Parameters of additive manufacturing and post-processing surface finishing in cobalt-chromium alloy joint implants bearing surfaces manufactured using Selective Laser Melting
dc.contributor.advisor | Cortés Rodríguez, Carlos Julio | spa |
dc.contributor.author | Calvo Correa, Martha Patricia | spa |
dc.contributor.orcid | Calvo Correa, Martha Patricia [0009000224778872] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb | spa |
dc.date.accessioned | 2025-02-18T12:44:22Z | |
dc.date.available | 2025-02-18T12:44:22Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | |
dc.description.abstract | Las superficies de los implantes articulares, conocidas como superficies de pares de fricción, son cruciales para la movilidad y funcionamiento adecuado de los implantes. Estas superficies deben tener un acabado específico para garantizar el funcionamiento óptimo y evitar fallas prematuras. La manufactura mediante Selective Laser Melting (SLM) permite la creación de implantes individualizados de gran complejidad y geometrías en un tiempo y costo menores que las técnicas tradicionales. Sin embargo, debido a la naturaleza del proceso, se requiere el uso de postprocesos para obtener las superficies de pares de fricción necesarias. Esta investigación evaluó los parámetros de manufactura para SLM y tres diferentes postprocesos: micro mecanizado, micro granallado y laser polishing. Se determinaron los parámetros de posprocesamiento que permiten la adecuada manufactura de las superficies de pares de fricción. Se encontró que la mejor manera de manufacturar estas superficies es emplear parámetros de manufactura en SLM que proporcionen una rugosidad homogénea en toda la superficie, seguido de un posproceso de acabado superficial mediante laser polishing. Con esta combinación de técnicas, se lograron los valores de rugosidad superficial recomendados para garantizar la calidad y funcionalidad de las superficies en pares de fricción de implantes articulares fabricados mediante SLM (Texto tomado de la fuente). | spa |
dc.description.abstract | Articular implant surfaces, referred to as bearing surfaces, are fundamental for ensuring the optimal mobility and functionality of implants. These surfaces require specific surface finishing to prevent premature failure and ensure the desired performance. Selective Laser Melting (SLM) manufacturing enables the creation of highly intricate implants at reduced time and cost compared to traditional methods. However, post-processing is essential to achieve the required bearing surfaces. This study assessed manufacturing parameters for SLM and three post-processing methods: micro-machining, micro-sandblasting, and laser polishing. Post-processing parameters conducive to proper bearing surface manufacturing were identified. The optimal approach involves using SLM manufacturing parameters to achieve homogeneous roughness across the entire surface, followed by laser polishing with parameters of 600 W laser power, 0.05 mm hatch distance, and 5.5 /min scanning speed. This method effectively ensures the quality and functionality of friction pair surfaces in joint implants produced via SLM. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería – Ciencia y Tecnología de Materiales | spa |
dc.description.researcharea | Biomateriales y fabricación médica | spa |
dc.format.extent | xvii, 142 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87510 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | Standard Specification for Total Hip Joint Prosthesis and Hip Endoprosthesis Bearing Surfaces Made of Metallic, Ceramic, and Polymeric Materials 1, doi: 10.1520/F2033-20 | spa |
dc.relation.references | T. Wright, T. Sculco, E. Su, D. Padgett, and S. Haas, “Joint Replacement: Implant Bearing Surface Materials | HSS.” Accessed: Aug. 25, 2022. [Online]. Available: https://www.hss.edu/conditions_joint-replacement-implant-bearing-surface-materials-history-effectiveness-future.asp | spa |
dc.relation.references | H. S. Jang, S. S. Kang, and B. A. Jang, “Determination of Joint Roughness Coefficients Using Roughness Parameters,” Rock Mech Rock Eng, vol. 47, no. 6, pp. 2061–2073, Nov. 2014, doi: 10.1007/S00603-013-0535-Z/METRICS | spa |
dc.relation.references | O. Linins, J. Krizbergs, and I. Boiko, “Wear Estimation Using 3D Surface Roughness Parameters,” Key Eng Mater, vol. 527, pp. 167–172, 2013, doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.527.167 | spa |
dc.relation.references | L. Vepsäläinen, P. Stenberg, P. Pääkkönen, M. Kuittinen, M. Suvanto, and T. A. Pakkanen, “Roughness analysis for textured surfaces over several orders of magnitudes,” Appl Surf Sci, vol. 284, pp. 222–228, Jul. 2013, doi: 10.1016/j.apsusc.2013.07.085 | spa |
dc.relation.references | E. Group, “A Focus on SLM and SLS Methods in 3D Printing.,” ASTM. Accessed: May 18, 2021 | spa |
dc.relation.references | C. Y. Yap et al., “Review of selective laser melting: Materials and applications,” Appl Phys Rev, vol. 2, no. 4, pp. 1–16, Dec. 2015, doi: 10.1063/1.4935926 | spa |
dc.relation.references | A. K. Singla et al., “Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments,” J Manuf Process, vol. 64, no. 1, pp. 161–187, Jan. 2021, doi: 10.1016/j.jmapro.2021.01.009 | spa |
dc.relation.references | Á. Salgado Rodrigo, A. Núñez García Coordinador, and J. Ortega González, “CAPÍTULO 21-IMPLANTES ARTICULARES: PRINCIPIOS GENERALES. PARES DE FRICCION,” in Manual de cirugía ortopédica y traumatología, 2nd ed., vol. 1, Editorial medica panamericana, Ed., España: Editorial médica panamericana, 2009, pp. 1–251 | spa |
dc.relation.references | Duque Morán, Navarro Navarro, García Navarro, and Caballero Ruiz, “Pares de fricción en la artroplastia total de cadera (ATC): Parámetros tribológicos.,” Canarias Médica y Quírurgica, vol. 9, no. 25, pp. 1–11, May 2011 | spa |
dc.relation.references | C. V. R. Meenakshi, K. Shivendra Kumar, and S. V Ramana, “Tribological aspects on Human Knee Joint- A review,” Mater Today Proc, vol. 22, no. 1, pp. 3100–3105, 2019, Accessed: Aug. 28, 2022. [Online]. Available: www.sciencedirect.com | spa |
dc.relation.references | Y. Wei et al., “Micro selective laser melting of SS316L: Single Tracks, Defects, microstructures and Thermal/Mechanical properties,” Opt Laser Technol, vol. 145, no. 1, pp. 107469–107481, Aug. 2022, doi: 10.1016/j.optlastec.2021.107469 | spa |
dc.relation.references | E. Maleki, S. Bagherifard, M. Bandini, and M. Guagliano, “Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities,” Additive Manufacturing, vol. 37. Elsevier B.V., Jan. 01, 2021. doi: 10.1016/j.addma.2020.101619 | spa |
dc.relation.references | R. K. Enneti, R. Morgan, and S. V Atre, “Effect of process parameters on the Selective Laser Melting (SLM) of tungsten,” International journal of refractory metals y hard materials, vol. 71, no. 1, pp. 315–319, Dec. 2017, doi: 10.1016/j.ijrmhm.2017.11.035 | spa |
dc.relation.references | publishing series in B. number 94 Woodhead, Surface coating and modification of metallic biomaterials, 1st ed., vol. 1, no. 1. Cambridge: Elservier, 2015 | spa |
dc.relation.references | T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials, vol. 25, no. 19, pp. 4731–4739, Dec. 2004, doi: 10.1016/j.biomaterials.2003.12.002 | spa |
dc.relation.references | M. Elsayed, M. Ghazy, Y. Youssef, and K. Essa, “Optimization of SLM Process Parameters for Ti6Al4V Medical Implants,” Birmingham, 2018. doi: 10.1108/RPJ-05-2018-0112 | spa |
dc.relation.references | J. J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties,” Annual Review of Materials Research, vol. 46, no. 1. Case Western Reserve University, Cleveland, pp. 151–186, Apr. 16, 2016. doi: 10.1146/annurev-matsci-070115-032024 | spa |
dc.relation.references | A. Thompson, N. Senin, C. Giusca, and R. Leach, “Topography of selectively laser melted surfaces: A comparison of different measurement methods,” CIRP Ann Manuf Technol, vol. 66, no. 1, pp. 543–546, Apr. 2017, doi: 10.1016/j.cirp.2017.04.075 | spa |
dc.relation.references | M. Boutaous, X. Liu, D. A. Siginer, and S. Xin, “Balling phenomenon in metallic laser based 3D printing process,” International Journal of Thermal Sciences, vol. 167, no. 1, pp. 107011–1070211, Sep. 2021, doi: 10.1016/j.ijthermalsci.2021.107011 | spa |
dc.relation.references | I. Koutiri, E. Pessard, P. Peyre, O. Amlou, and T. De Terris, “Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts,” Journal of materials Processing Tech, vol. 255, no. 1, pp. 536–546, Jun. 2018, doi: 10.1016/j.jmatprotec.2017.12.043 | spa |
dc.relation.references | A. W. Hashmi et al., “A comprehensive review on surface post-treatments for freeform surfaces of bio-implants,” Journal of Materials Research and Technology, vol. 23, no. 1, pp. 4866–4908, Mar. 2023, doi: 10.1016/j.jmrt.2023.02.007 | spa |
dc.relation.references | X. Yan et al., “Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625,” Journal of materials processing tech., vol. 288, no. 1, pp. 116878–116889, Aug. 2020, doi: 10.1016/j.jmatprotec.2020.116878 | spa |
dc.relation.references | Y. Du, T. Mukherjee, and T. DebRoy, “Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects,” Appl Mater Today, vol. 24, no. 1, pp. 101123–101135, Sep. 2021, doi: 10.1016/j.apmt.2021.101123 | spa |
dc.relation.references | Marcello Lappa, “Numerical Techniques and Insights into Physics,” in Fluids, Materials and Microgravity, First., vol. 1, Elsevier Science 2004, 2004, pp. 1–538 | spa |
dc.relation.references | I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, “Hierarchical design principles of selective laser melting for high quality metallic objects,” Addit Manuf, vol. 7, no. 1, pp. 45–56, Dec. 2015, doi: 10.1016/j.addma.2014.12.007 | spa |
dc.relation.references | R. Tadmor, “Marangoni flow revisited,” J Colloid Interface Sci, vol. 332, no. 1, pp. 451–454, Dec. 2009, doi: 10.1016/j.jcis.2008.12.047 | spa |
dc.relation.references | ASTM International, “Standard Guide for Additive Manufacturing-Design-Post-Processing for Metal PBF-LB,” Apr. 2022. doi: 10.1520/F3530-22 | spa |
dc.relation.references | Z.-C. Fang, Z.-L. Wu, C.-G. Huang, and C.-W. Wu, “Review on residual stress in selective laser melting additive manufacturing of alloy parts,” Opt Laser Technol, vol. 129, no. 1, pp. 106283–106298, Dec. 2020, doi: 10.1016/j.optlastec.2020.106283 | spa |
dc.relation.references | L. Mugwagwa, “Residual stresses and distortions in selective laser melting-a review,” in 17th International conference of the Rapid Product Development Association of South Africa, ResearchGate, Ed., South Africa: ResearchGate, Nov. 2016, pp. 1–13. [Online]. Available: https://www.researchgate.net/publication/318014975 | spa |
dc.relation.references | A. Majeed, A. Ahmed, A. Salam, and M. Z. Sheikh, “Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing.,” International journal of lighweight materials and manufacture, vol. 2, no. 1, pp. 288–295, Aug. 2019, doi: 10.1016/j.ijlmm.2019.08.001 | spa |
dc.relation.references | Y. Eyzat, M. Chemkhi, Q. Portella, J. Gardan, J. Remond, and D. Retraint, “Characterization and Mechanical Properties of As-Built SLM Ti-6Al-4V subjected to surface mechanical post-treatment,” Procedia CIRP, vol. 81, pp. 1225–1229, 2019, doi: 10.1016/j.procir.2019.03.298 | spa |
dc.relation.references | Z. Wang, Z. Xiao, Y. Tse, C. Huang, and W. Zhang, “Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy,” Opt Laser Technol, vol. 112, pp. 159–167, Nov. 2018, doi: 10.1016/j.optlastec.2018.11.014 | spa |
dc.relation.references | M. Ghasempour-Mouziraji, J. Lagarinhos, D. Afonso, and R. Alves De Sousa, “A review study on metal powder materials and processing parameters in Laser Metal Deposition,” Opt Laser Technol, vol. 170, no. 1, pp. 110226–110238, Nov. 2024, doi: 10.1016/j.optlastec.2023.110226 | spa |
dc.relation.references | J. J. Babu, M. Mehrpouya, T. C. Pijper, G. Willemsen, and T. Vaneker, “An Experimental Study of Downfacing Surfaces in Selective Laser Melting,” Adv Eng Mater, vol. 24, no. 8, pp. 1–11, 2022, doi: 10.1002/adem.202101562 | spa |
dc.relation.references | A. Rezaei et al., “Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test,” Mater Charact, vol. 162, no. 1, pp. 110200–110213, Feb. 2020, doi: 10.1016/j.matchar.2020.110200 | spa |
dc.relation.references | T. Özel, A. Altay, B. Kaftanoglu, R. Leach, N. Senin, and A. Donmez, “Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 142, no. 1, Jan. 2020, doi: 10.1115/1.4045415 | spa |
dc.relation.references | X. Zhou et al., “Textures formed in a CoCrMo alloy by selective laser melting,” J Alloys Compd, vol. 631, no. 1, pp. 153–164, Jan. 2015, doi: 10.1016/j.jallcom.2015.01.096 | spa |
dc.relation.references | J. Pegues, M. Roach, R. Scott Williamson, and N. Shamsaei, “Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V,” Int J Fatigue, vol. 116, pp. 543–552, Apr. 2018, doi: 10.1016/j.ijfatigue.2018.07.013 | spa |
dc.relation.references | D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, Lamikiz, and G. I. Prokopenko, “Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress,” Surf Coat Technol, vol. 381, pp. 125–136, Aug. 2020, doi: 10.1016/j.surfcoat.2019.125136 | spa |
dc.relation.references | C. D. Clement, J. Masson, and A. S. Kabir, “Effects of Heat Treatment on Microstructure and Mechanical Properties of AlSi10Mg Fabricated by Selective Laser Melting Process,” Journal of Manufacturing and Materials Processing, vol. 6, no. 3, Jun. 2022, doi: 10.3390/jmmp6030052 | spa |
dc.relation.references | B. Proaño et al., “Annealing effects on fracture process and tensile strength of non-combustible Mg products fabricated by selective laser melting,” Theoretical and Applied Fracture Mechanics, vol. 120, pp. 103411–103122, Aug. 2022, doi: 10.1016/j.tafmec.2022.103411 | spa |
dc.relation.references | Felicia Fashanu, Denis Marcellin, and Barbara Linke, “REVIEW OF SURFACE FINISHING OF ADDITIVELY MANUFACTURED METAL IMPLANTS,” Proceedings of the ASME 2020, 15th , vol. 1, pp. 1–9, Sep. 2020 | spa |
dc.relation.references | A. Rudawska, I. Danczak, M. Müller, and P. Valasek, “The effect of sandblasting on surface properties for adhesion,” International jpurnal of adhesion and adhesives , vol. 70, pp. 176–190, Jun. 2016, doi: 10.1016/j.ijadhadh.2016.06.010 | spa |
dc.relation.references | Z. Yu et al., “Influence of micro sandblasting on the surface integrity of the AlTiN-coated tools,” International Journal of Advanced Manufacturing Technology, vol. 120, no. 1–2, pp. 1359–1372, May 2022, doi: 10.1007/s00170-022-08890-1 | spa |
dc.relation.references | J. P. Davim, Surface integrity in machining, 1st ed., vol. 1. Portugal: Springer London, 2010. doi: 10.1007/978-1-84882-874-2 | spa |
dc.relation.references | R. Saravanan, R. Hamidon, N. M. Murad, and Z. A. Zailani, “Machining of Cobalt Chromium Molybdenum (CoCrMo) Alloys: A Review,” in Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2021, pp. 413–424. doi: 10.1007/978-981-16-0866-7_36 | spa |
dc.relation.references | J. D. Miller, O. R. Tutunea-Fatan, and E. V. Bordatchev, “Experimental Analysis of Laser and Scanner Control Parameters During Laser Polishing of H13 Steel,” Procedia Manuf, vol. 10, pp. 720–729, 2017, doi: 10.1016/j.promfg.2017.07.029 | spa |
dc.relation.references | B. Richter, T. Radel, and F. E. Pfefferkorn, “Sensitivity of surface roughness to laser parameters used for polishing additively manufactured Co-Cr alloy,” Surf Coat Technol, vol. 451, Dec. 2022, doi: 10.1016/j.surfcoat.2022.128872 | spa |
dc.relation.references | B. Meylan, I. Calderon, and K. Wasmer, “Optimization of Process Parameters for the Laser Polishing of Hardened Tool Steel,” Materials, vol. 15, no. 21, pp. 1–21, Nov. 2022, doi: 10.3390/ma15217746 | spa |
dc.relation.references | J. Xu, P. Zou, X. Wang, A. Wang, and L. Liu, “Investigation into the laser polishing of an austenitic stainless steel,” Opt Laser Technol, vol. 163, Aug. 2023, doi: 10.1016/j.optlastec.2023.109378 | spa |
dc.relation.references | A. Lamikiz, J. A. Sa´nchezsa´nchez, L. N. Lo´pezlo´pez De Lacalle, and J. L. Arana, “Laser polishing of parts built up by selective laser sintering,” Int J Mach Tools Manuf, vol. 47, pp. 2040–2050, Jan. 2007, doi: 10.1016/j.ijmachtools.2007.01.013 | spa |
dc.relation.references | A. Gisario, M. Barletta, and F. Veniali, “Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 120, no. 3–4. Springer Science and Business Media Deutschland GmbH, pp. 1433–1472, May 01, 2022. doi: 10.1007/s00170-022-08840-x | spa |
dc.relation.references | S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, and M. Beard, “Laser polishing of selective laser melted components,” Int J Mach Tools Manuf, vol. 95, 2015, doi: 10.1016/j.ijmachtools.2015.05.002 | spa |
dc.relation.references | J. Dos Santos Solheid, H. J. Seifert, and W. Pfleging, “Laser surface modification and polishing of additive manufactured metallic parts,” Procedia CIRP, vol. 74, pp. 280–284, Mar. 2018, doi: 10.1016/J.PROCIR.2018.08.111 | spa |
dc.relation.references | G. Rotella, L. Filice, and F. Micari, “Improving surface integrity of additively manufactured GP1 stainless steel by roller burnishing,” CIRP Annals, vol. 69, no. 1, pp. 513–516, 2020, doi: 10.1016/j.cirp.2020.04.015 | spa |
dc.relation.references | C. Sanz, V. Navas Garcia, O. Gonzalo, and G. Vansteenkisteb, “Study of surface integrity of rapid manufacturing parts after different thermal and finishing treatments,” in Procedia Engineering, Elsevier Ltd, 2011, pp. 294–299. doi: 10.1016/j.proeng.2011.11.115 | spa |
dc.relation.references | N. Jouini, P. Revel, and G. Thoquenne, “Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings,” Materials, vol. 15, no. 10, May 2022, doi: 10.3390/ma15103710 | spa |
dc.relation.references | N. Khanna, K. Zadafiya, T. Patel, Y. Kaynak, R. A. Rahman Rashid, and A. Vafadar, “Review on machining of additively manufactured nickel and titanium alloys,” Journal of Materials Research and Technology, vol. 15. Elsevier Editora Ltda, pp. 3192–3221, Nov. 01, 2021. doi: 10.1016/j.jmrt.2021.09.088 | spa |
dc.relation.references | A. Behjat, E. Lannunziata, E. Gadalinska, L. Iuliano, and A. Saboori, “Improving the surface quality and mechanical properties of additively manufactured AISI 316L stainless steel by different surface post-treatment,” in Procedia CIRP, Italy: Elsevier B.V., 2023, pp. 771–776. doi: 10.1016/j.procir.2023.06.132 | spa |
dc.relation.references | A. Bechikh, O. Klinkova, Y. Maalej, I. Tawfiq, and R. Nasri, “Sandblasting parameter variation effect on galvanized steel surface chemical composition, roughness and free energy,” Int J Adhes Adhes, vol. 102, Oct. 2020, doi: 10.1016/j.ijadhadh.2020.102653 | spa |
dc.relation.references | P. Osak, J. Maszybrocka, M. Zubko, J. Rak, S. Bogunia, and B. Łosiewicz, “Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications,” Materials, vol. 14, no. 24, Dec. 2021, doi: 10.3390/ma14247536 | spa |
dc.relation.references | L. Engelking, D. Schroepfer, T. Kannengiesser, A. Eissel, K. Treutler, and V. Wesling, “Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties,” Welding in the World, vol. 67, no. 4, pp. 1059–1066, Apr. 2023, doi: 10.1007/s40194-022-01438-7 | spa |
dc.relation.references | J. Li, H. Wu, H. Liu, and D. Zuo, “Surface and property characterization of selective laser-melted Ti-6Al-4V alloy after laser polishing,” International Journal of Advanced Manufacturing Technology, vol. 128, pp. 703–714, Jul. 2023, doi: 10.1007/s00170-023-11880-6 | spa |
dc.relation.references | J. Kumstel and B. Kirsch, “Lasers in Manufacturing Conference 2013 Polishing titanium-and nickel-based alloys using cw-laser radiation,” Phys Procedia, vol. 41, no. 1, pp. 362–371, 2013, doi: 10.1016/j.phpro.2013.03.089 | spa |
dc.relation.references | International Standard, “ISO 25178-606.,” Switzerland, Jun. 2015 | spa |
dc.relation.references | “Roughness Parameter,” CIRP Encyclopedia of Production Engineering, vol. 1. Springer, Berlin, Heidelberg, pp. 1497–1497, 2019. doi: 10.1007/978-3-662-53120-4_300588 | spa |
dc.relation.references | W. Group, “3D Roughness Metrology,” 2020. Accessed: Nov. 07, 2023. | spa |
dc.relation.references | I. N. Bobrovskij, “How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2018. doi: 10.1088/1757-899X/302/1/012066. | spa |
dc.relation.references | H. Johnson, “Surface roughness,” 2001. doi: 10.1142/9781860945434_0014. | spa |
dc.relation.references | J. J. Lifton and T. Liu, “Evaluation of the standard measurement uncertainty due to the ISO50 surface determination method for dimensional computed tomography,” Precis Eng, vol. 61, pp. 82–92, 2020, doi: 10.1016/j.precisioneng.2019.10.004 | spa |
dc.relation.references | W. Grzesik, “Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art,” J Mater Eng Perform, vol. 25, no. 10, pp. 4460–4468, 2016, doi: 10.1007/s11665-016-2293-z | spa |
dc.relation.references | C. J. Cortés-Rodríguez, F. C. Herreño Cuestas, and I. Z. Areque-Salazar, Medición de Rugosidad Superficial 3D, 1st ed., vol. 1. Kassel: Kassel University press, 2019. | spa |
dc.relation.references | L. Bertini, F. Bucchi, F. Frendo, M. Moda, and B. D. Monelli, “Residual stress prediction in selective laser melting: A critical review of simulation strategies,” International Journal of Advanced Manufacturing Technology, vol. 105, no. 1–4, pp. 609–636, Nov. 2019, doi: 10.1007/s00170-019-04091-5 | spa |
dc.relation.references | M. Shen and F. Fang, “Two-step electropolishing of internal surfaces of 316L stainless steel made by laser-based powder bed fusion,” J Manuf Process, vol. 89, pp. 298–313, Mar. 2023, doi: 10.1016/j.jmapro.2023.01.052 | spa |
dc.relation.references | J. de Krijger, C. Rans, B. Van Hooreweder, K. Lietaert, B. Pouran, and A. A. Zadpoor, “Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading,” J Mech Behav Biomed Mater, vol. 70, pp. 7–16, Jun. 2017, doi: 10.1016/j.jmbbm.2016.11.022 | spa |
dc.relation.references | E. Macherauch, Introduction To Residual Stress., vol. 4. Pergamon Books Ltd, 1987. doi: 10.1016/b978-0-08-034062-3.50011-2 | spa |
dc.relation.references | G. S. Schajer, Practical residual stress measurement methods, 2013th ed. United Kingdom: Wiley, 2013. [Online]. Available: www.wiley.com. | spa |
dc.relation.references | G.Totten, M.Howes, and T.Inoue, Handbook of residual stress and deformation of steel, vol. 1. United States of America: ASTM Internationañ, 2002. doi: 10.1002/9781118402832. | spa |
dc.relation.references | G. Totten, M. Howes, and T. Inoue, Handbook of residual stress and deformation steel. 2002. | spa |
dc.relation.references | W. Schneller, M. Leitner, S. Pomberger, S. Springer, F. Beter, and F. Grün, “Effect of post treatment on the microstructure, surface roughness and residual stress regarding the fatigue strength of selectively laser melted AlSi10Mg structures,” Journal of Manufacturing and Materials Processing, vol. 3, no. 4, Oct. 2019, doi: 10.3390/jmmp3040089. | spa |
dc.relation.references | G. S. Schajer, Practical Residual Stress Measurement Methods, 1st ed., vol. 1. Vancouver, Canada: Wiley, 2013. doi: 10.1002/9781118402832 | spa |
dc.relation.references | A. Samanta et al., “Bio-tribological response of duplex surface engineered SS316L for hip-implant application,” Appl Surf Sci, vol. 507, no. 1, pp. 145009–145027, Dec. 2020, doi: 10.1016/j.apsusc.2019.145009 | spa |
dc.relation.references | K. Moghadasi et al., “A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties,” Journal of Materials Research and Technology, vol. 17, no. 1, pp. 1054–1121, Mar. 2022, doi: 10.1016/j.jmrt.2022.01.050 | spa |
dc.relation.references | M. Tang, L. Zhang, and N. Zhang, “Microstructural evolution, mechanical and tribological properties of TiC/Ti6Al4V composites with unique microstructure prepared by SLM,” Materials Science and Engineering A, vol. 814, no. 2, pp. 141–187, Mar. 2021, doi: 10.1016/j.msea.2021.141187 | spa |
dc.relation.references | D. Svetlizky et al., “Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications,” Materials Today, vol. 49, no. 1, pp. 271–295, Oct. 2021, doi: 10.1016/j.mattod.2021.03.020 | spa |
dc.relation.references | SLM SOLUTIONS, “SLM® Medical and Dental Applications Metal Additive Manufacturing Solutions for Healthcare,” Nikon SLM. Accessed: Mar. 02, 2024. [Online]. Available: https://www.slm-solutions.com/products-and-solutions/machines/slm-500/ | spa |
dc.relation.references | E. Wycisk et al., “Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties,” Phys Procedia, vol. 56, no. November 2018, pp. 371–378, 2014, doi: 10.1016/j.ijfatigue.2018.12.029 | spa |
dc.relation.references | M. A. Baciu, E. R. Baciu, C. Bejinariu, S. L. Toma, A. Danila, and C. Baciu, “Influence of Selective Laser Melting Processing Parameters of Co-Cr-W Powders on the Roughness of Exterior Surfaces,” IOP Conf Ser Mater Sci Eng, vol. 374, no. 1, pp. 12010–12016, 2018, doi: 10.1088/1757-899X/374/1/012010 | spa |
dc.relation.references | S. Milton, A. Morandeau, F. Chalon, and R. Leroy, “Influence of Finish Machining on the Surface Integrity of Ti6Al4V Produced by Selective Laser Melting,” Procedia CIRP, vol. 45, pp. 127–130, 2016, doi: 10.1016/j.procir.2016.02.340 | spa |
dc.relation.references | N. Alharbi, “Shot peening of selective laser-melted SS316L with ultrasonic frequency,” International Journal of Advanced Manufacturing Technology, vol. 1, no. 1, pp. 1–15, Dec. 2021, doi: 10.1007/s00170-021-08398-0 | spa |
dc.relation.references | Y. Kaynak and E. Tascioglu, “Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing,” Progress in Additive Manufacturing, vol. 5, no. 2, pp. 221–234, Oct. 2020, doi: 10.1007/s40964-019-00099-1 | spa |
dc.relation.references | A. W. Yuda, S. Supriadi, and A. S. Saragih, “Surface modification of Ti-alloy based bone implant by sandblasting,” in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2019, pp. 1–9. doi: 10.1063/1.5139335 | spa |
dc.relation.references | M. Chimmat and D. Srinivasan, “Understanding the Residual Stress in DMLS CoCrMo and SS316L using X-ray diffraction,” in Procedia Structural Integrity, Elsevier B.V., 2019, pp. 746–757. doi: 10.1016/j.prostr.2019.05.093 | spa |
dc.relation.references | Scheftner.dental, “Starbond Easy Powder 30 - Scheftner Dental Alloys,” Sheftmer.dental/starbond. Accessed: Mar. 07, 2023. [Online]. Available: https://scheftner.dental/starbond-easy-powder-30-en.html | spa |
dc.relation.references | Bruker alicona, “Dimensional accuracy and surface finish measurement,” Dimensional accuracy and surface finish measurement. | spa |
dc.relation.references | Sisma/mysint100, “MYSINT100, Laser Metal Fusion metal 3D printing technology,” www.sisma.com/en/products/mysint100. Accessed: Feb. 01, 2023. [Online]. Available: https://www.sisma.com/en/products/mysint100/ | spa |
dc.relation.references | S. V. belikov D.S Popkova, I M Ruslanov, A Y Zhilyakov, “The effect of the selective laser melting mode on second phases precipitation in 316L steel during subsequent heat treatment,” IOP Conference series: Material Science and Engineering, pp. 1–8, Oct. 2021, doi: 10.1088/1757-899X/1029/1/012053. | spa |
dc.relation.references | Nabertherm, “Dental,” NAbertherm. Accessed: Jul. 25, 2023. [Online]. Available: https://nabertherm.com/es/productos/dental | spa |
dc.relation.references | Nabertherm, “Sintering Cobalt-Chromium | Nabertherm.” Accessed: May 22, 2024. [Online]. Available: https://nabertherm.com/en/products/dental/sintering-cobalt-chromium | spa |
dc.relation.references | Renfert, “Basic eco | Renfert,” Renfert making work easy. Accessed: Jul. 25, 2023. [Online]. Available: https://www.renfert.com/int-es/PM/Productos/Aparatos/Arenadoras/Basic-eco | spa |
dc.relation.references | imes-icore, “Tools & Materials,” Dental & medial solutions. Accessed: Aug. 10, 2023. [Online]. Available: https://www.imes-icore.com/dental/tools-materials | spa |
dc.relation.references | “SUS & Titanium endmill | End mill | Products | JJTOOLS.” Accessed: Aug. 10, 2023 | spa |
dc.relation.references | tff, “Schweißtechnik - Fachgebiet Trennende und Fügende Fertigungsverfahren - Universität Kassel.” Accessed: May 22, 2024. [Online]. Available: https://www.tff-kassel.de/forschung/schweisstechnik/ | spa |
dc.relation.references | I. O. Aver’yanova, D. Yu. Bogomolov, and V. V. Poroshin, “ISO 25178 standard for three-dimensional parametric assessment of surface texture,” Russian Engineering Research, vol. 37, no. 6, pp. 513–516, 2017, doi: 10.3103/S1068798X17060053 | spa |
dc.relation.references | Universidad Nacional de Colombia, “lmdp - Home.” Accessed: May 23, 2024. [Online]. Available: https://ingenieria.unal.edu.co/metrodim/ | spa |
dc.relation.references | Minitab, “Two-step optimization for Taguchi designs.” | spa |
dc.relation.references | T. Fearn, “Taguchi Methods,” NIR news, vol. 12, no. 1, pp. 8–9, 2001, doi: 10.1255/nirn.597 | spa |
dc.relation.references | N.-P. Fernando, R.-L. A. Javier, P.- Pacheco, Y. Verenice, and T. Nacional De México, “Diseños ortogonales de Taguchi fraccionados Fractional Taguchi orthogonal designs Tapia-Esquivias Moises”, doi: 10.22201/fi.25940732e.2020.21n2.011 | spa |
dc.relation.references | Minitab, “Diseños ortogonales de Taguchi fraccionados,” support minitab | spa |
dc.relation.references | T. Grabowski, I. Ara, J. Thorpe, and F. Azarmi, “Investigation of Microstructural Characteristics of Cobalt Chromium Molybdenum Additively Manufactured Using Laser Directed Energy Deposition Technology,” Metall Mater Trans A Phys Metall Mater Sci, vol. 54, no. A, pp. 1–15, Oct. 2023, doi: 10.1007/s11661-023-07154-1 | spa |
dc.relation.references | Universität Kassel, “Zentrum für Randschichtanalytik und Technik (ZerTech),” Universität Kassel Machinenbau. Accessed: Mar. 12, 2024. [Online]. Available: https://www.uni-kassel.de/maschinenbau/institute/werkstofftechnik/fachgebiete/metallische-werkstoffe/zertech | spa |
dc.relation.references | Kassel University, “Center for Boundary Layer Analysis and Technology (ZerTech).” Accessed: May 23, 2024. [Online]. Available: https://www.uni-kassel.de/maschinenbau/en/institute/institute-of-materials-engineering/departments/metallic-materials/zertech | spa |
dc.relation.references | B. Śmielak, L. Klimek, and K. Krześniak, “Effect of Sandblasting Parameters and the Type and Hardness of the Material on the Number of Embedded Al2O3 Grains,” Materials, vol. 16, no. 13, p. 4783, Jul. 2023, Doi: 10.3390/ma16134783 | spa |
dc.relation.references | F. Calignano, V. Mercurio, G. Rizza, and M. Galati, “Investigation of surface shot blasting of AlSi10Mg and Ti6Al4V components produced by powder bed fusion technologies,” 2022, Doi: 10.1016/j.precisioneng.2022.07.008 | spa |
dc.relation.references | R. Melentiev, C. Kang, G. Shen, and F. Fang, “Study on surface roughness generated by micro-blasting on Co-Cr-Mo bio-implant,” Wear, vol. 428–429, pp. 111–126, Jun. 2019, Doi: 10.1016/j.wear.2019.03.005 | spa |
dc.relation.references | S. Amon, A. Jobst, M. Merklein, and N. Hanenkamp, “Influence of dry ice blasting process properties on surface roughness and residual stresses of machined and additive manufactured workpieces,” in Procedia CIRP, Elsevier B.V., 2022, pp. 601–606. Doi: 10.1016/j.procir.2022.03.095 | spa |
dc.relation.references | P. Jaritngam, V. Tangwarodomnukun, H. Qi, and C. Dumkum, “Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy,” Opt Laser Technol, vol. 126, pp. 106102–106118, Feb. 2020, Doi: 10.1016/j.optlastec.2020.106102 | spa |
dc.relation.references | K. C. Yung et al., “Laser polishing of additive manufactured CoCr components for controlling their wettability characteristics,” Surf Coat Technol, vol. 351, pp. 89–98, Oct. 2018, Doi: 10.1016/j.surfcoat.2018.07.030 | spa |
dc.relation.references | K. C. Yung, T. Y. Xiao, H. S. Choy, W. J. Wang, and Z. X. Cai, “Laser polishing of additive manufactured CoCr alloy components with complex surface geometry,” J Mater Process Technol, vol. 262, pp. 53–64, Dec. 2018, Doi: 10.1016/j.jmatprotec.2018.06.019 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 670 - Manufactura | spa |
dc.subject.ddc | 680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos | spa |
dc.subject.lemb | IMPLANTES ARTIFICIALES | spa |
dc.subject.lemb | Implants, artificial | eng |
dc.subject.lemb | MATERIALES BIOMEDICOS | spa |
dc.subject.lemb | Biomedical materials | eng |
dc.subject.lemb | PROCESOS DE MANUFACTURA | spa |
dc.subject.lemb | Manufacturing processes | eng |
dc.subject.lemb | PULIMENTO Y ACABADO | spa |
dc.subject.lemb | Finishes and finishing | eng |
dc.subject.lemb | ENDURECIMIENTO SUPERFICIAL | spa |
dc.subject.lemb | Case hardening | eng |
dc.subject.lemb | GRANALLADO | spa |
dc.subject.lemb | Shot blasting | eng |
dc.subject.proposal | Selective Laser Melting | eng |
dc.subject.proposal | Bearing Surfaces | eng |
dc.subject.proposal | Post-processing | eng |
dc.subject.proposal | Surface Roughness | eng |
dc.subject.proposal | Pares de Fricción | spa |
dc.subject.proposal | Posprocesamiento | spa |
dc.subject.proposal | Rugosidad superficial | spa |
dc.title | Parameters of additive manufacturing and post-processing surface finishing in cobalt-chromium alloy joint implants bearing surfaces manufactured using Selective Laser Melting | eng |
dc.title.translated | Parámetros de manufactura aditiva y posproceso en la elaboración de pares de fricción de implantes articulares en aleación de cobalto-cromo mediante Selective Laser Melting | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030570180.2025.pdf
- Tamaño:
- 7.05 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: