Evaluación de pruebas diagnósticas en infección por SARS CoV-2 / COVID 19 en adultos
dc.contributor.advisor | Álvarez Moreno, Carlos Arturo | spa |
dc.contributor.author | Solórzano Ramos, Carlos Augusto | spa |
dc.contributor.researchgroup | Grupo de Investigacion en enfermedades Infecciosas | spa |
dc.date.accessioned | 2021-01-27T20:51:04Z | spa |
dc.date.available | 2021-01-27T20:51:04Z | spa |
dc.date.issued | 2020-12-20 | spa |
dc.description.abstract | La humanidad en diferentes momentos de la historia ha sido afectada por brotes epidémicos, algunas de ellas con tal impacto como el de una pandemia. Recientemente en 2002 por coronavirus SARS (Severe acute respiratory syndrome por sus siglas en inglés), en 2009 Influenza H1N1 (gripe porcina), en 2012 MERS (Middle East respiratory syndrome por sus siglas en inglés), entre otras. En diciembre de 2019 en la ciudad de Wuhan China, aparece un nuevo virus del grupo de los coronavirus, denominado SARS – CoV-2 (severe respiratory acute syndrome 2, por sus siglas en inglés) con una expansión mundial rápida y con tasas de transmisibilidad y letalidad elevadas. Los datos de letalidad van desde 0.1 % hasta 13.8 % relacionados con la edad, con una tasa de mortalidad global de 0.66 %. Estimaciones que evalúan la proporción de personas infectadas con probabilidad de ser hospitalizadas incrementaron con la edad, mostrando que personas mayores de 80 años tenían una probabilidad del 18.4 %. Al mismo tiempo que progresaba la pandemia se fueron desarrollando diferentes pruebas con diferentes técnicas para el diagnóstico de esta infección. Algunas de ellas son las pruebas moleculares, pruebas de antígeno, pruebas de detección de anticuerpos que hacen parte de las herramientas en el laboratorio para la identificación de la infección por SARS CoV-2 Métodos: Se realizó una búsqueda sistemática de la literatura, por vía electrónica a través de la base de datos Medline, embase, proquest, y búsqueda en literatura gris, entre enero y noviembre de 2020, de todas las publicaciones disponibles que hubiesen evaluado el rendimiento de las pruebas disponibles para hacer el diagnostico de COVID 19 en adultos sintomáticos, se describieron las características demográficas disponibles , a las cuales se aplicó las herramientas de riesgo de sesgo por medio de quadas -2 y The Joanna Briggs Institute Critical Appraisal tools según la metodología del estudio Resultados: Se evaluaron 174 artículos, finalmente se analizaron 34 estudios. La mayoría de estos artículos fueron publicados entre julio y noviembre, los Estados Unidos de América representa el 35 % (12) de los artículos publicados. El 35.2% (12) estudios evaluaron pruebas moleculares y 64.7% (22) estudios pruebas serológicas, corresponde a 7292 pacientes. La evaluación de sesgo por Quadas 2 se aplicó a 29 estudios que mostró un riesgo bajo para item de selección de pacientes en 44.8 %, riesgo alto 41.3 % para item de prueba índice, 48 % no fue claro para el item de estándar de referencia y riesgo bajo 93.1 % para el item de flujo de pacientes. Tres estudios con la herramienta The Joanna Briggs Institute Critical Appraisal tolos aprobaron para bajo riesgo de sesgo. En 59% (13/22) de los estudios que evaluaron pruebas serológicas usando ambos anticuerpos (IgM/IgG), el 31.8 % (7) fueron pruebas de inmunocromatográficas. En las pruebas serológicas la sensibilidad más alta fue 99 % después del día 15. La especificidad en general de las pruebas moleculares fue superior a 90 %. El rango de sensibilidad para las muestras respiratorias va desde 28.6% hasta 99 %, la más alta está relacionada con muestras de esputo y saliva. Conclusión: En esta revisión varios estudios no caracterizaron adecuadamente su población, aumentando así la heterogeneidad, limitando así definir si son extrapolables los datos en nuestro medio. Casi la mitad de los estudios tuvo riesgo de sesgo en los diferentes ítems evaluados, indicando que no fue claramente descrito los elementos metodológicos. Sin embargo, la RT-PCR desde el comienzo de la pandemia se ubica como prueba de referencia, aunque no cumpla con el rendimiento de un Gold estándar y las pruebas serológicas son de apoyo en enfermedad tardía (más de 11 días de inicio de síntomas). | spa |
dc.description.abstract | Humanity at different times in history has been affected by epidemic outbreaks, some of them with such an impact as that of a pandemic. Recently in 2002 by coronavirus SARS (severe acute respiratory syndrome), in 2009 Influenza H1N1 (swine flu), in 2012 MERS (Middle East respiratory syndrome), among others. In December 2019 in the city of Wuhan China, a new virus from the group of coronaviruses, called SARS - CoV-2 (severe acute respiratory syndrome 2, for its acronym in English) appears with a rapid worldwide expansion and with rates of transmissibility high lethality. The fatality data ranges from 0.1% to 13.8% related to age, with an overall mortality rate of 0.66%. Estimates that evaluate the proportion of infected people with a probability of being hospitalized increased with age, showing that people over 80 years of age had a probability of 18.4%. At the same time that the pandemic progressed, different tests were developed with different techniques for the diagnosis of this infection. Some of them are molecular tests, antigen tests, antibody detection tests that are part of the tools in the laboratory for the identification of SARS CoV-2 infection. Methods: A systematic literature search was carried out electronically through the Medline database, embase, proquest, and gray literature search, between January and November 2020, of all available publications that had evaluated the performance of the tests available to make the diagnosis of COVID 19 in symptomatic adults, the available demographic characteristics are described, to which the risk of bias tools were applied using quadas -2 and The Joanna Briggs Institute Critical Appraisal tools according to the methodology of the study. Results: 174 articles were evaluated, finally 34 studies were analyzed. Most of these articles were published between July and November, the United States of America represents 35% (12) of the articles published. 35.2% (12) studies evaluated molecular tests and 64.7% (22) studies serological tests, corresponding to 7292 patients. The assessment of bias by Quadas 2 was applied to 29 studies that showed a low risk for patient selection item in 44.8%, high risk 41.3% for index test item, 48% was not clear for the reference standard item and 93.1% low risk for the patient flow item. Three studies using The Joanna Briggs Institute Critical Appraisal tool all passed for low risk of bias. In 59% (13/22) of the studies that evaluated serological tests using both antibodies (IgM / IgG), 31.8% (7) were immunochromatographic tests. In serological tests the highest sensitivity was 99% after day 15. The overall specificity of molecular tests was greater than 90%. The sensitivity range for respiratory samples goes from 28.6% to 99%, the highest being related to sputum and saliva samples. Conclusion: In this review, several studies did not adequately characterize their population, thus increasing heterogeneity, thus limiting whether the data can be extrapolated in our setting. Almost half of the studies had a risk of bias in the different items evaluated, indicating that the methodological elements were not clearly described. However, RT-PCR since the beginning of the pandemic is the reference test, although it does not meet the performance of a Gold standard and serological tests are supportive in late disease (more than 11 days of symptom onset). | spa |
dc.description.additional | Línea de Investigación: En enfermedades infecciosas | spa |
dc.description.degreelevel | Especialidades Médicas | spa |
dc.description.sponsorship | Universidad Nacional de Colombia | spa |
dc.format.extent | 65 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Solórzano- Ramos C, Álvarez-Moreno C. Evaluación de pruebas diagnósticas en infección por SARS CoV-2 / COVID 19 en adultos. Universidad Nacional de Colombia-Sede Bogotá; 2020 | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78952 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Medicina - Especialidad en Infectología | spa |
dc.relation.references | Millán Oñate J, Rodríguez Morales AJ, Camacho Moreno G, Mendoza Ramírez H, Rodríguez-Sabogal IA, Álvarez Moreno C. A new emerging zoonotic virus of concern: the 2019 novel Coronavirus (COVID-19). Infectio 2020;24 | spa |
dc.relation.references | Robert V, Lucy O, Ilaria D, et al. Estimates of the severity of coronavirus disease 2019: a model-based análisis. Lancet Infect Dis 2020; 20: 669–77 | spa |
dc.relation.references | Li, F. (2016). Estructura, función y evolución de las proteínas de pico de coronavirus. Annu Rev 3, 237-261. | spa |
dc.relation.references | Su, S., Wong, G., Shi, W., Liu, J., Lai, AC, Zhou, J. y col. (2016). Epidemiología, recombinación genética y patogenia de coronavirus. Trends Microbiol 24, 490–502. Crossref, Medline, Google Académico | spa |
dc.relation.references | Bárcena, M., Oostergetel, GT, Bartelink, W., Faas, FG, Verkleij, A., Rottier, PJ, et al. (2009). Tomografía crioelectrónica del virus de la hepatitis de ratón: información sobre la estructura del coronavirion. Proc Natl Acad Sci USA 106, 582–587 | spa |
dc.relation.references | Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G., and Hiscox, J.A. (2001). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol 75, 9345–9356. | spa |
dc.relation.references | E. Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., and Pöhlmann, SJJov. (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 88, 1293–1307 | spa |
dc.relation.references | Asghari A, Naseri M, Safari H, Saboory E, Parsamanesh N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol. 2020;39(10):1741-1753. | spa |
dc.relation.references | Mollica, V., Rizzo, A., & Massari, F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future oncology (London, England). 2020; 16(27), 2029–2033. | spa |
dc.relation.references | Fehr AR, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H, Bickerton E, Britton P, editors. Coronaviruses Methods in Molecular Biology.2015; Vol 1282. New York, NY: Humana Press. | spa |
dc.relation.references | Chang D, Mo G, Yuan X, et al. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection. Am J Respir Crit Care Med. 2020;201(9):1150-1152. | spa |
dc.relation.references | Modelo de transmisión de coronavirus COVID-19. Escenarios para Colombia – Observatorio Nacional de Salud. INS. [Internet]. 2020 [consulta 2020 Sep 15. Available from: https://www.ins.gov.co/Direcciones/ONS/SiteAssets/Modelo%20COVID-19%20Colombia%20INS_v5.pdf | spa |
dc.relation.references | U.S. Department of Health & Human Services (2020) Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. [Internet]. 2020 (consulta24 Jan 2020). Available from: https:// www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-fordetection instructions.pdf. 2014. | spa |
dc.relation.references | Chu DKW, Pan Y, Cheng SMS, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem. 2020;66(4):549-555 | spa |
dc.relation.references | Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J Clin Microbiol. 2020;58(6): e00512-20 | spa |
dc.relation.references | World Health Organization (WHO). Molecular assays to diagnose COVID-19: Summary table of available protocols [Internet]. 2020 [cited 2020 Jul 17]. Available from: https://www.who.int/publications/m/item/molecular-assays-to-diagnose-covid-19-summary-table-of-availableprotocols | spa |
dc.relation.references | Bolívar AM, Rojas A, García LP. RCP y RCP-Múltiple: parámetros críticos y protocolo de estandarización (RCP and RCP-Multiplex: critical parameters and standardization protocol). Avan Biomed. 2014;3(1):25-33. | spa |
dc.relation.references | Conca N, et al. "Diagnóstico etiológico en meningitis y encefalitis por técnicas de biología molecular". Rev. chil. pediatr. 2016; 87(1): 24-30. | spa |
dc.relation.references | Rasmussen HB. Restriction fragment length polymorphism analysis of RCP-amplified fragments (RCP-RFLP) and gel electrophoresis-valuable tool for genotyping and genetic fingerprinting. Chapter from the book Gel Electrophoresis - Principles and Basic. 2012; chapter 18, 316 – 319 p. [Internet]. 2020 [consulta 2020 Sep 15. Available from: https://www.intechopen.com/books/gel-electrophoresis-principles-and-basics/restriction-fragment-length-polymorphism-analysis-of-pcr-amplified-fragments-pcr-rflp-and-related-te | spa |
dc.relation.references | Wei WE, Li Z, Chiew CJ, Yong SE, Toh MP, Lee VJ. Presymptomatic Transmission of SARS-CoV-2. MMWR Morb Mortal Wkly Rep. 2020; 69: 411–415. | spa |
dc.relation.references | FDA - US Food and Drug Administration. Emergency Use Authorizations for Medical Devices [Internet]. 2020 [cited 2020 Jul 17]. Available from: https://www.fda.gov/medical-devices/emergency-situations-medicaldevices/ emergency-use-authorizations#coronavirus2019 | spa |
dc.relation.references | Organización Panamericana de la Salud/ Organización Mundial de la Salud. Directrices de Laboratorio para la Detección y el Diagnóstico de la Infección con el Virus COVID-19. 2020 | spa |
dc.relation.references | World Health Organization (WHO). Coronavirus disease (COVID-19) Pandemic – Emergency Use Listing Procedure (EUL) open for in vitro diagnostics [Internet]. 2020 [cited 2020 Jul 17]. Available from: https:// www.who.int/diagnostics_laboratory/EUL/en/ | spa |
dc.relation.references | Nalla AK, Casto AM, Huang MW, et al. Comparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit. J Clin Microbiol. 2020;58(6): e00557-20 | spa |
dc.relation.references | Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020;323(22):2249-2251. | spa |
dc.relation.references | Tom MR, Mina MJ. To Interpret the SARS-CoV-2 Test, Consider the Cycle Threshold Value. Clin Infect Dis. 2020;71(16):2252-2254 | spa |
dc.relation.references | Tom MR, Mina MJ. To Interpret the SARS-CoV-2 Test, Consider the Cycle Threshold Value. Clin Infect Dis. 2020;71(16):2252-2254 | spa |
dc.relation.references | He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19 [published correction appears in Nat Med. 2020 Sep;26(9):1491-1493]. Nat Med. 2020;26(5):672-675. | spa |
dc.relation.references | Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443 | spa |
dc.relation.references | U.S. Department of Health & Human Services (2020) Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus. 24 Jan 2020. En: https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-fordetection-instructions.pdf. 2014 | spa |
dc.relation.references | Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177–9 | spa |
dc.relation.references | Diao B., Wen K., Chen J., Liu Y., Yuan Z., Han C., Chen J., Pan Y., Chen L., Dan Y., Wang J., Chen Y., Deng G., Zhou H., Wu Y. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv. 2020; .03.07.20032524 | spa |
dc.relation.references | Diao B., Wen K., Chen J., Liu Y., Yuan Z., Han C., Chen J., Pan Y., Chen L., Dan Y., Wang J., Chen Y., Deng G., Zhou H., Wu Y. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv. 2020; .03.07.20032524 | spa |
dc.relation.references | Porte L, Legarraga P, Vollrath V, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis. 2020; 99:328-333. | spa |
dc.relation.references | Cerutti F, Burdino E, Milia MG, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J Clin Virol. 2020; 132:104654 | spa |
dc.relation.references | Pizcaso juan, Fuertes Antonio. Protocolos de diagnóstico serológico clínico número 1. (internet). Innogenetics versión 1.1; julio 1996. (cited 2020 Nov 15). Available from: https://web.ua.es/es/eurle/documentos/trabajo-de-fin-de-grado/estilo-vancouver.pdf | spa |
dc.relation.references | Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020;92(9):1518-1524 | spa |
dc.relation.references | Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71(15):778-785 | spa |
dc.relation.references | Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;296(2): E32-E40 | spa |
dc.relation.references | Greenhalgh T. How to read a paper. Papers that report diagnostic or screening tests. BMJ. 1997;315(7107):540–3. | spa |
dc.relation.references | Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions Version 5.1. 0. [updated March 2011]. The Cochrane Collaboration, 2011Avialable from www. cochrane-handbook. org. TheCochrane Collaboration. 2014. | spa |
dc.relation.references | Deeks JJ, Glanville J, Sheldon T. Undertaking systemic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. CRD Report 4. 2001. p. 11. | spa |
dc.relation.references | Javier Zamora Romero, María Nieves Plana, Víctor Abraira Santos. Estudios de evaluación de la validez de una prueba diagnóstica: revisión sistemática y metanálisis. Suplemento de NEFROLOGÍA BASADA EN LA EVIDENCIA. Vol. 29. Núm. 6. diciembre 2009. páginas 7-89 | spa |
dc.relation.references | Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Paniz- Mondolfi A, et al. History is repeating itself, a probable zoonotic spillover as a cause of an epidemic: the case of 2019 novel Coronavirus. Infez Med. 2020; 28:3-5. | spa |
dc.relation.references | Plowright RK, Parrish CR, McCallum H, Hudson PJ, et al. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017; 15:502-10. | spa |
dc.relation.references | Salata C, Calistri A, Parolin C, Palu G. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog Dis. 2019;77(9): ftaa006 | spa |
dc.relation.references | World Health Organization. Novel Coronavirus (2019-nCoV) – Situation report - 7 - 27 January 2020. [Internet]. Available from: https://www.who.int/docs/defaultsource/ coronaviruse/situation-reports/20200127-sitrep-7-2019--ncov. pdf?sfvrsn=98ef79f5_2020. | spa |
dc.relation.references | World Health Organization. Pneumonia of unknown cause – China. [Internet]. (Cited 2020 Ene 05). Available from: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkowncause-china/en/. 2020. | spa |
dc.relation.references | World Health Organization; List of Blueprint priority diseases. 2018. [Internet]. (Cited 2020 Nov 10). Available from: http://www.emro.who.int/pandemic-epidemic-diseases/news/list-of-blueprint-priority-diseases.html | spa |
dc.relation.references | Instituto Nacional de Salud. Anexo. Instructivo para la vigilancia en salud pública intensificada de infección respiratoria aguda asociada al nuevo coronavirus 2019 (COVID-19). [Internet]. (Up date 2020 Jul 24 – Cited 2020 Sep 20). Available from: https://www.ins.gov.co/Noticias/Coronavirus/Anexo_%20Instructivo%20Vigilancia%20COVID%20v12%2024072020.pdf | spa |
dc.relation.references | Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069 | spa |
dc.relation.references | Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(24):759-765. | spa |
dc.relation.references | Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg. 2020;163(1):3-11 | spa |
dc.relation.references | World Health Organization (WHO). Coronavirus disease 2019 (COVID-19) Situation Report – 56 [Internet]. 2020. Available from: https://www.who. int/docs/default source/coronaviruse/situation-reports/20200316- sitrep-56-COVID pdf?sfvrsn=9fda7db2_2 | spa |
dc.relation.references | Pfefferle S, Reucher S, Nörz D, Lütgehetmann M. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Euro Surveill. 2020;25(9):2000152 | spa |
dc.relation.references | Liu L, Liu W, Wang S, Zheng S. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. medRxiv. 2020 Mar 8;2020.03.06.20031856 | spa |
dc.relation.references | Munn Z, Moola S, Riitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int J Health Policy Manag. 2014;3(3):123-128 | spa |
dc.relation.references | Österdahl MF, Lee KA, Lochlainn MN, et al. Detecting SARS-CoV-2 at point of care: preliminary data comparing loop-mediated isothermal amplification (LAMP) to polymerase chain reaction (PCR). BMC Infect Dis. 2020;20(1):783 | spa |
dc.relation.references | Lai T, Xiang F, Zeng J, et al. Reliability of induced sputum test is greater than that of throat swab test for detecting SARS-CoV-2 in patients with COVID-19: A multi-center cross-sectional study. Virulence. 2020;11(1):1394-1401 | spa |
dc.relation.references | Cradic K, Lockhart M, Ozbolt P, et al. Clinical Evaluation and Utilization of Multiple Molecular In Vitro Diagnostic Assays for the Detection of SARS-CoV-2. Am J Clin Pathol. 2020;154(2):201-207. | spa |
dc.relation.references | Moore NM, Li H, Schejbal D, Lindsley J, Hayden MK. Comparison of Two Commercial Molecular Tests and a Laboratory-Developed Modification of the CDC 2019-nCoV Reverse Transcriptase PCR Assay for the Detection of SARS-CoV-2. J Clin Microbiol. 2020;58(8): e00938-20 | spa |
dc.relation.references | Hogan CA, Garamani N, Lee AS, et al. Comparison of the Accula SARS-CoV-2 Test with a Laboratory-Developed Assay for Detection of SARS-CoV-2 RNA in Clinical Nasopharyngeal Specimens. J Clin Microbiol. 2020;58(8): e01072-20. | spa |
dc.relation.references | Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the Rapid Detection of SARS-CoV-2. J Clin Virol. 2020; 128:104428 | spa |
dc.relation.references | Loeffelholz MJ, Alland D, Butler-Wu SM, et al. Multicenter Evaluation of the Cepheid Xpert Xpress SARS-CoV-2 Test. J Clin Microbiol. 2020;58(8): e00926-20 | spa |
dc.relation.references | Zhen, W., Manji, R., Smith, E., & Berry, G. J. Comparison of Four Molecular In Vitro Diagnostic Assays for the Detection of SARS-CoV-2 in Nasopharyngeal Specimens. Journal of Clinical Microbiology, julio de 2020, 58 (8) e00743-2 | spa |
dc.relation.references | Zhen W, Smith E, Manji R, Schron D, Berry GJ. Clinical Evaluation of Three Sample-to-Answer Platforms for Detection of SARS-CoV-2. J Clin Microbiol. 2020;58(8): e00783-20. | spa |
dc.relation.references | Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR [published correction appears in Euro Surveill. 2020 Apr;25(14):] [published correction appears in Euro Surveill. 2020 jul;25(30):]. Euro Surveill. 2020;25(3):2000045 | spa |
dc.relation.references | Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR [published correction appears in Euro Surveill. 2020 Apr;25(14):] [published correction appears in Euro Surveill. 2020 jul;25(30):]. Euro Surveill. 2020;25(3):2000045 | spa |
dc.relation.references | Attwood, L. O., Francis, M. J., Hamblin, J., Korman, T. M., Druce, J., & Graham, M. Clinical evaluation of AusDiagnostics SARS-CoV-2 multiplex tandem PCR assay. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. (2020); 128, 104448 | spa |
dc.relation.references | Naaber P, Hunt K, Pesukova J, et al. Evaluation of SARS-CoV-2 IgG antibody response in PCR positive patients: Comparison of nine tests in relation to clinical data. PLoS One. 2020;15(10): e0237548 | spa |
dc.relation.references | Xiang J, Chen Z, Zhou J, et al. Comparative analysis of the main haematological indexes and RNA detection for the diagnosis of SARS-CoV-2 infection. BMC Infect Dis. 2020;20(1):779. | spa |
dc.relation.references | Gambino CM, Lo Sasso B, Colomba C, et al. Comparison of a rapid immunochromatographic test with a chemiluminescence immunoassay for detection of anti-SARS-CoV-2 IgM and IgG. Biochem Med (Zagreb). 2020;30(3):030901. | spa |
dc.relation.references | Pickering S, Betancor G, Galão RP, et al. Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings. PLoS Pathog. 2020;16(9): e1008817 | spa |
dc.relation.references | Prazuck T, Colin M, Giachè S, et al. Evaluation of performance of two SARS-CoV-2 Rapid IgM-IgG combined antibody tests on capillary whole blood samples from the fingertip. PLoS One. 2020;15(9): e0237694. Published 2020 Sep 17 | spa |
dc.relation.references | Vidal-Anzardo M, Solis G, Solari L, et al. Evaluation of a rapid serological test for detection of IgM and igG antibodies against SARS-CoV-2 under field conditions. Evaluación en condiciones de campo de una prueba serológica rápida para detección de anticuerpos IgM e IgG contra SARS-CoV-2. Rev Peru Med Exp Salud Publica. 2020;37(2):203-209 | spa |
dc.relation.references | Costa, S. F., Buss, L., Espinoza, E., et al. Performance of a qualitative rapid chromatographic immunoassay to diagnose COVID-19 in patients in a middle-income country. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2020; 131, 104592. | spa |
dc.relation.references | Guedez-López, G.V., Alguacil-Guillén, M., González-Donapetry, P. et al. Evaluation of three immunochromatographic tests for rapid detection of antibodies against SARS-CoV-2. Eur J Clin Microbiol Infect Dis. 2020; 39, 2289–2297. | spa |
dc.relation.references | Van Elslande J, Decru B, Jonckheere S, et al. Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by four automated immunoassays and three ELISAs. Clin Microbiol Infect. 2020;26(11): 1557.e1-1557.e7 | spa |
dc.relation.references | Pallett, S., Rayment, M., Patel, A., Fitzgerald-Smith, S., Denny, S. J., Charani, E., Mai, A. L., Gilmour, K. C., Hatcher, J., Scott, C., Randell, P., Mughal, N., Jones, R., Moore, L., & Davies, G. W. Point-of-care serological assays for delayed SARS-CoV-2 case identification among health-care workers in the UK: a prospective multicentre cohort study. The Lancet. Respiratory medicine, 2020; 8(9), 885–894. | spa |
dc.relation.references | Pancrazzi, A., Magliocca, P., Lorubbio, M., Vaggelli, G., et al. Comparison of serologic and molecular SARS-CoV 2 results in a large cohort in Southern Tuscany demonstrates a role for serologic testing to increase diagnostic sensitivity. Clinical biochemistry,2020; 84, 87–92 | spa |
dc.relation.references | Meschi, S., Colavita, F., Bordi, L., Matusali, G., Lapa, D., Amendola, A., Vairo, F., Ippolito, G., Capobianchi, M. R., Castilletti, C., & INMICovid-19 laboratory team. Performance evaluation of Abbott ARCHITECT SARS-CoV-2 IgG immunoassay in comparison with indirect immunofluorescence and virus microneutralization test. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology, 2020; 129, 104539 | spa |
dc.relation.references | Serrano, M. M., Rodríguez, D. N., Palop, N. T., Arenas, R. O., Córdoba, M. M., Mochón, M., & Cardona, C. G. Comparison of commercial lateral flow immunoassays and ELISA for SARS-CoV-2 antibody detection. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology,2020; 129, 104529 | spa |
dc.relation.references | Qian, C., Zhou, M., Cheng, F., Lin, X., et al. Development and multicenter performance evaluation of fully automated SARS-CoV-2 IgM and IgG immunoassays. Clinical chemistry and laboratory medicine, 2020;58(9), 1601–1607 | spa |
dc.relation.references | Nicol, T., Lefeuvre, C., Serri, O., Pivert, A., Joubaud, F., Dubée, V., Kouatchet, A., Ducancelle, A., Lunel-Fabiani, F., & Le Guillou-Guillemette, H. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech). Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology, 2020; 129, 104511 | spa |
dc.relation.references | Jääskeläinen, A. J., Kuivanen, S., Kekäläinen, E., Ahava, M. J, et al. Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology, 2020;129, 104512. | spa |
dc.relation.references | Dellière, S., Salmona, M., Minier, M., Gabassi, A., Alanio, A., Le Goff, J., Delaugerre, C., Chaix, M. L., & Saint-Louis CORE (COvid REsearch) group. Evaluation of the COVID-19 IgG/IgM Rapid Test from Orient Gene Biotech. Journal of clinical microbiology, 2020; 58(8), e01233-20 | spa |
dc.relation.references | Theel, E. S., Harring, J., Hilgart, H., & Granger, D. Performance Characteristics of Four High-Throughput Immunoassays for Detection of IgG Antibodies against SARS-CoV-2. Journal of clinical microbiology,2020; 58(8), e01243-20 | spa |
dc.relation.references | Imai, K., Tabata, S., Ikeda, M., Noguchi, S., et al. Clinical evaluation of an immunochromatographic IgM/IgG antibody assay and chest computed tomography for the diagnosis of COVID-19. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology, 2020; 128, 104393. | spa |
dc.relation.references | To, K. K., Tsang, O. T., Leung, W. S., Tam, A. R., et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet. Infectious diseases, 2020; 20(5), 565–574 | spa |
dc.relation.references | Liu, L., Liu, W., Zheng, Y., Jiang, X., et al. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. Microbes and infection, 2020; 22(4-5), 206–211 | spa |
dc.relation.references | Saavedra Trujillo CH. Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud. Infectio. 2020;24(3):1-21 | spa |
dc.relation.references | Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2021;49(1):21- | spa |
dc.relation.references | Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y, Feng Y, Zhu C. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta. 2020 jun; 505:172-175. | spa |
dc.relation.references | Estrada-Orozco K, Robayo A, Arévalo A, Zabaleta G, Mercado-Reyes M. Validación Secundaria y verificación del desempeño de la prueba rápida “COVID-19 IgG/IgM RAPID TEST DEVICE” [Internet]. Instituto Nacional de Salud, Instituto de Evaluación Tecnológica en Salud. 2020. p. 7. Available from: https://www.ins.gov.co/Pruebas_Rapidas/3.%20Informe%20de%20Validaci%C3%B3n%20PR%20BasePoint%20Abbot.pdf | spa |
dc.relation.references | Mercado-Reyes M, Estrada-Orozco K, Robayo A, Arévalo A, Zabaleta G, Delgado G. Validación secundaria y verificación del desempeño de la prueba rápida “COVID-19 IgG/IgM Duo” [Internet]. Instituto Nacional de Salud, Instituto de Evaluación Tecnológica en Salud, Secretaría de Salud de Bogotá. 2020. p. 7. Available from: https://www.ins.gov.co/Pruebas_Rapidas/4.%20Informe%20de%20validaci%C3%B3n%20PR%20SD%20Biosensor.pdf | spa |
dc.relation.references | Mercado-Reyes M, Delgado G, Zabaleta G, Estrada-Orozco K, Robayo A, Arévalo A. Laccurate Validación secundaria y verificación del desempeño de la prueba rápida “SARS-CoV-2 Antibody Test (coloidal gold immunochromatography).” Instituto Nacional de Salud, Instituto de Evaluación Tecnológica en Salud, Secretaría de Salud de Bogotá. 2020.p.7. Available from: https://www.ins.gov.co/Pruebas_Rapidas/8.%20Informe%20de%20validaci%C3%B3n%20PR%20Leccurate%20SARS-CoV2%20antibody%20Test%20(Colloidal%20gold%20immunochomatography).pdf | spa |
dc.relation.references | Mercado-Reyes M, Delgado G, Zabaleta G, Estrada-Orozco K, Robayo A, Arévalo A. Validación secundaria y verificación del desempeño de la prueba rápida “INNOVITA® 2019-nCoV Ab test (Colloidal Gold).” Instituto Nacional de Salud, Instituto de Evaluación Tecnológica en Salud, Secretaría de Salud de Bogotá. 2020. p. 7. Avalaible from: https://www.ins.gov.co/Direcciones/Investigacion/Informacionsobrepruebas/Pruebas%20r%C3%A1pidas/7.%20Informe%20de%20validaci%C3%B3n%20PR%20INNOVITA%202019-nCoV%20Ab%20Test%20(Colloidal%20Gold).pdf | spa |
dc.relation.references | Mercado-Reyes M, Delgado G, Zabaleta G, Estrada-Orozco K, Robayo A, Arévalo A. AMS International Validación secundaria y verificación del desempeño de la prueba rápida “2019-nCoV IgG/IgM WB Device.” Instituto Nacional de Salud, Instituto de Evaluación Tecnológica en Salud, Secretaría de Salud de Bogotá. 2020. p. 7. Avalaible from: https://www.ins.gov.co/Direcciones/Investigacion/Informacionsobrepruebas/Pruebas%20r%C3%A1pidas/6.%20Informe%20de%20validaci%C3%B3n%20PR%20AMS%202019-nCoV%20IgG-IgMWB%20Device.pdf | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.proposal | SARS CoV-2 | eng |
dc.subject.proposal | SARS CoV-2 | spa |
dc.subject.proposal | COVID-19 | spa |
dc.subject.proposal | COVID-19 | eng |
dc.subject.proposal | Diagnostico | spa |
dc.subject.proposal | Diagnoses | eng |
dc.subject.proposal | Sintomaticos | spa |
dc.subject.proposal | Syntomatic | eng |
dc.subject.proposal | RT-PCR | spa |
dc.subject.proposal | RT-PCR | eng |
dc.subject.proposal | Serology | eng |
dc.subject.proposal | Serologia | spa |
dc.subject.proposal | Revisión sistemática | spa |
dc.subject.proposal | Systematic review | eng |
dc.title | Evaluación de pruebas diagnósticas en infección por SARS CoV-2 / COVID 19 en adultos | spa |
dc.type | Trabajo de grado - Especialidad Médica | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |