci Rep. 2023 Jan 31;13(1):1803.
dc.relation.references110. Kocher BA, White LS, Piwnica-Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015 Feb;13(2):358–67.
dc.relation.references111. Lin H, Hassan Safdar M, Washburn S, S. Akhand S, Dickerhoff J, Ayers M, Monteiro M, Solorio L, Yang D, Wendt MK. Fibroblast growth receptor 1 is regulated by G-quadruplex in metastatic breast cancer. Commun Biol. 2024 Aug 9;7(1):1–11.
dc.relation.references112. Mao SPH, Park M, Cabrera RM, Christin JR, Karagiannis GS, Oktay MH, Zaiss DMW, Abrams SI, Guo W, Condeelis JS, Kenny PA, Segall JE. Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Research. 2018 Oct 26;20(1):131.
dc.relation.references113. Yu X, Feng G, Nian R, Han S, Ke M, Wang L, Li W, Tian S, Lu H. SHCBP1 Promotes the Proliferation of Breast Cancer Cells by Inhibiting CXCL2. Journal of Cancer. 2023 Oct 16;14(18):3444–56.
dc.relation.references114. Jeon BN, Kim S, Kim Y, Yu H, Kim H, Ha Y, Kim YY, Park C, Kim G, Cha M, Palucka K, Lee C, Park H. CNTN4/APP axis of cancer cells and T-cells [Internet]. Research Square; 2023 [cited 2025 Apr 11]. Available from: https://www.researchsquare.com/article/rs-2979573/v1
dc.relation.references115. Choi J, Hwang YK, Choi YJ, Yoo KE, Kim JH, Nam SJ, Yang JH, Lee SJ, Yoo KH, Sung KW, Koo HH, Im YH. Neuronal Apoptosis Inhibitory Protein is Overexpressed in Patients with Unfavorable Prognostic Factors in Breast Cancer. J Korean Med Sci. 2007 Sep;22(Suppl):S17–23.
dc.relation.references116. Purazo ML, Ice RJ, Shimpi R, Hoenerhoff M, Pugacheva EN. NEDD9 Overexpression Causes Hyperproliferation of Luminal Cells and Cooperates with HER2 Oncogene in Tumor Initiation: A Novel Prognostic Marker in Breast Cancer. Cancers (Basel). 2023 Feb 9;15(4):1119.
dc.relation.references117. El Ansari R, Alfarsi L, Craze ML, Masisi BK, Ellis IO, Rakha EA, Green AR. The solute carrier SLC7A8 is a marker of favourable prognosis in ER-positive low proliferative invasive breast cancer. Breast Cancer Res Treat. 2020;181(1):1–12.
dc.relation.references118. Valenza C, Taurelli Salimbeni B, Santoro C, Trapani D, Antonarelli G, Curigliano G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers. 2023 Jan;15(3):767.
dc.relation.references119. Li J, Wu J, Han J. Analysis of Tumor Microenvironment Heterogeneity among Breast Cancer Subtypes to Identify Subtype-Specific Signatures. Genes. 2023 Jan;14(1):44.
dc.relation.references120. Perrone M, Talarico G, Chiodoni C, Sangaletti S. Impact of Immune Cell Heterogeneity on HER2+ Breast Cancer Prognosis and Response to Therapy. Cancers (Basel). 2021 Dec 17;13(24):6352.
dc.relation.references121. Rybinska I, Mangano N, Tagliabue E, Triulzi T. Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. Int J Mol Sci. 2021 Apr 6;22(7):3775.
dc.relation.references122. Foekens JA, Peters HA, Grebenchtchikov N, Look MP, Meijer-van Gelder ME, Geurts-Moespot A, van der Kwast TH, Sweep CGJ (Fred), Klijn JGM. High Tumor Levels of Vascular Endothelial Growth Factor Predict Poor Response to Systemic Therapy in Advanced Breast Cancer1. Cancer Research. 2001 Jul 1;61(14):5407–14.
dc.relation.references123. Kuzmin E, Baker TM, Lesluyes T, Monlong J, Abe KT, Coelho PP, Schwartz M, Del Corpo J, Zou D, Morin G, Pacis A, Yang Y, Martinez C, Barber J, Kuasne H, Li R, Bourgey M, Fortier AM, Davison PG, Omeroglu A, Guiot MC, Morris Q, Kleinman CL, Huang S, Gingras AC, Ragoussis J, Bourque 102 G, Van Loo P, Park M. Evolution of chromosome-arm aberrations in breast cancer through genetic network rewiring. Cell Rep. 2024 Apr 23;43(4):113988.
dc.relation.references124. Voutsadakis IA. The Landscape of Chromosome Instability in Breast Cancers and Associations with the Tumor Mutation Burden: An Analysis of Data from TCGA. Cancer Investigation. 2021 Feb 2;39(1):25–38.
dc.relation.references125. Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022 Feb 10;13(1):791.
dc.relation.references126. Mo H, Wang X, Ma F, Qian Z, Sun X, Yi Z, Guan X, Li L, Liu B, Xu B. Genome-wide chromosomal instability by cell-free DNA sequencing predicts survival in patients with metastatic breast cancer. The Breast. 2020 Oct 1;53:111–8.
dc.relation.references127. Liu Y, Xu J, Choi HH, Han C, Fang Y, Li Y, Van der Jeught K, Xu H, Zhang L, Frieden M, Wang L, Eyvani H, Sun Y, Zhao G, Zhang Y, Liu S, Wan J, Huang C, Ji G, Lu X, He X, Zhang X. Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer. Nat Commun. 2018 Nov 9;9:4718.
dc.relation.references128. Liao YY, Fu J, Lu X, Qian Z, Yu Y, Zhu L, Pan JN, Li PC, Zhu QY, Li X, Sun W, Wang XJ, Cao WM. High chromosomal instability is associated with higher 10-year risks of recurrence for hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer patients: clinical evidence from a large-scale, multiple-site, retrospective study. The Journal of Pathology: Clinical Research. 2024;10(6):e70011.
dc.relation.references129. Liao YY, Cao WM. The progress in our understanding of CIN in breast cancer research. Front Oncol [Internet]. 2023 Feb 16 [cited 2024 Nov 25];13. Available from: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.106 7735/full
dc.relation.references130. Tucker JB, Bonema SC, García-Varela R, Denu RA, Hu Y, McGregor SM, Burkard ME, Weaver BA. Misaligned Chromosomes are a Major Source of Chromosomal Instability in Breast Cancer. Cancer Res Commun. 2023 Jan;3(1):54–65.
dc.relation.references131. Tang Y, Wang Y, Kiani MF, Wang B. Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer. Clinical Breast Cancer. 2016 Oct 1;16(5):335–43.
dc.relation.references132. Habermann JK, Doering J, Hautaniemi S, Roblick UJ, Bündgen NK, Nicorici D, Kronenwett U, Rathnagiriswaran S, Mettu RKR, Ma Y, Krüger S, Bruch 103 HP, Auer G, Guo NL, Ried T. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int J Cancer. 2009 Apr 1;124(7):1552–64.
dc.relation.references133. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008 Jul;57(7):941–50.
dc.relation.references134. Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010 Oct 12;103(8):1139–43.
dc.relation.references135. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science. 2008 Oct 31;322(5902):703–9.
dc.relation.references136. Ingebriktsen LM, Humlevik ROC, Svanøe AA, Sæle AKM, Winge I, Toska K, Kalvenes MB, Davidsen B, Heie A, Knutsvik G, Askeland C, Stefansson IM, Hoivik EA, Akslen LA, Wik E. Elevated expression of Aurora-A/AURKA in breast cancer associates with younger age and aggressive features. Breast Cancer Research. 2024 Aug 28;26(1):126.
dc.relation.references137. Pei L, Li Y, Gu H, Wang S, Wu W, Fan S, Shi X, Si X. Identification of SMC2 and SMC4 as prognostic markers in breast cancer through bioinformatics analysis. Clin Transl Oncol. 2024 Dec 1;26(12):2952–65.
dc.relation.references138. Yang L, Zhao W, Wei P, Zuo W, Zhu S. Tumor suppressor p53 induces miR-15a processing to inhibit neuronal apoptosis inhibitory protein (NAIP) in the apoptotic response DNA damage in breast cancer cell. Am J Transl Res. 2017 Feb 15;9(2):683–91.
dc.relation.references139. Cha MY, Houh YK, Kim YY, Kim H, Chung JY, Park KM, Park H. Abstract 688: Anti-CNTN4 antibody, GENA-104A07 suppresses tumor growth in murine syngeneic tumor models by regulating T cell function. Cancer Research. 2021 Jul 1;81(13_Supplement):688.
dc.relation.references140. Gao S, Ge A, Xu S, You Z, Ning S, Zhao Y, Pang D. PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. Journal of Experimental & Clinical Cancer Research. 2017 Dec 8;36(1):179.
dc.relation.references141. Butin-Israeli V, Adam SA, Jain N, Otte GL, Neems D, Wiesmüller L, Berger SL, Goldman RD. Role of lamin b1 in chromatin instability. Mol Cell Biol. 2015 Mar;35(5):884–98.
dc.relation.references142. Qin H, Lu Y, Du L, Shi J, Yin H, Jiang B, Chen W, Diao W, Ding M, Cao W, Qiu X, Zhao X, Guo H. Pan-cancer analysis identifies LMNB1 as a target to redress Th1/Th2 imbalance and enhance PARP inhibitor response in human cancers. Cancer Cell International. 2022 Mar 3;22(1):101.
dc.relation.references143. Kim YJ, Lee G, Han J, Song K, Choi JS, Choi YL, Shin YK. UBE2C Overexpression Aggravates Patient Outcome by Promoting Estrogen-Dependent/Independent Cell Proliferation in Early Hormone Receptor-Positive and HER2-Negative Breast Cancer. Front Oncol. 2020 Jan 23;9:1574.
dc.relation.references144. Li RQ, Yang Y, Qiao L, Yang L, Shen DD, Zhao XJ. KIF2C: An important factor involved in signaling pathways, immune infiltration, and DNA damage repair in tumorigenesis. Biomedicine & Pharmacotherapy. 2024 Feb 1;171:116173.
dc.relation.references145. Jian L, Xie J, Guo S, Yu H, Chen R, Tao K, Yang C, Li K, Liu S. AGR3 promotes estrogen receptor-positive breast cancer cell proliferation in an estrogen-dependent manner. Oncology Letters. 2020 Aug 1;20(2):1441–51.
dc.relation.references146. Parris TZ, Aziz L, Kovács A, Hajizadeh S, Nemes S, Semaan M, Chen CY, Karlsson P, Helou K. Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma. BMC Cancer. 2014 May 7;14(1):324.
dc.relation.references147. Song Y, Li Z, Li L, Zhou H, Zeng TT, Jin C, Lin JR, Gao S, Li Y, Guan XY, Zhu YH. SERPINA11 Inhibits Metastasis in Hepatocellular Carcinoma by Suppressing MEK/ERK Signaling Pathway. JHC. 2021 Jul;Volume 8:759–71.
dc.relation.references148. Long Y, Guo J, Chen J, Sun J, Wang H, Peng X, Wang Z, Lai W, Liu N, Shu L, Chen L, Shi Y, Xiao D, Liu S, Tao Y. GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer. Sig Transduct Target Ther. 2023 Feb 1;8(1):1–15.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.decsNeoplasias de la Mamaspa
dc.subject.decsBreast Neoplasmseng
dc.subject.decsCausas de Muertespa
dc.subject.decsCause of Deatheng
dc.subject.decsMétodos Epidemiológicosspa
dc.subject.decsEpidemiologic Methodseng
dc.subject.decsInestabilidad Cromosómicaspa
dc.subject.decsChromosomal Instabilityeng
dc.subject.decsAberraciones Cromosómicasspa
dc.subject.decsChromosome Aberrationseng
dc.subject.decsProcesos Patológicosspa
dc.subject.decsPathologic Processeseng
dc.subject.decsNeoplasias de la Mama Triple Negativasspa
dc.subject.decsTriple Negative Breast Neoplasmseng
dc.subject.decsGenes erbB-2spa
dc.subject.decsGenes, erbB-2eng
dc.subject.proposalCáncer de senospa
dc.subject.proposalInestabilidad cromosómicaspa
dc.subject.proposalHeterogeneidad tumoralspa
dc.subject.proposalscRNA-seqspa
dc.subject.proposalBreast cancereng
dc.subject.proposalChromosomal instabilityeng
dc.subject.proposalTumor heterogeneityeng
dc.titleEvaluación de la inestabilidad cromosómica y heterogeneidad tumoral en cáncer de seno HER2+ y TNBC mediante secuenciación de ARN de células únicasspa
dc.title.translatedChromosomal instability and tumor heterogeneity assessment in HER2+ and TNBC breast cancer using single-cell RNA sequencingeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maria Paula Melendez.pdf
Tamaño:
2.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Genética Humana

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: