Predicting medicine demand in hospitals through stochastic approaches

dc.contributor.advisorRocha González, Jair Eduardo
dc.contributor.advisorYahouni, Zakaria
dc.contributor.authorVélez Cárdenas, Daniel Fernando
dc.date.accessioned2023-02-02T16:56:45Z
dc.date.available2023-02-02T16:56:45Z
dc.date.issued2023-01-31
dc.descriptionilustracionesspa
dc.description.abstractHoy en día, el sector sanitario está cambiando rápidamente. Los hospitales se enfrentan a presupuestos cada vez más limitados y costos elevados. Las actividades logísticas de los hospitales en Francia (gestión de existencias, entrega, etc.) representan uno de los componentes de mayor costo. Los costos logísticos pueden reducirse mediante un sistema optimizado de gestión de inventarios. La optimización del inventario depende en gran medida de la precisión de la predicción de la demanda de medicamentos. El primer objetivo consiste en realizar un estado del arte de los métodos existentes para predecir la demanda de medicamentos en los centros sanitarios. Muchos factores influyen en esta demanda, como su estacionalidad, el tamaño y la ubicación del hospital. En consecuencia, un método estocástico puede ser relevante para captar las fluctuaciones de la demanda. Un segundo objetivo es utilizar los datos históricos de un hospital de Francia para predecir el consumo de medicamentos mediante una cadena de Markov. Se propone un análisis de los resultados experimentales para evaluar la eficacia del método. El resultado podría contribuir a la gestión y el dimensionamiento de los inventarios hospitalarios. (Texto tomado de la fuente)spa
dc.description.abstractNowadays, the healthcare sector is rapidly changing. The hospitals are facing limited budgets and high costs. The logistics activities of the hospitals in France (stock management, delivery, etc.) represent one of the highest cost components. The logistic costs can be reduced through an optimized inventory management system. The inventory optimization is strongly dependent on the accuracy of the demand prediction of medicines. The first objective consists of making a state of the art of existing methods for predicting medicines demand in healthcare facilities. Many factors influence this demand, such as seasonality, hospital size and location, etc. As a consequence, a stochastic method can be relevant to capture the demand fluctuations. A second objective is to use the historical data of one hospital in France to predict the consumption of medicines using a Markov chain. An analysis of the experimental results is proposed to assess the effectiveness of the method. The result could contribute to the management and dimensioning of hospital inventories.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Industrialspa
dc.description.notesEsta investigación será publicada para alcanzar el título de Master en ingeniería en la Universidad Institut polytechnique de Grenoble dentro del convenio de doble titulación que mantiene con la Universidad Nacional de Colombia, Facultad de Ingeniería, Sede Bogotá y ahora se publica en versión idéntica para satisfacer las condiciones de grado en Colombia y para su difusión en el repositorio institucional.spa
dc.description.researchareaGestión de operacionesspa
dc.format.extentxviii, 40 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83248
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrialspa
dc.relation.referencesAbdulsalam, Y., Gopalakrishnan, M., Maltz, A., & Schneller, E. (2018). The impact of physician-hospital integration on hospital supply management. Journal of Operations Management, 57, 11–22. https://doi.org/10.1016/j.jom.2018.01.001spa
dc.relation.referencesAddis, B., Carello, G., Grosso, A., Lanzarone, E., Mattia, S., & Tànfani, E. (2015). Handling uncertainty in health care management using the cardinality-constrained approach: Advantages and remarks. Operations Research for Health Care, 4, 1–4. https://doi.org/10.1016/j.orhc.2014.10.001spa
dc.relation.referencesAnderson, T., & Goodman, L. (1957). Statistical Inference About Markov Chains. The Annals of Mathematical Statistics, 28. https://doi.org/10.1214/aoms/1177707039spa
dc.relation.referencesAptel, O., & Pourjalali, H. (2001). Improving activities and decreasing costs of logistics in hospitals: A comparison of U.S. and French hospitals. The International Journal of Accounting, 36(1), 65–90. https://doi.org/10.1016/S0020-7063(01)00086-3spa
dc.relation.referencesAttanayake, N., Kashef, R. F., & Andrea, T. (2014). A simulation model for a continuous review inventory policy for healthcare systems. 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), 1–6. https://doi.org/10.1109/CCECE.2014.6901005spa
dc.relation.referencesde Vries, J. (2011). The shaping of inventory systems in health services: A stakeholder analysis. International Journal of Production Economics, 133(1), 60–69. https://doi.org/10.1016/j.ijpe.2009.10.029spa
dc.relation.referencesDu, H., Zhao, Z., & Xue, H. (2020). ARIMA-M: A New Model for Daily Water Consumption Prediction Based on the Autoregressive Integrated Moving Average Model and the Markov Chain Error Correction. MDPI Water, 12(3), 760. https://doi.org/10.3390/w12030760spa
dc.relation.referencesGebicki, M., Mooney, E., Chen, S.-J., & Mazur, L. M. (2014). Evaluation of hospital medication inventory policies. Health Care Management Science, 17(3), 215–229. https://doi.org/10.1007/s10729-013-9251-1spa
dc.relation.referencesGoltsos, T. E., Syntetos, A. A., Glock, C. H., & Ioannou, G. (2021). Inventory – forecasting: Mind the gap. European Journal of Operational Research, S0377221721006500. https://doi.org/10.1016/j.ejor.2021.07.040spa
dc.relation.referencesHermosilla, A., Carmagnola, R., Sauer, C., Redondo, E., & Centurion, L. (2020). Demand forecasts for chronic cardiovascular diseases medication based on Markov chains. 5(2), 6.spa
dc.relation.referencesKoala, D., Yahouni, Z., Alpan, G., & Si Mohand, D. (2022). Correlation Analysis of Factors Impacting Health Product Consumption in French Hospitals. 10th IFAC Conference on Manufacturing Modelling, Management and Control: MIM.spa
dc.relation.referencesKocer, U. U. (n.d.). FORECASTING INTERMITTENT DEMAND BY MARKOV CHAIN MODEL. International Journal of Innovative Computing, Information and Control, 13.spa
dc.relation.referencesLandry, S., & Philippe, R. (2004). How Logistics Can Service Healthcare. Supply Chain Forum: An International Journal, 5(2), 24–30. https://doi.org/10.1080/16258312.2004.11517130spa
dc.relation.referencesLopez Ramirez, A. J., Jurado, I., Fernandez Garcia, M. I., Isla Tejera, B., Del Prado Llergo, J. R., & Maestre Torreblanca, J. M. (2014). Optimization of the demand estimation in hospital pharmacy. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), 1–6. https://doi.org/10.1109/ETFA.2014.7005057spa
dc.relation.referencesPan, Z. X. (Thomas), & Pokharel, S. (2007). Logistics in hospitals: A case study of some Singapore hospitals. Leadership in Health Services, 20(3), 195–207. https://doi.org/10.1108/17511870710764041spa
dc.relation.referencesPokharel, S. (2005). Perception on information and communication technology perspectives in logistics: A study of transportation and warehouses sectors in Singapore. Journal of Enterprise Information Management, 18(2), 136–149. https://doi.org/10.1108/17410390510579882spa
dc.relation.referencesPolanecký, L., & Lukoszová, X. (2016). Inventory Management Theory: A Critical Review. Littera Scripta, 9(2), 11.spa
dc.relation.referencesRoni, M. S., Eksioglu, S. D., Jin, M., & Mamun, S. (2016). A hybrid inventory policy with split delivery under regular and surge demand. International Journal of Production Economics, 172, 126–136. https://doi.org/10.1016/j.ijpe.2015.11.015spa
dc.relation.referencesSaha, E., & Ray, P. K. (2018). Inventory Management and Analysis of Pharmaceuticals in a Healthcare System. In P. K. Ray & J. Maiti (Eds.), Healthcare Systems Management: Methodologies and Applications: 21st Century Perspectives of Asia (pp. 71–95). Springer. https://doi.org/10.1007/978-981-10-5631-4_7spa
dc.relation.referencesSaha, E., & Ray, P. K. (2019a). Patient condition-based medicine inventory management in healthcare systems. http://www.tandfonline.com/doi/epub/10.1080/24725579.2019.1638850?needAccess=truespa
dc.relation.referencesSaha, E., & Ray, P. K. (2019b). Modelling and analysis of inventory management systems in healthcare: A review and reflections. Computers & Industrial Engineering, 137, 106051. https://doi.org/10.1016/j.cie.2019.106051spa
dc.relation.referencesVarghese, V., Rossetti, M., Pohl, E., Apras, S., & Marek, D. (2012). Applying Actual Usage Inventory Management Best Practice in a Health Care Supply Chain. International Journal of Supply Chain Management, 1(2), 10.spa
dc.relation.referencesVila-Parrish, A. R., Ivy, J. S., & King, R. E. (2008). A simulation-based approach for inventory modeling of perishable pharmaceuticals. 2008 Winter Simulation Conference, 1532–1538. https://doi.org/10.1109/WSC.2008.4736234spa
dc.relation.referencesVillegas, M. A., Pedregal, D. J., & Trapero, J. R. (2018). A support vector machine for model selection in demand forecasting applications. Computers & Industrial Engineering, 121, 1–7. https://doi.org/10.1016/j.cie.2018.04.042spa
dc.relation.referencesVolland, J., Fügener, A., Schoenfelder, J., & Brunner, J. O. (2017). Material logistics in hospitals: A literature review. Omega, 69, 82–101. https://doi.org/10.1016/j.omega.2016.08.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.decsMedicamentosspa
dc.subject.decssupply & distributioneng
dc.subject.decsProvisión y distribiciónspa
dc.subject.proposalGestión de inventariosspa
dc.subject.proposalPredicción de la demandaspa
dc.subject.proposalFarmacia hospitalariaspa
dc.subject.proposalModelos estocásticosspa
dc.subject.proposalCadena de Markovspa
dc.subject.proposalInventory managementeng
dc.subject.proposalDemand forecastingeng
dc.subject.proposalHospital pharmacyeng
dc.subject.proposalStochastic modelseng
dc.subject.proposalMarkov chaineng
dc.titlePredicting medicine demand in hospitals through stochastic approacheseng
dc.title.translatedPredicción de la demanda de medicamentos en hospitales a través de enfoques estocásticosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121897186.2022.pdf
Tamaño:
759.56 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: