Some remarks about the fusible property of noncommutative polynomial extensions

dc.contributor.advisorReyes Villamil, Milton Armandospa
dc.contributor.authorHiguera Rincón, Sebastián Davidspa
dc.contributor.researchgroupSAC2spa
dc.date.accessioned2020-09-15T23:05:44Zspa
dc.date.available2020-09-15T23:05:44Zspa
dc.date.issued2020-05-31spa
dc.description.abstractIn this work, we focus on three objectives: first, we investigate fusible property on skew PBW extensions, recognizing conditions that guarantee the property for this family of algebras. Later, we turn our attention to the study of two very important ring families: the weak $\Sigma$-rigid rings defined by Reyes et al., [2018] and $(\Sigma, \Delta)$-compatible rings introduced by Hashemi et al., [2017] and Reyes et al., [2018], respectively. We establish several results that characterize some important elements such as units, nilpotents, idempotents and zero divisors in skew PBW extensions over $(\Sigma, \Delta)$-compatible rings. We extend some descriptions of these elements for skew polynomial rings presented by Hashemi et al., [2017]. The study of these elements leads us to find a more general notion of annihilator, for which we investigate analogous properties to those that define the Baer, quasi-Baer, p.p and p.q.-Baer rings, extending some results presented by Ouyang et al., [2012]. Finally, having in mind a more general concept of associated prime ideal presented by Ouyang et al., [2012], we study this generalization of the associated primes and eventually characterize these ideals in skew PBW extensions over $(\Sigma, \Delta)$-compatible rings.spa
dc.description.abstractEn el presente trabajo, nos enfocamos en tres objetivos: primero, investigamos acerca de la propiedad fusible sobre extensiones PBW torcidas, reconociendo condiciones suficientes que garanticen dicha propiedad para esta familia de álgebras. Después, centramos nuestra atención en el estudio de dos familias de anillos muy importantes: los anillos débil $\Sigma$-rígidos definidos por Reyes et al., [2018] y los anillos $(\Sigma, \Delta)$-compatibles introducidos por Hashemi et al., [2017] y Reyes et al., [2018], respectivamente. Establecemos resultados que caracterizan algunos elementos importantes como unidades, nilpotentes, idempotentes y divisores de cero en extensiones PBW torcidas sobre anillos $(\Sigma, \Delta)$-compatibles. Extendemos de esta forma algunas descripciones de estos elementos en anillos de polinomios torcidos presentadas por Hashemi et al., [2017]. El estudio de estos elementos nos lleva a encontrarnos con una noción más general de anulador para la cual investigamos propiedades análogas a las que definen a los anillos de Baer, quasi-Baer, p.p and p.q.-Baer en extensiones PBW torcidas, extendiendo algunos resultados presentados por Ouyang et al., [2012]. Finalmente, teniendo en mente un concepto más general de ideal primo asociado presentado por Ouyang et al., [2012], estudiamos esta generalización de los primos asociados y eventualmente caracterizamos dichos ideales en extensiones PBW torcidas sobre anillos $(\Sigma, \Delta)$-compatibles.spa
dc.description.degreelevelMaestríaspa
dc.format.extent103spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78465
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesD. D. Anderson and V. Camilo. Semigroups and rings whose zero products commute. Comm. Algebra, 27:2847–2852, 1999.spa
dc.relation.referencesA. Alhevaz, E. Hashemi, and KH. Khalilnezhad. Extensions of rings over 2-primal rings. Matematiche, 74(1):141–162, 2019.spa
dc.relation.referencesJ. P. Acosta and O. Lezama. Universal property of skew PBW extensions. Algebra Discrete Math., 20(1):1–12, 2015.spa
dc.relation.referencesM. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics. Westview Press, Boulder, 1969.spa
dc.relation.referencesS. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193–205, 2004.spa
dc.relation.referencesE. P. Armendariz. A note on extensions of Baer and p.p-ring. J. Austral. Math., 18(4):470–473, 1974.spa
dc.relation.referencesE. Akalan and L. Vaš. Classes of almost clean rings. Algebr. Represent. Theory, 16(3):843–857, 2013.spa
dc.relation.referencesG. Azumaya. Strongly π-regular rings. Canad. J. Math, 13(1):034–039, 1954.spa
dc.relation.referencesH. E. Bell. Some commutativity results for periodic rings. Acta Math. Hungar., 28(3-4):279–283, 1976.spa
dc.relation.referencesS. K. Berberian. Baer∗-rings. Springer Science and Business Media, 2010.spa
dc.relation.referencesA. D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988.spa
dc.relation.referencesJ. W. Brewer and W. J. Heinzer. Associated primes of principal ideals. Duke Math. J, 41:1–4, 1974.spa
dc.relation.referencesM. Başer, C. Y. Hong, and T. K. Kwak. On extended reversible rings. Algebra Colloq., 16(1):37–48, 2009.spa
dc.relation.referencesG. F. Birkenmeier, H. E. Heatherly, and E. K. Lee. Completely prime ideals and associated radicals. S. K. Jain and S. T. Rizvi eds, Proc. Biennial Ohio State-Denison Conference 1992, World Scientific., 101(6):102–129, 1992.spa
dc.relation.referencesM. Başer and T. K. Kwak. Extended semicommutative rings. Algebra Colloq.,17(2):257–264, 2010.spa
dc.relation.referencesG. F. Birkenmeier, J. Y. Kim and J. K. Park. Principally quasi-Baer rings. Comm. Algebra., 29(2):639–660, 2001.spa
dc.relation.referencesW. X. Chen and S. Y. Cui. On weakly semicommutative rings. Comm. Math. Res., 27(02):179–192, 2011.spa
dc.relation.referencesV. P. Camilo and D. Khurana. A characterization of unit regular rings. Comm. Algebra, 29(5):2293–2295, 2001.spa
dc.relation.referencesD. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM 2015. Springer, Cham., 2015.spa
dc.relation.referencesP. M. Cohn. Prime rings with involution whose symmetric zero-divisors are nilpotent. Proc. Amer. Math. Soc., 40(1):91–92, 1973.spa
dc.relation.referencesS. Chhawchharia and M. B. Rege. Armendariz rings. Proc. Japan. Acad. Ser. A Math. Sci., 73(1):14–17, 1997.spa
dc.relation.referencesH. Chen and M. Sheibani. Rings in which the power of every element is thesum of an idempotent and a unit. Inst. Math. Publ., 102(116):133–148, 2017.spa
dc.relation.referencesJ. Dixmier. Enveloping Algebra. 14. North-Holland Mathematical Library, 1 edition, 1977.spa
dc.relation.referencesC. Faith. Algebra II. Ring Theory: Ring Theory, volume 2 of Grundlehren Der Mathematischen Wissenschaften. Springer-Verlag GmbH, 1976.spa
dc.relation.referencesC. Faith. Associated primes in commutative polynomial rings. Comm. Algebra, 28(8):3983–3986, 2000.spa
dc.relation.referencesC. C. Faith and P. Pillay. Classification of commutative FPF rings., volume 4. Editum., 1990.spa
dc.relation.referencesL. Gillman and M. Jerison. Rings of continuous functions. D. Van Nostrand Company, Inc, 1 edition, 1960.spa
dc.relation.referencesC. Gallego and O. Lezama. Gröbner bases for ideals of σ-PBW extensions. Comm. Algebra, 39(1):50–75, 2011. https://doi.org/10.1080/00927870903431209.spa
dc.relation.referencesE. Ghashghaei and W. McGovern. Fusible rings. Comm. Algebra, 45(3):1151–1165, 2016. https://doi.org/10.1080/00927872.2016.1206347.spa
dc.relation.referencesK. R Goodearl and R. B Warfield. An Introduction to Noncommutative Noetherian Rings, volume 61. Cambridge University Press, 2004.spa
dc.relation.referencesE. Hashemi, M. Hamidizadeh, and A. Alhevaz. Some types of ring elements in Ore extensions over noncommutative rings. J. Algebra Appl., 16(11): p. 1750201, 2017.spa
dc.relation.referencesM. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra,28:75–97, 2020.spa
dc.relation.referencesE. Hashemi, KH. Khalilnezhad, and A. Alhevaz. (Σ,∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017.spa
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p-rings. J. Pure Appl. Algebra., 151(3):215–226, 2000.spa
dc.relation.referencesC. Huh, H. K. Kim, N. K. Kim, and Y. Lee. Basic examples and extensions of symmetric rings. J. Pure Appl. Algebra, 202(1-3):154–167, 2005.spa
dc.relation.referencesC. Y. Hong, T. K. Kwak, and S. Y. Rizvi. Extensions of generalized Armendariz rings. Algebra Colloq., 13(2):253–266, 2006.spa
dc.relation.referencesC. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutativerings. Comm. Algebra., 30(2):751–761, 2002.spa
dc.relation.referencesT. W. Hungerford. Algebra. Graduate Texts in Mathematics 73. Springer-Verlag New York, 1 edition, 1980.spa
dc.relation.referencesN. Jacobson. Structure of rings. American Mathematical Society., 1956.spa
dc.relation.referencesI. Kaplansky. Rings of Operators. Mathematics Lecture Notes Series, Benjamin, New York, 1965.spa
dc.relation.referencesN. K. Kim and Y. Lee. Extensions of reversible rings. J. Pure Appl. Algebra.,185(1-3):207–223, 2003.spa
dc.relation.referencesM. T. Koşan and J. Matczuk. On fusible rings. Comm. Algebra, 47(9):3789–3793, 2019. https://doi.org/10.1080/00927872.2019.1570236.spa
dc.relation.referencesJ. Krempa. Some examples of reduced rings. Algebra Colloq, 3(4):289–300,1996.spa
dc.relation.referencesT. K. Kwak. Extensions of extended symmetric rings. Bull. Korean Math.Soc., 44(4):777–788, 2007.spa
dc.relation.referencesO. Lezama, J. P. Acosta, C. Chaparro, I. Ojeda, and C. Venegas. Ore and Goldie theorems for skew PBW extensions. Asian-Eur. J. Math., 6(04): p.1350061, 2013.spa
dc.relation.referencesY. Lam. A First Course in Noncommutative Rings, volume 131. Graduate Texts in Mathematics, Springer-Verlag New York, 2001.spa
dc.relation.referencesO. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015. https://doi.org/10.1080/00927870903431209.spa
dc.relation.referencesO. Lezama. Cuadernos de Álgebra, No. 9: Álgebra no conmutativa. SAC2, Departamento de Matemáticas, Universidad Nacional de Colombia, sede Bogotá, sites.google.com/a/unal.edu.co/sac2, 2015.spa
dc.relation.referencesT. Y. Lam, A. Leroy, and J. Matczuk. Primeness, semiprimeness and prime radical of Ore extensions. Comm. Algebra, 25(8):2459–2506, 1977.spa
dc.relation.referencesA. Leroy and J. Matczuk. Goldie conditions for Ore extensions over semiprime rings. Algebr. Represent. Theory, 8(5):679–688, 2005.spa
dc.relation.referencesO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42:1200–1230, 2014.spa
dc.relation.referencesM. Louzari and A. Reyes. Generalized Rigid Modules and Their Polynomial Extensions. In: Siles Molina M., El Kaoutit L., Louzari M., Ben Yakoub L., Benslimane M. (eds) Associative and Non-Associative Algebras and Applications. MAMAA 2018. Springer Proceedings in Mathematics and Statistics, vol 311. Springer International Publishing, Cham, 2020.spa
dc.relation.referencesM. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):27–51, 2020.spa
dc.relation.referencesG. Marks. Reversible and symmetric rings. J. Pure Appl. Algebra, 174(3):311–318, 2002.spa
dc.relation.referencesG. Marks. A taxonomy of 2-primal rings. J. Algebra., 266(2):494–520, 2003.spa
dc.relation.referencesJ. C. McConnell. Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture. Proc. Lond. Math. Soc. (3), 3(3):453–484, 1974.spa
dc.relation.referencesM. J. Nikmehr and A. Azadi. Nilpotent graphs of skew polynomial rings over noncommutative rings. Trans. Comb., 9(1):41–48, 2000.spa
dc.relation.referencesW. K. Nicholson. Strongly clean rings and fitting’s lemma. Comm. Algebra, 27(08), 1999. https://doi.org/10.1080/00927879908826649.spa
dc.relation.referencesA. Niño, M. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 2020. https://doi.org/10.1080/00927872.2020.1778012.spa
dc.relation.referencesL. Ouyang and G. F. Birkenmeier. Weak annihilator over extension rings. Bull. Malays. Math. Sci. Soc., 35(2):345–357, 2012.spa
dc.relation.referencesØ. Ore. Theory of non-commutative polynomials. Ann. of Math (2),34(3):480–508, 1933.spa
dc.relation.referencesL. Ouyang. Extensions of generalized α-rigid rings. Int. Electron. J. Algebra, 3(13):103–116, 2008.spa
dc.relation.referencesL. Ouyang. Extensions of nilpotent p.p. rings. Bull. Iranian Math. Soc., 36(2):169–184, 2010.spa
dc.relation.referencesD. S. Passman. Prime ideals in enveloping rings. Trans. Amer. Math. Soc., 302(2):535–560, 1987.spa
dc.relation.referencesM. C. Ramírez. Associated prime ideals of noncommutative rings of polynomials type. Master’s thesis, Universidad Nacional de Colombia, Sede Bogotá, 2019.spa
dc.relation.referencesA. Reyes. Gelfand-Kirillov dimension of skew PBW extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.spa
dc.relation.referencesA. Reyes. Ring and Module Theoretical Properties of Skew PBW Extensions. Ph.D. Thesis, Universidad Nacional de Colombia, Sede Bogotá, 2013.spa
dc.relation.referencesA. Reyes. Uniform dimension over skew PBW extensions. Rev. Colombiana. Mat, 48(1):79–96, 2014.spa
dc.relation.referencesA. Reyes. Skew PBW extensions of Baer, quasi-Baer and p.p. and p.q.-rings. Rev. Integr. Temas Mat., 33(2):173–189, 2015.spa
dc.relation.referencesA. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019.spa
dc.relation.referencesG. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963.spa
dc.relation.referencesA. Reyes and J. Jaramillo. Symmetry and reversibility properties for quantum algebras and skew Poincaré-Birkhoff-Witt extensions. Ingeniería y Ciencia,14(27):29–52, 2018.spa
dc.relation.referencesA. L. Rosenberg. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Mathematics and Its Applications 330. Springer Netherlands, 1 edition, 1995.spa
dc.relation.referencesA. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat., 34(2):147–168, 2016.spa
dc.relation.referencesA. Reyes and H. Suárez. PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. (FJMS)., 101(6):1207–1228, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak Σ-rigid rings. Far East J. Math. Sci. (FJMS), 106(2):421–440, 2018.spa
dc.relation.referencesA. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 2019. https://doi.org/10.1007/s40304-019-00189-0.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom, 60(2):197–216, 2019.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 2020. https://doi.org/10.1142/S0219498820502254.spa
dc.relation.referencesG. Shin. Prime ideals and sheaf representation of a pseudo symmetric rings. Trans. Amer. Math. Soc., 184:43–60, 1973.spa
dc.relation.referencesH. J. Suarez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. Ph.D. thesis, Universidad Nacional de Colombia, Sede Bogotá, 2017.spa
dc.relation.referencesS. H. Sun. Noncommutative rings in which every prime ideal is contained in aunique maximal ideal. J. Pure Appl. Algebra., 76(2):179–192, 1991.spa
dc.relation.referencesS. Szabo. Some minimal rings related to 2-primal rings. Comm. Algebra, 47(3):1287–1298, 2019.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalFusible propertyeng
dc.subject.proposalPropiedad fusiblespa
dc.subject.proposalExtensión PBW torcidaspa
dc.subject.proposalSkew PBW extensioneng
dc.subject.proposalWeak Σ-rigid ringeng
dc.subject.proposalAnillo débil Σ-rígidospa
dc.subject.proposal(Σ,∆)-compatible ringeng
dc.subject.proposalAnillo (Σ,∆)-compatiblespa
dc.subject.proposalUnidadspa
dc.subject.proposalUniteng
dc.subject.proposalNilpotentespa
dc.subject.proposalNilpotenteng
dc.subject.proposalDivisor de cerospa
dc.subject.proposalZero divisoreng
dc.subject.proposalIdempotentespa
dc.subject.proposalIdempotenteng
dc.subject.proposalWeak annihilatoreng
dc.subject.proposalAnulador débilspa
dc.subject.proposalAssociated prime idealeng
dc.subject.proposalIdeal primo asociadospa
dc.titleSome remarks about the fusible property of noncommutative polynomial extensionsspa
dc.title.alternativeAlgunas observaciones sobre la propiedad fusible de las extensiones polinomiales no conmutativasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013658442.2020.pdf
Tamaño:
1.05 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: