Análisis de causalidad para series de tiempo multivariadas funcionales

dc.contributor.advisorCalderón Villanueva, Sergio Alejandro
dc.contributor.advisorGuevara González, Rubén Darío
dc.contributor.authorMaya Orozco, Jhon Eduwin
dc.date.accessioned2023-08-08T17:00:18Z
dc.date.available2023-08-08T17:00:18Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa causalidad de Granger es una prueba creada hace casi medio siglo que permite saber si una serie temporal ayuda en la predicción de otra. Para el caso de series temporales fun- cionales el tema ha sido explorado por autores como Saumard y Hadjadji (2021) o Sen et al. (2022), sin embargo el tema posee aún muchas lineas de investigación abiertas que han sido poco exploradas. Este trabajo se concentra en estudiar una extensión de las pruebas de causalidad de Granger para series de tiempo funcionales multivariadas de dimensiones mayores a 2 (específicamente 3 y 4), basada en los procedimientos propuestos por Saumard y Hadjadji (2021). Para este fin se simulan procesos bivariados, tri-variados y tetra-variados a partir de modelos FAR(1) y FARX(1). Se realizan las pruebas de causalidad de Granger a través de tres procedimientos (DFPCA, F-causalidad y G-causalidad). Se encuentra que la prueba que presenta mejores resultados a través del estudio de simulación es la que hace uso de los componentes principales dinámicos DFPCA y que la variabilidad explicada por el número de componentes afecta de manera sensible la potencia de la prueba. Se realiza un ejemplo de aplicación para ilustrar los procedimientos propuestos en el que se verifica si existe causalidad entre el precio del dólar (Yt), el precio del petróleo Brent (Xt1 ) y la tasa de interés de los bonos colombianos a 10 años (Xt2 ). Se confirma la causalidad de las variables Xti sobre la variable Yt tal y como la teoría económica parece predecir. (Texto tomado de la fuente)spa
dc.description.abstractGranger causality is a test created almost half a century ago that allows us to know if one time series helps in the prediction of another. In the case of functional time series, the topic has been explored by authors such as Saumard y Hadjadji (2021) or Sen et al. (2022), however the topic still has many open lines of research that have been little explored. This work focuses on studying an extension of the Granger causality tests for multivariate functio- nal time series of dimensions greater than 2 (specifically 3 and 4), based on the procedures proposed by Saumard y Hadjadji (2021). For this purpose, bivariate, trivariate and tetra- variate processes are simulated using FAR(1) and FARX(1) models. Granger causality tests are carried out through three procedures (DFPCA, F-causality and G-causality). It is found that the test that presents the best results through the simulation study is the one that ma- kes use of the DFPCA dynamic principal components and that it will have been explained by the number of components that significantly affects the power of the test. An application example is carried out to illustrate the proposed procedures in which it is verified if there is causality between the price of the dollar (Yt), the price of Brent oil (Xt1 ) and the interest rate of the Colombian 10-year bonds (Xt2 ). The causality of the variables Xti on the variable Yt is confirmed, as economic theory seems to predict.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaSeries Temporales y Datos Funcionalesspa
dc.format.extentxvi, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84489
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesBosq, D. (2000). Linear processes in function spaces: theory and applications (Vol. 149). Springer Science & Business Mediaspa
dc.relation.referencesBoudjellaba, H., Dufour, J.-M., & Roy, R. (1992). Testing causality between two vectors in multivariate autoregressive moving average models. Journal of the American Statis- tical Association, 87 (420), 1082-1090.spa
dc.relation.referencesBrockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer.spa
dc.relation.referencesCabassi, A., & Kashlak, A. B. (2017). fdcov: Analysis of Covariance Operators [R package version 1.1.0]. https://CRAN.R-project.org/package=fdcovspa
dc.relation.referencesChen, Y., Chua, W. S., & Härdle, W. K. (2019). Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics. Quantitative Finan ce, 19 (9), 1473-1489spa
dc.relation.referencesChen, Y., Koch, T., Lim, K. G., Xu, X., & Zakiyeva, N. (2021). A review study of functional autoregressive models with application to energy forecasting. Wiley Interdisciplinary Reviews: Computational Statistics, 13 (3), e1525.spa
dc.relation.referencesConway, J. B. (2019). A course in functional analysis (Vol. 96). Springer.spa
dc.relation.referencesCuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147, 1-23.spa
dc.relation.referencesDamon, J., & Guillas, S. (2005). Estimation and simulation of autoregressive hilbertian pro cesses with exogenous variables. Statistical Inference for Stochastic Processes, 8 (2), 185-204.spa
dc.relation.referencesElmezouar, Z. C. (2020). Functional causality between oil prices and GDP Based on Big Data. Computers, Materials & Continua, 63 (2), 593-604.spa
dc.relation.referencesFerraty, F., & Romain, Y. (2011). The Oxford handbook of functional data analaysis. Oxford University Press.spa
dc.relation.referencesFremdt, S., Steinebach, J. G., Horváth, L., & Kokoszka, P. (2013). Testing the equality of covariance operators in functional samples. Scandinavian Journal of Statistics, 40 (1), 138-152.spa
dc.relation.referencesGranger, C. W. (1969). Investigating causal relations by econometric models and cross spectral methods. Econometrica: journal of the Econometric Society, 424-438.spa
dc.relation.referencesHörmann, S., Kidziński, Ł., & Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77 (2), 319-348.spa
dc.relation.referencesHörmann, S., & Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38 (3), 1845-1884.spa
dc.relation.referencesHorváth, L., & Kokoszka, P. (2012). Inference for functional data with applications (Vol. 200). Springer Science & Business Media.spa
dc.relation.referencesJulio-Román, J. M., & Gamboa-Estrada, F. (2019). The Exchange Rate and Oil Prices in Colombia: A High Frequency Analysis. Borradores de Economía; No. 1091.spa
dc.relation.referencesJulio-Román, J. M., Rincón-Torres, A. D., & Rojas-Silva, K. (2021). The Interdependence of FX and Treasury Bonds Markets: The Case of Colombia. Borradores de Economía; No. 1171.spa
dc.relation.referencesKidzinski, L., Jouzdani, N., & Kokoszka, P. (2017). pcdpca: Dynamic Principal Components for Periodically Correlated Functional Time Series [R package version 0.4]. https: //CRAN.R-project.org/package=pcdpcaspa
dc.relation.referencesKokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Chapman; Hall/CRC.spa
dc.relation.referencesLütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.spa
dc.relation.referencesPanaretos, V. M., Kraus, D., & Maddocks, J. H. (2010). Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles. Journal of the Ame rican Statistical Association, 105 (490), 670-682. https://doi.org/10.1198/jasa.2010.tm09239spa
dc.relation.referencesPanaretos, V. M., & Tavakoli, S. (2013). Fourier analysis of stationary time series in function space. The Annals of Statistics, 41 (2), 568-603.spa
dc.relation.referencesPfaff, B. (2008). VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software, 27 (4). https://www.jstatsoft.org/v27/i04/spa
dc.relation.referencesPindyck, R. S., Rubinfeld, D. L., & Rabasco, E. (2013). Microeconomia. Pearson Educación.spa
dc.relation.referencesRamsay, J. O., Graves, S., & Hooker, G. (2022). fda: Functional Data Analysis [R package version 6.0.5]. https://CRAN.R-project.org/package=fdaspa
dc.relation.referencesRamsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer. https://doi. org/https://doi.org/10.1007/b98888spa
dc.relation.referencesRamsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: methods and case studies (Vol. 77). Springer.spa
dc.relation.referencesS., H., & L., K. (2022a). freqdom: Frequency Domain Based Analysis: Dynamic PCA [R package version 2.0.3]. https://CRAN.R-project.org/package=freqdomspa
dc.relation.referencesS., H., & L., K. (2022b). freqdom.fda: Functional Time Series: Dynamic Functional Principal Components [R package version 1.0.1]. https: / / CRAN. R - project. org / package = freqdom.fdaspa
dc.relation.referencesSancetta, A. (2019). Intraday end-of-day volume prediction. Journal of Financial Econometrics.spa
dc.relation.referencesSaumard, M. (2017). Linear causality in the sense of Granger with stationary functional time series. En Functional Statistics and Related Fields (pp. 225-231). Springer.spa
dc.relation.referencesSaumard, M., & Hadjadji, B. (2021). Dynamic Functional Principal Components for Testing Causality. Signals, 2 (2), 353-365.spa
dc.relation.referencesSen, R., Majumdar, A., & Sikaria, S. (2022). Bayesian Testing Of Granger Causality In Functional Time Series. Journal of Quantitative Economics, 1-20.spa
dc.relation.referencesSerge, D. J. G. (2022). far: Modelization for Functional AutoRegressive Processes [R package version 0.6-6]. https://CRAN.R-project.org/package=farspa
dc.relation.referencesSeth, A. (2007). Granger causality. Scholarpedia, 2 (7), 1667.spa
dc.relation.referencesShojaie, A., & Fox, E. B. (2022). Granger causality: A review and recent advances. Annual Review of Statistics and Its Application, 9, 289-319.spa
dc.relation.referencesSims, C. A. (1972). Money, income, and causality. The American economic review, 62 (4), 540-552.spa
dc.relation.referencesSkoog, G. R., et al. (1976). Causality Characterizations: Bivariate, Trivariate, and Multivariate Propositions (inf. téc.). Federal Reserve Bank of Minneapolis.spa
dc.relation.referencesSonmez, O., Aue, A., & Rice, G. (2019). fChange: Change Point Analysis in Functional Data [R package version 0.2.1]. https://CRAN.R-project.org/package=fChangespa
dc.relation.referencesSrivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis (Vol. 1). Springer.spa
dc.relation.referencesVirta, J., Li, B., Nordhausen, K., & Oja, H. (2020). Independent component analysis for multivariate functional data. Journal of Multivariate Analysis, 176, 104568.spa
dc.relation.referencesWiener, N. (1956). The theory of prediction. Modern mathematics for engineers.spa
dc.relation.referencesWilliams, D., Goodhart, C. A., & Gowland, D. H. (1976). Money, income, and causality: The UK experience. The American Economic Review, 66 (3), 417-423.spa
dc.relation.referencesZhang, J. (2014). Analysis of variance for functional data. Monographs on statistics and applied probability, 127, 127.spa
dc.relation.referencesZhang, X., & Shao, X. (2015). Two sample inference for the second-order property of temporally dependent functional data. Bernoulli, 21 (2), 909-929spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalSeries temporalesspa
dc.subject.proposalDatos funcionalesspa
dc.subject.proposalCausalidad de Grangerspa
dc.subject.proposalModelos Autorregresivos Funcionales (FAR)spa
dc.subject.proposalModelos Autorregresivos Funcionales con variables exógenas (FARX)spa
dc.subject.proposalTime serieseng
dc.subject.proposalFunctional dataeng
dc.subject.proposalGranger causalityeng
dc.subject.proposalFunctional Autorregresive Models (FAR)eng
dc.subject.proposalFunctional Autorregresive Models with exogenous variables (FARX)eng
dc.subject.wikidatadata analysisspa
dc.subject.wikidataanálisis de datoseng
dc.subject.wikidatatime seriesspa
dc.subject.wikidataserie temporaleng
dc.titleAnálisis de causalidad para series de tiempo multivariadas funcionalesspa
dc.title.translatedCausal analysis for multivariate functional time serieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094949022.2023.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: