Parameters of additive manufacturing and post-processing surface finishing in cobalt-chromium alloy joint implants bearing surfaces manufactured using Selective Laser Melting

dc.contributor.advisorCortés Rodríguez, Carlos Juliospa
dc.contributor.authorCalvo Correa, Martha Patriciaspa
dc.contributor.orcidCalvo Correa, Martha Patricia [0009000224778872]spa
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2025-02-18T12:44:22Z
dc.date.available2025-02-18T12:44:22Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografías, tablas
dc.description.abstractLas superficies de los implantes articulares, conocidas como superficies de pares de fricción, son cruciales para la movilidad y funcionamiento adecuado de los implantes. Estas superficies deben tener un acabado específico para garantizar el funcionamiento óptimo y evitar fallas prematuras. La manufactura mediante Selective Laser Melting (SLM) permite la creación de implantes individualizados de gran complejidad y geometrías en un tiempo y costo menores que las técnicas tradicionales. Sin embargo, debido a la naturaleza del proceso, se requiere el uso de postprocesos para obtener las superficies de pares de fricción necesarias. Esta investigación evaluó los parámetros de manufactura para SLM y tres diferentes postprocesos: micro mecanizado, micro granallado y laser polishing. Se determinaron los parámetros de posprocesamiento que permiten la adecuada manufactura de las superficies de pares de fricción. Se encontró que la mejor manera de manufacturar estas superficies es emplear parámetros de manufactura en SLM que proporcionen una rugosidad homogénea en toda la superficie, seguido de un posproceso de acabado superficial mediante laser polishing. Con esta combinación de técnicas, se lograron los valores de rugosidad superficial recomendados para garantizar la calidad y funcionalidad de las superficies en pares de fricción de implantes articulares fabricados mediante SLM (Texto tomado de la fuente).spa
dc.description.abstractArticular implant surfaces, referred to as bearing surfaces, are fundamental for ensuring the optimal mobility and functionality of implants. These surfaces require specific surface finishing to prevent premature failure and ensure the desired performance. Selective Laser Melting (SLM) manufacturing enables the creation of highly intricate implants at reduced time and cost compared to traditional methods. However, post-processing is essential to achieve the required bearing surfaces. This study assessed manufacturing parameters for SLM and three post-processing methods: micro-machining, micro-sandblasting, and laser polishing. Post-processing parameters conducive to proper bearing surface manufacturing were identified. The optimal approach involves using SLM manufacturing parameters to achieve homogeneous roughness across the entire surface, followed by laser polishing with parameters of 600 W laser power, 0.05 mm hatch distance, and 5.5 /min scanning speed. This method effectively ensures the quality and functionality of friction pair surfaces in joint implants produced via SLM.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería – Ciencia y Tecnología de Materialesspa
dc.description.researchareaBiomateriales y fabricación médicaspa
dc.format.extentxvii, 142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87510
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesStandard Specification for Total Hip Joint Prosthesis and Hip Endoprosthesis Bearing Surfaces Made of Metallic, Ceramic, and Polymeric Materials 1, doi: 10.1520/F2033-20spa
dc.relation.referencesT. Wright, T. Sculco, E. Su, D. Padgett, and S. Haas, “Joint Replacement: Implant Bearing Surface Materials | HSS.” Accessed: Aug. 25, 2022. [Online]. Available: https://www.hss.edu/conditions_joint-replacement-implant-bearing-surface-materials-history-effectiveness-future.aspspa
dc.relation.referencesH. S. Jang, S. S. Kang, and B. A. Jang, “Determination of Joint Roughness Coefficients Using Roughness Parameters,” Rock Mech Rock Eng, vol. 47, no. 6, pp. 2061–2073, Nov. 2014, doi: 10.1007/S00603-013-0535-Z/METRICSspa
dc.relation.referencesO. Linins, J. Krizbergs, and I. Boiko, “Wear Estimation Using 3D Surface Roughness Parameters,” Key Eng Mater, vol. 527, pp. 167–172, 2013, doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.527.167spa
dc.relation.referencesL. Vepsäläinen, P. Stenberg, P. Pääkkönen, M. Kuittinen, M. Suvanto, and T. A. Pakkanen, “Roughness analysis for textured surfaces over several orders of magnitudes,” Appl Surf Sci, vol. 284, pp. 222–228, Jul. 2013, doi: 10.1016/j.apsusc.2013.07.085spa
dc.relation.referencesE. Group, “A Focus on SLM and SLS Methods in 3D Printing.,” ASTM. Accessed: May 18, 2021spa
dc.relation.referencesC. Y. Yap et al., “Review of selective laser melting: Materials and applications,” Appl Phys Rev, vol. 2, no. 4, pp. 1–16, Dec. 2015, doi: 10.1063/1.4935926spa
dc.relation.referencesA. K. Singla et al., “Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments,” J Manuf Process, vol. 64, no. 1, pp. 161–187, Jan. 2021, doi: 10.1016/j.jmapro.2021.01.009spa
dc.relation.referencesÁ. Salgado Rodrigo, A. Núñez García Coordinador, and J. Ortega González, “CAPÍTULO 21-IMPLANTES ARTICULARES: PRINCIPIOS GENERALES. PARES DE FRICCION,” in Manual de cirugía ortopédica y traumatología, 2nd ed., vol. 1, Editorial medica panamericana, Ed., España: Editorial médica panamericana, 2009, pp. 1–251spa
dc.relation.referencesDuque Morán, Navarro Navarro, García Navarro, and Caballero Ruiz, “Pares de fricción en la artroplastia total de cadera (ATC): Parámetros tribológicos.,” Canarias Médica y Quírurgica, vol. 9, no. 25, pp. 1–11, May 2011spa
dc.relation.referencesC. V. R. Meenakshi, K. Shivendra Kumar, and S. V Ramana, “Tribological aspects on Human Knee Joint- A review,” Mater Today Proc, vol. 22, no. 1, pp. 3100–3105, 2019, Accessed: Aug. 28, 2022. [Online]. Available: www.sciencedirect.comspa
dc.relation.referencesY. Wei et al., “Micro selective laser melting of SS316L: Single Tracks, Defects, microstructures and Thermal/Mechanical properties,” Opt Laser Technol, vol. 145, no. 1, pp. 107469–107481, Aug. 2022, doi: 10.1016/j.optlastec.2021.107469spa
dc.relation.referencesE. Maleki, S. Bagherifard, M. Bandini, and M. Guagliano, “Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities,” Additive Manufacturing, vol. 37. Elsevier B.V., Jan. 01, 2021. doi: 10.1016/j.addma.2020.101619spa
dc.relation.referencesR. K. Enneti, R. Morgan, and S. V Atre, “Effect of process parameters on the Selective Laser Melting (SLM) of tungsten,” International journal of refractory metals y hard materials, vol. 71, no. 1, pp. 315–319, Dec. 2017, doi: 10.1016/j.ijrmhm.2017.11.035spa
dc.relation.referencespublishing series in B. number 94 Woodhead, Surface coating and modification of metallic biomaterials, 1st ed., vol. 1, no. 1. Cambridge: Elservier, 2015spa
dc.relation.referencesT. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials, vol. 25, no. 19, pp. 4731–4739, Dec. 2004, doi: 10.1016/j.biomaterials.2003.12.002spa
dc.relation.referencesM. Elsayed, M. Ghazy, Y. Youssef, and K. Essa, “Optimization of SLM Process Parameters for Ti6Al4V Medical Implants,” Birmingham, 2018. doi: 10.1108/RPJ-05-2018-0112spa
dc.relation.referencesJ. J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties,” Annual Review of Materials Research, vol. 46, no. 1. Case Western Reserve University, Cleveland, pp. 151–186, Apr. 16, 2016. doi: 10.1146/annurev-matsci-070115-032024spa
dc.relation.referencesA. Thompson, N. Senin, C. Giusca, and R. Leach, “Topography of selectively laser melted surfaces: A comparison of different measurement methods,” CIRP Ann Manuf Technol, vol. 66, no. 1, pp. 543–546, Apr. 2017, doi: 10.1016/j.cirp.2017.04.075spa
dc.relation.referencesM. Boutaous, X. Liu, D. A. Siginer, and S. Xin, “Balling phenomenon in metallic laser based 3D printing process,” International Journal of Thermal Sciences, vol. 167, no. 1, pp. 107011–1070211, Sep. 2021, doi: 10.1016/j.ijthermalsci.2021.107011spa
dc.relation.referencesI. Koutiri, E. Pessard, P. Peyre, O. Amlou, and T. De Terris, “Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts,” Journal of materials Processing Tech, vol. 255, no. 1, pp. 536–546, Jun. 2018, doi: 10.1016/j.jmatprotec.2017.12.043spa
dc.relation.referencesA. W. Hashmi et al., “A comprehensive review on surface post-treatments for freeform surfaces of bio-implants,” Journal of Materials Research and Technology, vol. 23, no. 1, pp. 4866–4908, Mar. 2023, doi: 10.1016/j.jmrt.2023.02.007spa
dc.relation.referencesX. Yan et al., “Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625,” Journal of materials processing tech., vol. 288, no. 1, pp. 116878–116889, Aug. 2020, doi: 10.1016/j.jmatprotec.2020.116878spa
dc.relation.referencesY. Du, T. Mukherjee, and T. DebRoy, “Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects,” Appl Mater Today, vol. 24, no. 1, pp. 101123–101135, Sep. 2021, doi: 10.1016/j.apmt.2021.101123spa
dc.relation.referencesMarcello Lappa, “Numerical Techniques and Insights into Physics,” in Fluids, Materials and Microgravity, First., vol. 1, Elsevier Science 2004, 2004, pp. 1–538spa
dc.relation.referencesI. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, “Hierarchical design principles of selective laser melting for high quality metallic objects,” Addit Manuf, vol. 7, no. 1, pp. 45–56, Dec. 2015, doi: 10.1016/j.addma.2014.12.007spa
dc.relation.referencesR. Tadmor, “Marangoni flow revisited,” J Colloid Interface Sci, vol. 332, no. 1, pp. 451–454, Dec. 2009, doi: 10.1016/j.jcis.2008.12.047spa
dc.relation.referencesASTM International, “Standard Guide for Additive Manufacturing-Design-Post-Processing for Metal PBF-LB,” Apr. 2022. doi: 10.1520/F3530-22spa
dc.relation.referencesZ.-C. Fang, Z.-L. Wu, C.-G. Huang, and C.-W. Wu, “Review on residual stress in selective laser melting additive manufacturing of alloy parts,” Opt Laser Technol, vol. 129, no. 1, pp. 106283–106298, Dec. 2020, doi: 10.1016/j.optlastec.2020.106283spa
dc.relation.referencesL. Mugwagwa, “Residual stresses and distortions in selective laser melting-a review,” in 17th International conference of the Rapid Product Development Association of South Africa, ResearchGate, Ed., South Africa: ResearchGate, Nov. 2016, pp. 1–13. [Online]. Available: https://www.researchgate.net/publication/318014975spa
dc.relation.referencesA. Majeed, A. Ahmed, A. Salam, and M. Z. Sheikh, “Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing.,” International journal of lighweight materials and manufacture, vol. 2, no. 1, pp. 288–295, Aug. 2019, doi: 10.1016/j.ijlmm.2019.08.001spa
dc.relation.referencesY. Eyzat, M. Chemkhi, Q. Portella, J. Gardan, J. Remond, and D. Retraint, “Characterization and Mechanical Properties of As-Built SLM Ti-6Al-4V subjected to surface mechanical post-treatment,” Procedia CIRP, vol. 81, pp. 1225–1229, 2019, doi: 10.1016/j.procir.2019.03.298spa
dc.relation.referencesZ. Wang, Z. Xiao, Y. Tse, C. Huang, and W. Zhang, “Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy,” Opt Laser Technol, vol. 112, pp. 159–167, Nov. 2018, doi: 10.1016/j.optlastec.2018.11.014spa
dc.relation.referencesM. Ghasempour-Mouziraji, J. Lagarinhos, D. Afonso, and R. Alves De Sousa, “A review study on metal powder materials and processing parameters in Laser Metal Deposition,” Opt Laser Technol, vol. 170, no. 1, pp. 110226–110238, Nov. 2024, doi: 10.1016/j.optlastec.2023.110226spa
dc.relation.referencesJ. J. Babu, M. Mehrpouya, T. C. Pijper, G. Willemsen, and T. Vaneker, “An Experimental Study of Downfacing Surfaces in Selective Laser Melting,” Adv Eng Mater, vol. 24, no. 8, pp. 1–11, 2022, doi: 10.1002/adem.202101562spa
dc.relation.referencesA. Rezaei et al., “Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test,” Mater Charact, vol. 162, no. 1, pp. 110200–110213, Feb. 2020, doi: 10.1016/j.matchar.2020.110200spa
dc.relation.referencesT. Özel, A. Altay, B. Kaftanoglu, R. Leach, N. Senin, and A. Donmez, “Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 142, no. 1, Jan. 2020, doi: 10.1115/1.4045415spa
dc.relation.referencesX. Zhou et al., “Textures formed in a CoCrMo alloy by selective laser melting,” J Alloys Compd, vol. 631, no. 1, pp. 153–164, Jan. 2015, doi: 10.1016/j.jallcom.2015.01.096spa
dc.relation.referencesJ. Pegues, M. Roach, R. Scott Williamson, and N. Shamsaei, “Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V,” Int J Fatigue, vol. 116, pp. 543–552, Apr. 2018, doi: 10.1016/j.ijfatigue.2018.07.013spa
dc.relation.referencesD. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, Lamikiz, and G. I. Prokopenko, “Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress,” Surf Coat Technol, vol. 381, pp. 125–136, Aug. 2020, doi: 10.1016/j.surfcoat.2019.125136spa
dc.relation.referencesC. D. Clement, J. Masson, and A. S. Kabir, “Effects of Heat Treatment on Microstructure and Mechanical Properties of AlSi10Mg Fabricated by Selective Laser Melting Process,” Journal of Manufacturing and Materials Processing, vol. 6, no. 3, Jun. 2022, doi: 10.3390/jmmp6030052spa
dc.relation.referencesB. Proaño et al., “Annealing effects on fracture process and tensile strength of non-combustible Mg products fabricated by selective laser melting,” Theoretical and Applied Fracture Mechanics, vol. 120, pp. 103411–103122, Aug. 2022, doi: 10.1016/j.tafmec.2022.103411spa
dc.relation.referencesFelicia Fashanu, Denis Marcellin, and Barbara Linke, “REVIEW OF SURFACE FINISHING OF ADDITIVELY MANUFACTURED METAL IMPLANTS,” Proceedings of the ASME 2020, 15th , vol. 1, pp. 1–9, Sep. 2020spa
dc.relation.referencesA. Rudawska, I. Danczak, M. Müller, and P. Valasek, “The effect of sandblasting on surface properties for adhesion,” International jpurnal of adhesion and adhesives , vol. 70, pp. 176–190, Jun. 2016, doi: 10.1016/j.ijadhadh.2016.06.010spa
dc.relation.referencesZ. Yu et al., “Influence of micro sandblasting on the surface integrity of the AlTiN-coated tools,” International Journal of Advanced Manufacturing Technology, vol. 120, no. 1–2, pp. 1359–1372, May 2022, doi: 10.1007/s00170-022-08890-1spa
dc.relation.referencesJ. P. Davim, Surface integrity in machining, 1st ed., vol. 1. Portugal: Springer London, 2010. doi: 10.1007/978-1-84882-874-2spa
dc.relation.referencesR. Saravanan, R. Hamidon, N. M. Murad, and Z. A. Zailani, “Machining of Cobalt Chromium Molybdenum (CoCrMo) Alloys: A Review,” in Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2021, pp. 413–424. doi: 10.1007/978-981-16-0866-7_36spa
dc.relation.referencesJ. D. Miller, O. R. Tutunea-Fatan, and E. V. Bordatchev, “Experimental Analysis of Laser and Scanner Control Parameters During Laser Polishing of H13 Steel,” Procedia Manuf, vol. 10, pp. 720–729, 2017, doi: 10.1016/j.promfg.2017.07.029spa
dc.relation.referencesB. Richter, T. Radel, and F. E. Pfefferkorn, “Sensitivity of surface roughness to laser parameters used for polishing additively manufactured Co-Cr alloy,” Surf Coat Technol, vol. 451, Dec. 2022, doi: 10.1016/j.surfcoat.2022.128872spa
dc.relation.referencesB. Meylan, I. Calderon, and K. Wasmer, “Optimization of Process Parameters for the Laser Polishing of Hardened Tool Steel,” Materials, vol. 15, no. 21, pp. 1–21, Nov. 2022, doi: 10.3390/ma15217746spa
dc.relation.referencesJ. Xu, P. Zou, X. Wang, A. Wang, and L. Liu, “Investigation into the laser polishing of an austenitic stainless steel,” Opt Laser Technol, vol. 163, Aug. 2023, doi: 10.1016/j.optlastec.2023.109378spa
dc.relation.referencesA. Lamikiz, J. A. Sa´nchezsa´nchez, L. N. Lo´pezlo´pez De Lacalle, and J. L. Arana, “Laser polishing of parts built up by selective laser sintering,” Int J Mach Tools Manuf, vol. 47, pp. 2040–2050, Jan. 2007, doi: 10.1016/j.ijmachtools.2007.01.013spa
dc.relation.referencesA. Gisario, M. Barletta, and F. Veniali, “Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 120, no. 3–4. Springer Science and Business Media Deutschland GmbH, pp. 1433–1472, May 01, 2022. doi: 10.1007/s00170-022-08840-xspa
dc.relation.referencesS. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, and M. Beard, “Laser polishing of selective laser melted components,” Int J Mach Tools Manuf, vol. 95, 2015, doi: 10.1016/j.ijmachtools.2015.05.002spa
dc.relation.referencesJ. Dos Santos Solheid, H. J. Seifert, and W. Pfleging, “Laser surface modification and polishing of additive manufactured metallic parts,” Procedia CIRP, vol. 74, pp. 280–284, Mar. 2018, doi: 10.1016/J.PROCIR.2018.08.111spa
dc.relation.referencesG. Rotella, L. Filice, and F. Micari, “Improving surface integrity of additively manufactured GP1 stainless steel by roller burnishing,” CIRP Annals, vol. 69, no. 1, pp. 513–516, 2020, doi: 10.1016/j.cirp.2020.04.015spa
dc.relation.referencesC. Sanz, V. Navas Garcia, O. Gonzalo, and G. Vansteenkisteb, “Study of surface integrity of rapid manufacturing parts after different thermal and finishing treatments,” in Procedia Engineering, Elsevier Ltd, 2011, pp. 294–299. doi: 10.1016/j.proeng.2011.11.115spa
dc.relation.referencesN. Jouini, P. Revel, and G. Thoquenne, “Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings,” Materials, vol. 15, no. 10, May 2022, doi: 10.3390/ma15103710spa
dc.relation.referencesN. Khanna, K. Zadafiya, T. Patel, Y. Kaynak, R. A. Rahman Rashid, and A. Vafadar, “Review on machining of additively manufactured nickel and titanium alloys,” Journal of Materials Research and Technology, vol. 15. Elsevier Editora Ltda, pp. 3192–3221, Nov. 01, 2021. doi: 10.1016/j.jmrt.2021.09.088spa
dc.relation.referencesA. Behjat, E. Lannunziata, E. Gadalinska, L. Iuliano, and A. Saboori, “Improving the surface quality and mechanical properties of additively manufactured AISI 316L stainless steel by different surface post-treatment,” in Procedia CIRP, Italy: Elsevier B.V., 2023, pp. 771–776. doi: 10.1016/j.procir.2023.06.132spa
dc.relation.referencesA. Bechikh, O. Klinkova, Y. Maalej, I. Tawfiq, and R. Nasri, “Sandblasting parameter variation effect on galvanized steel surface chemical composition, roughness and free energy,” Int J Adhes Adhes, vol. 102, Oct. 2020, doi: 10.1016/j.ijadhadh.2020.102653spa
dc.relation.referencesP. Osak, J. Maszybrocka, M. Zubko, J. Rak, S. Bogunia, and B. Łosiewicz, “Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications,” Materials, vol. 14, no. 24, Dec. 2021, doi: 10.3390/ma14247536spa
dc.relation.referencesL. Engelking, D. Schroepfer, T. Kannengiesser, A. Eissel, K. Treutler, and V. Wesling, “Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties,” Welding in the World, vol. 67, no. 4, pp. 1059–1066, Apr. 2023, doi: 10.1007/s40194-022-01438-7spa
dc.relation.referencesJ. Li, H. Wu, H. Liu, and D. Zuo, “Surface and property characterization of selective laser-melted Ti-6Al-4V alloy after laser polishing,” International Journal of Advanced Manufacturing Technology, vol. 128, pp. 703–714, Jul. 2023, doi: 10.1007/s00170-023-11880-6spa
dc.relation.referencesJ. Kumstel and B. Kirsch, “Lasers in Manufacturing Conference 2013 Polishing titanium-and nickel-based alloys using cw-laser radiation,” Phys Procedia, vol. 41, no. 1, pp. 362–371, 2013, doi: 10.1016/j.phpro.2013.03.089spa
dc.relation.referencesInternational Standard, “ISO 25178-606.,” Switzerland, Jun. 2015spa
dc.relation.references“Roughness Parameter,” CIRP Encyclopedia of Production Engineering, vol. 1. Springer, Berlin, Heidelberg, pp. 1497–1497, 2019. doi: 10.1007/978-3-662-53120-4_300588spa
dc.relation.referencesW. Group, “3D Roughness Metrology,” 2020. Accessed: Nov. 07, 2023.spa
dc.relation.referencesI. N. Bobrovskij, “How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2018. doi: 10.1088/1757-899X/302/1/012066.spa
dc.relation.referencesH. Johnson, “Surface roughness,” 2001. doi: 10.1142/9781860945434_0014.spa
dc.relation.referencesJ. J. Lifton and T. Liu, “Evaluation of the standard measurement uncertainty due to the ISO50 surface determination method for dimensional computed tomography,” Precis Eng, vol. 61, pp. 82–92, 2020, doi: 10.1016/j.precisioneng.2019.10.004spa
dc.relation.referencesW. Grzesik, “Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art,” J Mater Eng Perform, vol. 25, no. 10, pp. 4460–4468, 2016, doi: 10.1007/s11665-016-2293-zspa
dc.relation.referencesC. J. Cortés-Rodríguez, F. C. Herreño Cuestas, and I. Z. Areque-Salazar, Medición de Rugosidad Superficial 3D, 1st ed., vol. 1. Kassel: Kassel University press, 2019.spa
dc.relation.referencesL. Bertini, F. Bucchi, F. Frendo, M. Moda, and B. D. Monelli, “Residual stress prediction in selective laser melting: A critical review of simulation strategies,” International Journal of Advanced Manufacturing Technology, vol. 105, no. 1–4, pp. 609–636, Nov. 2019, doi: 10.1007/s00170-019-04091-5spa
dc.relation.referencesM. Shen and F. Fang, “Two-step electropolishing of internal surfaces of 316L stainless steel made by laser-based powder bed fusion,” J Manuf Process, vol. 89, pp. 298–313, Mar. 2023, doi: 10.1016/j.jmapro.2023.01.052spa
dc.relation.referencesJ. de Krijger, C. Rans, B. Van Hooreweder, K. Lietaert, B. Pouran, and A. A. Zadpoor, “Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading,” J Mech Behav Biomed Mater, vol. 70, pp. 7–16, Jun. 2017, doi: 10.1016/j.jmbbm.2016.11.022spa
dc.relation.referencesE. Macherauch, Introduction To Residual Stress., vol. 4. Pergamon Books Ltd, 1987. doi: 10.1016/b978-0-08-034062-3.50011-2spa
dc.relation.referencesG. S. Schajer, Practical residual stress measurement methods, 2013th ed. United Kingdom: Wiley, 2013. [Online]. Available: www.wiley.com.spa
dc.relation.referencesG.Totten, M.Howes, and T.Inoue, Handbook of residual stress and deformation of steel, vol. 1. United States of America: ASTM Internationañ, 2002. doi: 10.1002/9781118402832.spa
dc.relation.referencesG. Totten, M. Howes, and T. Inoue, Handbook of residual stress and deformation steel. 2002.spa
dc.relation.referencesW. Schneller, M. Leitner, S. Pomberger, S. Springer, F. Beter, and F. Grün, “Effect of post treatment on the microstructure, surface roughness and residual stress regarding the fatigue strength of selectively laser melted AlSi10Mg structures,” Journal of Manufacturing and Materials Processing, vol. 3, no. 4, Oct. 2019, doi: 10.3390/jmmp3040089.spa
dc.relation.referencesG. S. Schajer, Practical Residual Stress Measurement Methods, 1st ed., vol. 1. Vancouver, Canada: Wiley, 2013. doi: 10.1002/9781118402832spa
dc.relation.referencesA. Samanta et al., “Bio-tribological response of duplex surface engineered SS316L for hip-implant application,” Appl Surf Sci, vol. 507, no. 1, pp. 145009–145027, Dec. 2020, doi: 10.1016/j.apsusc.2019.145009spa
dc.relation.referencesK. Moghadasi et al., “A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties,” Journal of Materials Research and Technology, vol. 17, no. 1, pp. 1054–1121, Mar. 2022, doi: 10.1016/j.jmrt.2022.01.050spa
dc.relation.referencesM. Tang, L. Zhang, and N. Zhang, “Microstructural evolution, mechanical and tribological properties of TiC/Ti6Al4V composites with unique microstructure prepared by SLM,” Materials Science and Engineering A, vol. 814, no. 2, pp. 141–187, Mar. 2021, doi: 10.1016/j.msea.2021.141187spa
dc.relation.referencesD. Svetlizky et al., “Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications,” Materials Today, vol. 49, no. 1, pp. 271–295, Oct. 2021, doi: 10.1016/j.mattod.2021.03.020spa
dc.relation.referencesSLM SOLUTIONS, “SLM® Medical and Dental Applications Metal Additive Manufacturing Solutions for Healthcare,” Nikon SLM. Accessed: Mar. 02, 2024. [Online]. Available: https://www.slm-solutions.com/products-and-solutions/machines/slm-500/spa
dc.relation.referencesE. Wycisk et al., “Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties,” Phys Procedia, vol. 56, no. November 2018, pp. 371–378, 2014, doi: 10.1016/j.ijfatigue.2018.12.029spa
dc.relation.referencesM. A. Baciu, E. R. Baciu, C. Bejinariu, S. L. Toma, A. Danila, and C. Baciu, “Influence of Selective Laser Melting Processing Parameters of Co-Cr-W Powders on the Roughness of Exterior Surfaces,” IOP Conf Ser Mater Sci Eng, vol. 374, no. 1, pp. 12010–12016, 2018, doi: 10.1088/1757-899X/374/1/012010spa
dc.relation.referencesS. Milton, A. Morandeau, F. Chalon, and R. Leroy, “Influence of Finish Machining on the Surface Integrity of Ti6Al4V Produced by Selective Laser Melting,” Procedia CIRP, vol. 45, pp. 127–130, 2016, doi: 10.1016/j.procir.2016.02.340spa
dc.relation.referencesN. Alharbi, “Shot peening of selective laser-melted SS316L with ultrasonic frequency,” International Journal of Advanced Manufacturing Technology, vol. 1, no. 1, pp. 1–15, Dec. 2021, doi: 10.1007/s00170-021-08398-0spa
dc.relation.referencesY. Kaynak and E. Tascioglu, “Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing,” Progress in Additive Manufacturing, vol. 5, no. 2, pp. 221–234, Oct. 2020, doi: 10.1007/s40964-019-00099-1spa
dc.relation.referencesA. W. Yuda, S. Supriadi, and A. S. Saragih, “Surface modification of Ti-alloy based bone implant by sandblasting,” in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2019, pp. 1–9. doi: 10.1063/1.5139335spa
dc.relation.referencesM. Chimmat and D. Srinivasan, “Understanding the Residual Stress in DMLS CoCrMo and SS316L using X-ray diffraction,” in Procedia Structural Integrity, Elsevier B.V., 2019, pp. 746–757. doi: 10.1016/j.prostr.2019.05.093spa
dc.relation.referencesScheftner.dental, “Starbond Easy Powder 30 - Scheftner Dental Alloys,” Sheftmer.dental/starbond. Accessed: Mar. 07, 2023. [Online]. Available: https://scheftner.dental/starbond-easy-powder-30-en.htmlspa
dc.relation.referencesBruker alicona, “Dimensional accuracy and surface finish measurement,” Dimensional accuracy and surface finish measurement.spa
dc.relation.referencesSisma/mysint100, “MYSINT100, Laser Metal Fusion metal 3D printing technology,” www.sisma.com/en/products/mysint100. Accessed: Feb. 01, 2023. [Online]. Available: https://www.sisma.com/en/products/mysint100/spa
dc.relation.referencesS. V. belikov D.S Popkova, I M Ruslanov, A Y Zhilyakov, “The effect of the selective laser melting mode on second phases precipitation in 316L steel during subsequent heat treatment,” IOP Conference series: Material Science and Engineering, pp. 1–8, Oct. 2021, doi: 10.1088/1757-899X/1029/1/012053.spa
dc.relation.referencesNabertherm, “Dental,” NAbertherm. Accessed: Jul. 25, 2023. [Online]. Available: https://nabertherm.com/es/productos/dentalspa
dc.relation.referencesNabertherm, “Sintering Cobalt-Chromium | Nabertherm.” Accessed: May 22, 2024. [Online]. Available: https://nabertherm.com/en/products/dental/sintering-cobalt-chromiumspa
dc.relation.referencesRenfert, “Basic eco | Renfert,” Renfert making work easy. Accessed: Jul. 25, 2023. [Online]. Available: https://www.renfert.com/int-es/PM/Productos/Aparatos/Arenadoras/Basic-ecospa
dc.relation.referencesimes-icore, “Tools & Materials,” Dental & medial solutions. Accessed: Aug. 10, 2023. [Online]. Available: https://www.imes-icore.com/dental/tools-materialsspa
dc.relation.references“SUS & Titanium endmill | End mill | Products | JJTOOLS.” Accessed: Aug. 10, 2023spa
dc.relation.referencestff, “Schweißtechnik - Fachgebiet Trennende und Fügende Fertigungsverfahren - Universität Kassel.” Accessed: May 22, 2024. [Online]. Available: https://www.tff-kassel.de/forschung/schweisstechnik/spa
dc.relation.referencesI. O. Aver’yanova, D. Yu. Bogomolov, and V. V. Poroshin, “ISO 25178 standard for three-dimensional parametric assessment of surface texture,” Russian Engineering Research, vol. 37, no. 6, pp. 513–516, 2017, doi: 10.3103/S1068798X17060053spa
dc.relation.referencesUniversidad Nacional de Colombia, “lmdp - Home.” Accessed: May 23, 2024. [Online]. Available: https://ingenieria.unal.edu.co/metrodim/spa
dc.relation.referencesMinitab, “Two-step optimization for Taguchi designs.”spa
dc.relation.referencesT. Fearn, “Taguchi Methods,” NIR news, vol. 12, no. 1, pp. 8–9, 2001, doi: 10.1255/nirn.597spa
dc.relation.referencesN.-P. Fernando, R.-L. A. Javier, P.- Pacheco, Y. Verenice, and T. Nacional De México, “Diseños ortogonales de Taguchi fraccionados Fractional Taguchi orthogonal designs Tapia-Esquivias Moises”, doi: 10.22201/fi.25940732e.2020.21n2.011spa
dc.relation.referencesMinitab, “Diseños ortogonales de Taguchi fraccionados,” support minitabspa
dc.relation.referencesT. Grabowski, I. Ara, J. Thorpe, and F. Azarmi, “Investigation of Microstructural Characteristics of Cobalt Chromium Molybdenum Additively Manufactured Using Laser Directed Energy Deposition Technology,” Metall Mater Trans A Phys Metall Mater Sci, vol. 54, no. A, pp. 1–15, Oct. 2023, doi: 10.1007/s11661-023-07154-1spa
dc.relation.referencesUniversität Kassel, “Zentrum für Randschichtanalytik und Technik (ZerTech),” Universität Kassel Machinenbau. Accessed: Mar. 12, 2024. [Online]. Available: https://www.uni-kassel.de/maschinenbau/institute/werkstofftechnik/fachgebiete/metallische-werkstoffe/zertechspa
dc.relation.referencesKassel University, “Center for Boundary Layer Analysis and Technology (ZerTech).” Accessed: May 23, 2024. [Online]. Available: https://www.uni-kassel.de/maschinenbau/en/institute/institute-of-materials-engineering/departments/metallic-materials/zertechspa
dc.relation.referencesB. Śmielak, L. Klimek, and K. Krześniak, “Effect of Sandblasting Parameters and the Type and Hardness of the Material on the Number of Embedded Al2O3 Grains,” Materials, vol. 16, no. 13, p. 4783, Jul. 2023, Doi: 10.3390/ma16134783spa
dc.relation.referencesF. Calignano, V. Mercurio, G. Rizza, and M. Galati, “Investigation of surface shot blasting of AlSi10Mg and Ti6Al4V components produced by powder bed fusion technologies,” 2022, Doi: 10.1016/j.precisioneng.2022.07.008spa
dc.relation.referencesR. Melentiev, C. Kang, G. Shen, and F. Fang, “Study on surface roughness generated by micro-blasting on Co-Cr-Mo bio-implant,” Wear, vol. 428–429, pp. 111–126, Jun. 2019, Doi: 10.1016/j.wear.2019.03.005spa
dc.relation.referencesS. Amon, A. Jobst, M. Merklein, and N. Hanenkamp, “Influence of dry ice blasting process properties on surface roughness and residual stresses of machined and additive manufactured workpieces,” in Procedia CIRP, Elsevier B.V., 2022, pp. 601–606. Doi: 10.1016/j.procir.2022.03.095spa
dc.relation.referencesP. Jaritngam, V. Tangwarodomnukun, H. Qi, and C. Dumkum, “Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy,” Opt Laser Technol, vol. 126, pp. 106102–106118, Feb. 2020, Doi: 10.1016/j.optlastec.2020.106102spa
dc.relation.referencesK. C. Yung et al., “Laser polishing of additive manufactured CoCr components for controlling their wettability characteristics,” Surf Coat Technol, vol. 351, pp. 89–98, Oct. 2018, Doi: 10.1016/j.surfcoat.2018.07.030spa
dc.relation.referencesK. C. Yung, T. Y. Xiao, H. S. Choy, W. J. Wang, and Z. X. Cai, “Laser polishing of additive manufactured CoCr alloy components with complex surface geometry,” J Mater Process Technol, vol. 262, pp. 53–64, Dec. 2018, Doi: 10.1016/j.jmatprotec.2018.06.019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc670 - Manufacturaspa
dc.subject.ddc680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivosspa
dc.subject.lembIMPLANTES ARTIFICIALESspa
dc.subject.lembImplants, artificialeng
dc.subject.lembMATERIALES BIOMEDICOSspa
dc.subject.lembBiomedical materialseng
dc.subject.lembPROCESOS DE MANUFACTURAspa
dc.subject.lembManufacturing processeseng
dc.subject.lembPULIMENTO Y ACABADOspa
dc.subject.lembFinishes and finishingeng
dc.subject.lembENDURECIMIENTO SUPERFICIALspa
dc.subject.lembCase hardeningeng
dc.subject.lembGRANALLADOspa
dc.subject.lembShot blastingeng
dc.subject.proposalSelective Laser Meltingeng
dc.subject.proposalBearing Surfaceseng
dc.subject.proposalPost-processingeng
dc.subject.proposalSurface Roughnesseng
dc.subject.proposalPares de Fricciónspa
dc.subject.proposalPosprocesamientospa
dc.subject.proposalRugosidad superficialspa
dc.titleParameters of additive manufacturing and post-processing surface finishing in cobalt-chromium alloy joint implants bearing surfaces manufactured using Selective Laser Meltingeng
dc.title.translatedParámetros de manufactura aditiva y posproceso en la elaboración de pares de fricción de implantes articulares en aleación de cobalto-cromo mediante Selective Laser Meltingspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030570180.2025.pdf
Tamaño:
7.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: