Caracterización fisicoquímica de péptidos sintéticos monoméricos y diméricos derivados de la Lactoferricina Bovina con actividad anticancerígena comprobada

dc.contributor.advisorGarcía Castañeda, Javier Eduardo
dc.contributor.advisorMartínez Ramírez, Jorge Ariel
dc.contributor.authorGonzález López, Nicolás Mateo
dc.contributor.orcidNicolás Mateo González López [0000-0003-0009-1347]spa
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.date.accessioned2023-08-01T17:34:10Z
dc.date.available2023-08-01T17:34:10Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractSegún la OMS el cáncer es una de las causas principales de muerte a nivel mundial, presentándose 10 millones de fallecimientos en el 2020. Las terapias para el manejo contra el cáncer son agresivas, poco selectivas y producen efectos adversos que afectan la calidad de vida del paciente. Esto ha generado la necesidad de desarrollar nuevos tratamientos contra el cáncer que sean seguros y eficaces. En la actualidad los péptidos han surgido como una alternativa terapéutica para el tratamiento de enfermedades, sin embargo, debido a que cada péptido posee propiedades fisicoquímicas únicas, hace que su caracterización analítica represente grandes retos, y esto hace que sea una etapa clave en el desarrollo de medicamentos. En este trabajo se desarrollaron e implementaron metodologías analíticas siguiendo las recomendaciones de las farmacopeas USP y europea para caracterizar péptidos utilizando como modelo experimental los péptidos anticancerígenos: RWQWRWQWR y (RRWQWRFKKLG)2-K-Ahx, los cuales se consideran promisorios para el desarrollo de un medicamento de amplio espectro contra el cáncer. Se realizó el escalamiento de la síntesis de los dos péptidos obteniendo tres lotes de aproximadamente 10, 50 y 100 mg de péptido puro (Capítulo 1) con el objetivo de determinar si el escalamiento del proceso sintético afectaba las propiedades fisicoquímicas del fármaco. Se desarrollaron e implementaron metodologías de análisis por RP-HPLC (Capítulo 2) y LC-MS (Capítulo 3) para confirmar su identidad. Los métodos de RP-HPLC desarrollados pueden ser utilizados para identificar y/o cuantificar péptidos con un amplio rango de hidrofobicidad/hidrofilicidad en mezclas complejas o provenientes de matrices biológicas. Se empleó espectroscopía RMN para caracterizar ambos péptidos (Capítulo 4), se modelaron sus propiedades fisicoquímicas utilizando herramientas bioinformáticas (Capítulo 5). Se desarrolló e implementó un método para determinar el contenido de péptido en cada lote empleando IS y evaluándolos a 280nm (Capítulo 6). Se identificó y cuantifico los péptidos en el medio de cultivo de la línea celular HeLa (Capítulo 9). Finalmente, se caracterizó cada péptido por FT-IR y se empleó esta técnica para implementar y monitorear el cambio del contraión trifluoroacetato a clorhidrato. (Capítulos 7 y 8). Las metodologías desarrolladas en este trabajo pueden ser aplicadas para la caracterización fisicoquímica de péptidos monoméricos o diméricos. Estas metodologías son versátiles y de amplia cobertura por lo que se pueden utilizar para caracterizar péptidos con diversas propiedades fisicoquímicas. (Texto tomado de la fuente)spa
dc.description.abstractAccording to the WHO cancer is one of the leading causes of death worldwide, with 10 million deaths in 2020. The therapies for cancer management are aggressive, non-selective, and produce adverse effects that affect the quality of life of the patient. This has generated the need to develop new cancer treatments that are safe and effective. Currently, peptides have emerged as a therapeutic alternative for the treatment of diseases, however, since each peptide has unique physicochemical properties, its analytical characterization represents a great challenge and is a key stage in drug development. In this work, analytical methodologies recommended by the USP, and European pharmacopeias will be developed and implemented to characterize the anticancer peptides: RWQWRWQWR and (RRWQWRFKKLG)2-K-Ahx, which are considered promising for the development of a broad-spectrum cancer drug. The synthesis of the two peptides was scaled up, obtaining three batches of approximately 10, 50 and 100 mg of pure peptide (Chapter 1) with the objective of determining if the scaling up of the synthetic process affected the physicochemical properties of the drug. Analytical methodologies by RP-HPLC (Chapter 2) and LC-MS (Chapter 3) were developed to confirm their identity. The developed RP-HPLC methods can be used to identify and/or quantify peptides with a wide range of hydrophobicity/hydrophilicity in complex mixtures or from biological matrices. NMR was used to structurally characterize both peptides (Chapter 4). Their physicochemical properties were modeled using bioinformatics tools (Chapter 5). A method was developed and implemented to determine the peptide content in the batches using IS and evaluating them at 280nm (Chapter 6). Peptides were identified and quantified in the culture medium of the HeLa cell line (Chapter 9). Finally, each peptide was characterized by FT-IR and this technique was also used to monitor the change of the counterion trifluoroacetate to hydrochloride. (Chapters 7 and 8). The methodologies developed in this work can be applied for the physicochemical characterization of monomeric or dimeric peptides. These methodologies are versatile and have a wide coverage, so they can be used to characterize peptides with diverse physicochemical properties.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Farmacéuticasspa
dc.description.researchareaAnálisis Farmacéuticospa
dc.format.extentxx, 101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84397
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesAmerican Cancer Society. Datos y Estadísticas Sobre El Cáncer Entre Los Hispanos/Latinos 2018-2020; Atlanta, 2018.spa
dc.relation.referencesMinisterio de Salud. Plan Nacional de Cuidados Integrales Del Cáncer (2020 - 2024); Lima, 2021.spa
dc.relation.referencesTattersall, M. H. N.; Thomas, H. Recent Advances: Oncology. BMJ 1999, 318, 1–4.spa
dc.relation.referencesXie, M.; Liu, D.; Yang, Y. Anti-Cancer Peptides: Classification, Mechanism of Action, Reconstruction and Modification. Open Biol 2020, 10 (7), 1–10. https://doi.org/10.1098/rsob.200004.spa
dc.relation.referencesSchirrmacher, V. From Chemotherapy to Biological Therapy: A Review of Novel Concepts to Reduce the Side Effects of Systemic Cancer Treatment (Review). Int J Oncol 2019, 54 (2), 407–419. https://doi.org/10.3892/ijo.2018.4661.spa
dc.relation.referencesWefel, J. S.; Kayl, A. E.; Meyers, C. A. Neuropsychological Dysfunction Associated with Cancer and Cancer Therapies: A Conceptual Review of an Emerging Target. Br J Cancer 2004, 90 (9), 1691–1696. https://doi.org/10.1038/sj.bjc.6601772.spa
dc.relation.referencesGuerra, J. R.; Cárdenas, A. B.; Ochoa-Zarzosa, A.; Meza, J. L.; Umaña Pérez, A.; Fierro-Medina, R.; Rivera Monroy, Z. J.; García Castañeda, J. E. The Tetrameric Peptide LfcinB (20-25)4 Derived from Bovine Lactoferricin Induces Apoptosis in the MCF-7 Breast Cancer Cell Line. RSC Adv 2019, 9 (36), 20497–20504. https://doi.org/10.1039/c9ra04145a.spa
dc.relation.referencesLiscano, Y.; Oñate-Garzón, J.; Delgado, J. P. Peptides with Dual Antimicrobial–Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020, 25 (18), 1–20. https://doi.org/10.3390/molecules25184245.spa
dc.relation.referencesVergote, V.; Burvenich, C.; van de Wiele, C.; de Spiegeleer, B. Quality Specifications for Peptide Drugs: A Regulatory-Pharmaceutical Approach. Journal of Peptide Science 2009, 15 (11), 697–710. https://doi.org/10.1002/psc.1167.spa
dc.relation.referencesHilchie, A. L.; Doucette, C. D.; Pinto, D. M.; Patrzykat, A.; Douglas, S.; Hoskin, D. W. Pleurocidin-Family Cationic Antimicrobial Peptides Are Cytolytic for Breast Carcinoma Cells and Prevent Growth of Tumor Xenografts. Breast Cancer Research 2011, 13 (5), 1–16. https://doi.org/10.1186/bcr3043.spa
dc.relation.referencesFelício, M. R.; Silva, O. N.; Gonçalves, S.; Santos, N. C.; Franco, O. L. Peptides with Dual Antimicrobial and Anticancer Activities. Front Chem 2017, 5 (5), 1–9. https://doi.org/10.3389/fchem.2017.00005.spa
dc.relation.referencesHao, Y.; Yang, N.; Teng, D.; Wang, X.; Mao, R.; Wang, J. A Review of the Design and Modification of Lactoferricins and Their Derivatives. BioMetals 2018, 31 (3), 331–341. https://doi.org/10.1007/s10534-018-0086-6.spa
dc.relation.referencesGibbons, J. A.; Kanwar, R. K.; Kanwar, J. R. Lactoferrin and Cancer in Different Cancer Models. Frontiers in Bioscience 2011, 3, 1080–1088.spa
dc.relation.referencesMader, J. S.; Salsman, J.; Conrad, D. M.; Hoskin, D. W. Bovine Lactoferricin Selectively Induces Apoptosis in Human Leukemia and Carcinoma Cell Lines. Molecular Cancer Therapy 2005, 4 (4), 612–624.spa
dc.relation.referencesBoohaker, R. J.; Lee, M. W.; Vishnubhotla, P.; Perez, J. M.; Khaled, A. R. The Use of Therapeutic Peptides to Target and to Kill Cancer Cells. Curr Med Chem 2012, 19, 3794–3804.spa
dc.relation.referencesHuang, K. Y.; Tseng, Y. J.; Kao, H. J.; Chen, C. H.; Yang, H. H.; Weng, S. L. Identification of Subtypes of Anticancer Peptides Based on Sequential Features and Physicochemical Properties. Sci Rep 2021, 11 (1), 1–13. https://doi.org/10.1038/s41598-021-93124-9.spa
dc.relation.referencesD’Aloisio, V.; Dognini, P.; Hutcheon, G. A.; Coxon, C. R. PepTherDia: Database and Structural Composition Analysis of Approved Peptide Therapeutics and Diagnostics. Drug Discov Today 2021, 26 (6), 1409–1419. https://doi.org/10.1016/j.drudis.2021.02.019.spa
dc.relation.referencesHenninot, A.; Collins, J. C.; Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2018, 61 (4), 1382–1414. https://doi.org/10.1021/acs.jmedchem.7b00318.spa
dc.relation.referencesWang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic Peptides: Current Applications and Future Directions. Signal Transduct Target Ther 2022, 7 (1), 1–27. https://doi.org/10.1038/s41392-022-00904-4.spa
dc.relation.referencesLau, J. L.; Dunn, M. K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorg Med Chem 2018, 26 (10), 2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052.spa
dc.relation.referencesCharoenkwan, P.; Chiangjong, W.; Lee, V. S.; Nantasenamat, C.; Hasan, M. M.; Shoombuatong, W. Improved Prediction and Characterization of Anticancer Activities of Peptides Using a Novel Flexible Scoring Card Method. Sci Rep 2021, 11 (1), 1–13. https://doi.org/10.1038/s41598-021-82513-9.spa
dc.relation.referencesGaspar, D.; Salomé Veiga, A.; Castanho, M. A. R. B. From Antimicrobial to Anticancer Peptides. A Review. Front Microbiol 2013, 4, 1–16. https://doi.org/10.3389/fmicb.2013.00294.spa
dc.relation.referencesParedes-Gamero, E. J.; Martins, M. N. C.; Cappabianco, F. A. M.; Ide, J. S.; Miranda, A. Characterization of Dual Effects Induced by Antimicrobial Peptides: Regulated Cell Death or Membrane Disruption. Biochim Biophys Acta 2012, 1820 (7), 1062–1072. https://doi.org/10.1016/j.bbagen.2012.02.015.spa
dc.relation.referencesZhang, Y.; Lima, C. F.; Rodrigues, L. R. Anticancer Effects of Lactoferrin: Underlying Mechanisms and Future Trends in Cancer Therapy. Nutr Rev 2014, 72 (12), 763–773. https://doi.org/10.1111/nure.12155.spa
dc.relation.referencesJiang, R.; Lonnerdal, B. Bovine Lactoferrin and Lactoferricin Exert Antitumor Activities on Human Colorectal Cancer Cells (HT-29) by Activating Various Signaling Pathways. Biochem Cell. Biol. 2017, 95 (1), 1–42.spa
dc.relation.referencesPei, J.; Xiong, L.; Chu, M.; Guo, X.; Yan, P. Effect of Intramolecular Disulfide Bond of Bovine Lactoferricin on Its Molecular Structure and Antibacterial Activity against Trueperella Pyogenes Separated from Cow Milk with Mastitis. BMC Vet Res 2020, 16 (1), 1–10. https://doi.org/10.1186/s12917-020-02620-z.spa
dc.relation.referencesYan, D.; Chen, D.; Shen, J.; Xiao, G.; van Wijnen, A. J.; Im, H. J. Bovine Lactoferricin, an Antimicrobial Peptide Is Anti-Inflammatory and Anti-Catabolic in Human Articular Cartilage and Synovium. J Cell Physiol 2013, 228 (2), 447–456. https://doi.org/10.1002/jcp.24151.spa
dc.relation.referencesVorland, L. H.; Ulvatne, H.; Andersen, J.; Haukland, H. H.; Rekdal, Ø.; Svendsen, J. S.; Gutteberg, T. J.; Vorland, L. H. Lactoferricin of Bovine Origin Is More Active than Lactoferricins of Human, Murine and Caprine Origin. Scand J Infect Dis 1998, 30, 513–517.spa
dc.relation.referencesFang, B.; Guo, H. Y.; Zhang, M.; Jiang, L.; Ren, F. Z. The Six Amino Acid Antimicrobial Peptide BLFcin6 Penetrates Cells and Delivers SiRNA. FEBS Journal 2013, 280 (4), 1007–1017. https://doi.org/10.1111/febs.12093.spa
dc.relation.referencesHuertas, N. de J.; Monroy, Z. J. R.; Medina, R. F.; Castañeda, J. E. G. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia Coli ATCC 25922 and Staphylococcus Aureus ATCC 25923. Molecules 2017, 22 (6), 1–11. https://doi.org/10.3390/molecules22060987.spa
dc.relation.referencesBarragán-Cárdenas, A.; Insuasty-Cepeda, D. S.; Niño-Ramírez, V. A.; Umaña-Pérez, A.; Ochoa-Zarzosa, A.; López-Meza, J. E.; Rivera-Monroy, Z. J.; García-Castañeda, J. E. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect 2020, 5 (31), 9691–9700. https://doi.org/10.1002/slct.202002101.spa
dc.relation.referencesSolarte, V. A.; Conget, P.; Vernot, J. P.; Rosas, J. E.; Rivera, Z. J.; García, J. E.; Arango-Rodríguez, M. L. A Tetrameric Peptide Derived from Bovine Lactoferricin as a Potential Therapeutic Tool for Oral Squamous Cell Carcinoma: A Preclinical Model. PLoS One 2017, 12 (3), 1–17. https://doi.org/10.1371/journal.pone.0174707.spa
dc.relation.referencesInsuasty-Cepeda, D. S.; Barragán-Cárdenas, A. C.; Ochoa-Zarzosa, A.; López-Meza, J. E.; Fierro-Medina, R.; García-Castañeda, J. E.; Rivera-Monroy, Z. J. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci 2020, 21 (12), 1–13. https://doi.org/10.3390/ijms21124550.spa
dc.relation.referencesBarragán-Cárdenas, A. C.; Insuasty-Cepeda, D. S.; Cárdenas-Martínez, K. J.; López-Meza, J.; Ochoa-Zarzosa, A.; Umaña-Pérez, A.; Rivera-Monroy, Z. J.; García-Castañeda, J. E. LfcinB-Derived Peptides: Specific and Punctual Change of an Amino Acid in Monomeric and Dimeric Sequences Increase Selective Cytotoxicity in Colon Cancer Cell Lines. Arabian Journal of Chemistry 2022, 15 (8), 1–12. https://doi.org/10.1016/j.arabjc.2022.103998.spa
dc.relation.referencesD’Addio, S. M.; Bothe, J. R.; Neri, C.; Walsh, P. L.; Zhang, J.; Pierson, E.; Mao, Y.; Gindy, M.; Leone, A.; Templeton, A. C. New and Evolving Techniques for the Characterization of Peptide Therapeutics. J Pharm Sci 2016, 105 (10), 2989–3006. https://doi.org/10.1016/j.xphs.2016.06.011.spa
dc.relation.referencesEuropean Medicines Agency. ICH Topic Q 6 A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances; 2000. http://www.emea.eu.int.spa
dc.relation.referencesEuropean Medicines Agency. ICH Guideline M4 (R4) on Common Technical Document (CTD) for the Registration of Pharmaceuticals for Human Use-Organisation of CTD; 2021. www.ema.europa.eu/contact.spa
dc.relation.referencesCenter for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER). Guidance for Industry for the Submission of Chemistry, Manufacturing, and Controls Information for Synthetic Peptide Substances; 1994.spa
dc.relation.referencesChiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer Peptide: Physicochemical Property, Functional Aspect and Trend in Clinical Application (Review). Int J Oncol 2020, 57 (3), 678–696. https://doi.org/10.3892/ijo.2020.5099.spa
dc.relation.referencesSwietlow, A.; Lower, A. A Holistic Quality Control Strategy for Peptide Active Pharmaceutical Ingredients (APIs). In Peptide Therapeutics: Strategy and Tactics for Chemistry, Manufacturing and Controls; Srivastava, V., Ed.; Royal Society of Chemistry, 2019; pp 194–273. https://doi.org/10.1039/9781788016445-fp001.spa
dc.relation.referencesRodríguez, V.; Pineda, H.; Ardila, N.; Insuasty, D.; Cárdenas, K.; Román, J.; Urrea, M.; Ramírez, D.; Fierro, R.; Rivera, Z.; García, J. Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/TBu Protocol. Int J Pept Res Ther 2019, 26 (1), 585–587. https://doi.org/10.1007/s10989-019-09865-9.spa
dc.relation.referencesLeón-Calvijo, M. A.; Leal-Castro, A. L.; Almanzar-Reina, G. A.; Rosas-Pérez, J. E.; García-Castañeda, J. E.; Rivera-Monroy, Z. J. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia Coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int 2015, 2015, 1–9. https://doi.org/10.1155/2015/453826.spa
dc.relation.referencesInsuasty Cepeda, D. S.; Pineda Castañeda, H. M.; Rodríguez Mayor, A. V.; García Castañeda, J. E.; Maldonado Villamil, M.; Fierro Medina, R.; Rivera Monroy, Z. J. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules 2019, 24 (7), 1–9. https://doi.org/10.3390/molecules24071215.spa
dc.relation.referencesPorto, D. L.; da Silva, A. R. R.; Oliveira, A. de S.; Nogueira, F. H. A.; Pedrosa, M. de F. F.; Aragão, C. F. S. Development and Validation of a Stability Indicating HPLC-DAD Method for the Determination of the Peptide Stigmurin. Microchemical Journal 2020, 157, 1–9. https://doi.org/10.1016/j.microc.2020.104921.spa
dc.relation.referencesGonzález-López, N. M.; Insuasty-Cepeda, D. S.; Huertas-Ortiz, K. A.; Reyes-Calderón, J. E.; Martínez-Ramírez, J. A.; Fierro-Medina, R.; Jenny Rivera-Monroy, Z.; García-Castañeda, J. E. Gradient Retention Factor Concept Applied to Method Development for Peptide Analysis by Means of RP-HPLC. ACS Omega 2022, 7, 44817–44824. https://doi.org/10.1021/acsomega.2c04907.spa
dc.relation.referencesMeyer, V. R. Practical High-Performance Liquid Chromatography, 5th ed.; John Wiley and Sons, 2010.spa
dc.relation.referencesSnyder, L. R.; Kirkland, J. J. (Joseph J.; Dolan, J. W. Introduction to Modern Liquid Chromatography, 3rd ed.; John Wiley and Sons, 2010.spa
dc.relation.referencesSunde, H.; Ryder, K.; Bekhit, A. E. D. A.; Carne, A. Analysis of Peptides in a Sheep Beta Lactoglobulin Hydrolysate as a Model to Evaluate the Effect of Peptide Amino Acid Sequence on Bioactivity. Food Chem 2021, 365, 1–22. https://doi.org/10.1016/j.foodchem.2021.130346.spa
dc.relation.referencesField, J. K.; Euerby, M. R.; Lau, J.; Thøgersen, H.; Petersson, P. Investigation into Reversed Phase Chromatography Peptide Separation Systems Part I: Development of a Protocol for Column Characterisation. J Chromatogr A 2019, 1603 (11), 113–129.spa
dc.relation.referencesEhab Ibrahim, A.; Hashem, H.; Elhenawee, M.; Saleh, H. Monolithic and Core-Shell Particles Stationary Phase Morphologies in Protein Analysis; Peptide Mapping of Erythropoietin Hormone and Determination of Carbetocin. Ann Pharm Fr 2020, 78 (3), 206–216. https://doi.org/10.1016/j.pharma.2020.01.008.spa
dc.relation.referencesMichalski, A.; Damoc, E.; Hauschild, J. P.; Lange, O.; Wieghaus, A.; Makarov, A.; Nagaraj, N.; Cox, J.; Mann, M.; Horning, S. Mass Spectrometry-Based Proteomics Using Q Exactive, a High-Performance Benchtop Quadrupole Orbitrap Mass Spectrometer. Molecular and Cellular Proteomics 2011, 10 (9), 1–13. https://doi.org/10.1074/mcp.M111.011015.spa
dc.relation.referencesGross, J. H. Mass Spectrometry: A Textbook, 3rd ed.; Springer, 2017.spa
dc.relation.referencesBruderer, R.; Bernhardt, O. M.; Gandhi, T.; Xuan, Y.; Sondermann, J.; Schmidt, M.; Gomez-Varela, D.; Reiter, L. Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results. Molecular and Cellular Proteomics 2017, 16 (12), 2296–2309. https://doi.org/10.1074/mcp.RA117.000314.spa
dc.relation.referencesGeiger, T.; Cox, J.; Mann, M. Proteomics on an Orbitrap Benchtop Mass Spectrometer Using All-Ion Fragmentation. Molecular and Cellular Proteomics 2010, 9 (10), 2252–2261. https://doi.org/10.1074/mcp.M110.001537.spa
dc.relation.referencesRoepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed Mass Spectrom 1984, 11 (11), 601.spa
dc.relation.referencesWilson, D.; Daly, N. L. Nuclear Magnetic Resonance Seq (NMRseq): A New Approach to Peptide Sequence Tags. Toxins (Basel) 2018, 10 (11), 1–10. https://doi.org/10.3390/toxins10110437.spa
dc.relation.referencesMishra, N.; Coutinho, E. NMR in Structural Determination of Proteins and Peptides. J. Pharm. Sci. Technol. Manag 2020, 4 (1), 22–33.spa
dc.relation.referencesHinds, M. G.; Norton, R. S. NMR Spectroscopy of Peptides and Proteins. Mol Biotechnol 1997, 7, 315–331.spa
dc.relation.referencesBader, Z. PEPTIDE NMR; Zurich.spa
dc.relation.referencesChoules, M. P.; Bisson, J.; Gao, W.; Lankin, D. C.; McAlpine, J. B.; Niemitz, M.; Jaki, B. U.; Franzblau, S. G.; Pauli, G. F. Quality Control of Therapeutic Peptides by 1H NMR HiFSA Sequencing. Journal of Organic Chemistry 2019, 84 (6), 3055–3073. https://doi.org/10.1021/acs.joc.8b02704.spa
dc.relation.referencesBustamante Rojas, C. Fases Del Desarrollo de Un Nuevo Fármaco. In Estrategias de investigación en medicina clínica ; Bogotá, 2001; pp 123–134.spa
dc.relation.referencesWu, L. C.; Chen, F.; Lee, S. L.; Raw, A.; Yu, L. X. Building Parity between Brand and Generic Peptide Products: Regulatory and Scientific Considerations for Quality of Synthetic Peptides. Int J Pharm 2017, 518 (1–2), 320–334. https://doi.org/10.1016/j.ijpharm.2016.12.051.spa
dc.relation.referencesXiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res 2021, 49, W5–W14. https://doi.org/10.1093/nar/gkab255.spa
dc.relation.referencesBarrero, J. A.; Cabrera, F.; Cruz, C. M. Gliptins vs. Milk-Derived Dipeptidyl-Peptidase Iv Inhibiting Biopeptides: Physicochemical Characterization and Pharmacokinetic Profiling. Vitae 2021, 28 (3), 1–14. https://doi.org/10.17533/UDEA.VITAE.V28N3A346531.spa
dc.relation.referencesHart, L. R.; Lebedenko, C. G.; Mitchell, S. M.; Daso, R. E.; Banerjee, I. A. In Silico Studies of Tumor Targeted Peptide‐Conjugated Natural Products for Targeting Over‐Expressed Receptors in Breast Cancer Cells Using Molecular Docking, Molecular Dynamics and MMGBSA Calculations. Applied Sciences 2022, 12 (1), 1–41. https://doi.org/10.3390/app12010515.spa
dc.relation.referencesIwaniak, A.; Minkiewicz, P.; Pliszka, M.; Mogut, D.; Darewicz, M. Characteristics of Biopeptides Released in Silico from Collagens Using Quantitative Parameters. Foods 2020, 9 (7), 1–29. https://doi.org/10.3390/foods9070965.spa
dc.relation.referencesMinkiewicz, P.; Iwaniak, A.; Darewicz, M. Annotation of Peptide Structures Using SMILES and Other Chemical Codes-Practical Solutions. Molecules 2017, 22 (12), 1–17. https://doi.org/10.3390/molecules22122075.spa
dc.relation.referencesHuertas Ortiz, K. A. Caracterización Fisicoquímica de Un Péptido Polivalente, Derivado de La Lactoferricina Bovina, Candidato a Fármaco Para El Tratamiento Del Cáncer de Mama, Universidad Nacional de Colombia, Bogotá, 2021.spa
dc.relation.referencesStoscheck, C. M. Quantitation of Protein. Methods Enzymol 1990, 182, 1–19.spa
dc.relation.referencesMoffatt, F.; Senkans, P.; Ricketts, D. Approaches towards the Quantitative Analysis of Peptides and Proteins by Reversed-Phase High-Performance Liquid Chromatography in the Absence of a Pure Reference Sample. J Chromatogr A 2000, 891, 235–242.spa
dc.relation.referencesDrochioiu, G.; Adochitei, A. Rapid Characterization of Peptide Secondary Structure by FT-IR Spectroscopy. Rev. Roum. Chim 2011, 56 (8), 783–791.spa
dc.relation.referencesRoux, S.; Zékri, E.; Rousseau, B.; Cintrat, J. C.; Fay, N. Elimination and Exchange of Trifluoroacetate Counter-Ion from Cationic Peptides: A Critical Evaluation of Different Approaches. Journal of Peptide Science 2008, 14 (3), 354–359. https://doi.org/10.1002/psc.951.spa
dc.relation.referencesChapman, D.; I. Haris, P. The Conformational Analysis of Peptides Using Fourier Transform IR Spectroscopy. Biopolymers (Peptide Science) 1995, 37, 251–263.spa
dc.relation.referencesNugrahani, I.; Oktaviary, R.; Ibrahim, S.; Gusdinar, T.; Apsari, C. FTIR Method for Peptide Content Estimation and Degradation Kinetic Study of Canarium Nut Protein. Indonesian Journal of Pharmacy 2020, 31 (2), 78–83. https://doi.org/10.14499/indonesianjpharm31iss2pp78.spa
dc.relation.referencesde Meutter, J.; Goormaghtigh, E. Evaluation of Protein Secondary Structure from FTIR Spectra Improved after Partial Deuteration. European Biophysics Journal 2021, 50 (3–4), 613–628. https://doi.org/10.1007/s00249-021-01502-y.spa
dc.relation.referencesCobb, J. S.; Zai-Rose, V.; Correia, J. J.; Janorkar, A. v. FT-IR Spectroscopic Analysis of the Secondary Structures Present during the Desiccation Induced Aggregation of Elastin-Like Polypeptide on Silica. ACS Omega 2020, 5 (14), 8403–8413. https://doi.org/10.1021/acsomega.0c00271.spa
dc.relation.referencesAndrushchenko, V. v.; Vogel, H. J.; Prenner, E. J. Optimization of the Hydrochloric Acid Concentration Used for Trifluoroacetate Removal from Synthetic Peptides. Journal of Peptide Science 2007, 13 (1), 37–43. https://doi.org/10.1002/psc.793.spa
dc.relation.referencesSikora, K.; Neubauer, D.; Jaśkiewicz, M.; Kamysz, W. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach. Int J Pept Res Ther 2018, 24 (2), 265–270. https://doi.org/10.1007/s10989-017-9611-7.spa
dc.relation.referencesBronsema, K. J.; Bischoff, R.; van de Merbel, N. C. Internal Standards in the Quantitative Determination of Protein Biopharmaceuticals Using Liquid Chromatography Coupled to Mass Spectrometry. Journal of Chromatography B 2012, 893–894, 1–14. https://doi.org/10.1016/j.jchromb.2012.02.021.spa
dc.relation.referencesTan, A.; Awaiye, K. USE OF INTERNAL STANDARDS IN LC-MS BIOANALYSIS. In Handbook of LC-MS Bioanalysis: Best Practices, Experimental Protocols, and Regulations; Wenkui, L., Jie, Z., Francis L.S., Tse., Eds.; John Wiley and Sons, 2013; pp 217–227.spa
dc.relation.referencesFaria, M.; Halquist, M. S. Internal Standards for Absolute Quantification of Large Molecules (Proteins) from Biological Matrices by LC-MS/MS. In Calibration and Validation of Analytical Methods - A Sampling of Current Approaches; Stauffer, M., Ed.; InTech, 2018; pp 61–84. https://doi.org/10.5772/intechopen.75569.spa
dc.relation.referencesHoofnagle, A. N. Peptide Lost and Found: Internal Standards and the Mass Spectrometric Quantification of Peptides. Clin Chem 2010, 56 (10), 1515–1517. https://doi.org/10.1373/clinchem.2010.152181.spa
dc.relation.referencesJeanne Dit Fouque, D.; Maroto, A.; Memboeuf, A. Internal Standard Quantification Using Tandem Mass Spectrometry of a Tryptic Peptide in the Presence of an Isobaric Interference. Anal Chem 2018, 90 (24), 14126–14130. https://doi.org/10.1021/acs.analchem.8b05016.spa
dc.relation.referencesBarroso, O.; Handelsman, D. J.; Strasburger, C.; Thevis, M. Analytical Challenges in the Detection of Peptide Hormones for Anti-Doping Purposes. Bioanalysis 2012, 4 (13), 1577–1590. https://doi.org/10.4155/bio.12.128.spa
dc.relation.referencesvan de Merbel, N. C. Protein Quantification by LC-MS: A Decade of Progress through the Pages of Bioanalysis. Bioanalysis 2019, 11 (7), 629–644. https://doi.org/10.4155/bio-2019-0032.spa
dc.relation.referencesMedina, I. B. Estudio de La Degradación Proteolítica de Péptidos Derivados de LfcinB Funcionalizados Con El Motivo RGD, Universidad Nacional de Colombia, Bogotá, 2022.spa
dc.relation.referencesMemdouh, S.; Gavrilović, I.; Ng, K.; Cowan, D.; Abbate, V. Advances in the Detection of Growth Hormone Releasing Hormone Synthetic Analogs. Drug Test Anal 2021, 13 (11–12), 1871–1887. https://doi.org/10.1002/dta.3183.spa
dc.relation.referencesMasters, J. R. HeLa Cells 50 Years on: The Good, the Bad and the Ugly. Nat Rev Cancer 2002, 2 (4), 311–315. https://doi.org/10.1038/nrc774.spa
dc.relation.referencesLyapun, I. N.; Andryukov, B. G.; Bynina, M. P. HeLa Cell Culture: Immortal Heritage of Henrietta Lacks. Molecular Genetics, Microbiology and Virology 2019, 34 (4), 195–200. https://doi.org/10.3103/S0891416819040050.spa
dc.relation.referencesBeskow, L. M. Lessons from HeLa Cells: The Ethics and Policy of Biospecimens. Annu Rev Genomics Hum Genet 2016, 17, 395–417. https://doi.org/10.1146/annurev-genom-083115-022536.spa
dc.relation.referencesNi, G.; Chen, S.; Chen, M.; Wu, J.; Yang, B.; Yuan, J.; Walton, S. F.; Li, H.; Wei, M. Q.; Wang, Y.; Chen, G.; Liu, X.; Wang, T. Host-Defense Peptides Caerin 1.1 and 1.9 Stimulate TNF-Alpha-Dependent Apoptotic Signals in Human Cervical Cancer HeLa Cells. Front Cell Dev Biol 2020, 8. https://doi.org/10.3389/fcell.2020.00676.spa
dc.relation.referencesShan, Y.; Huang, J.; Tan, J.; Gao, G.; Liu, S.; Wang, H.; Chen, Y. The Study of Single Anticancer Peptides Interacting with HeLa Cell Membranes by Single Molecule Force Spectroscopy. Nanoscale 2012, 4 (4), 1283–1286. https://doi.org/10.1039/c2nr11541g.spa
dc.relation.referencesXu, Z.; Ding, J.; Zhang, L.; Feng, X.; Zhou, J.; Shen, X.; Lu, H.; Qian, L.; Li, X. Peptidomics Analysis Revealed That a Novel Peptide VMP-19 Protects against Ang II-Induced Injury in Human Umbilical Vein Endothelial Cells. Mol Med Rep 2021, 23 (298), 1–11. https://doi.org/10.3892/MMR.2021.11937.spa
dc.relation.referencesZhu, G.; Sun, L.; Albanetti, T.; Linkous, T.; Larkin, C.; Schoner, R.; McGivney, J. B.; Dovichi, N. J. Quantitative Analysis of the Supernatant from Host and Transfected CHO Cells Using ITRAQ 8-Plex Technique. Biotechnol Bioeng 2016, 113 (10), 2140–2148. https://doi.org/10.1002/bit.25991.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocPéptidos sintéticosspa
dc.subject.agrovocSynthetic peptideseng
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::502 - Misceláneaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembCANCER-TRATAMIENTOspa
dc.subject.lembCancer-treatmenteng
dc.subject.proposalPéptidos Anticancerígenosspa
dc.subject.proposalLactoferricina Bovinaspa
dc.subject.proposalMetodologías Analíticasspa
dc.subject.proposalFarmacopeaspa
dc.subject.proposalCaracterización Analíticaspa
dc.subject.proposalPropiedades Fisicoquímicasspa
dc.subject.proposalAnticancer Peptideseng
dc.subject.proposalBovine Lactoferricineng
dc.subject.proposalAnalytical Methodologieseng
dc.subject.proposalPharmacopoeiaeng
dc.subject.proposalAnalytical Characterizationeng
dc.subject.proposalPhysicochemical Propertieseng
dc.titleCaracterización fisicoquímica de péptidos sintéticos monoméricos y diméricos derivados de la Lactoferricina Bovina con actividad anticancerígena comprobadaspa
dc.title.translatedPhysicochemical characterization of monomeric and dimeric synthetic peptides derived from Bovine Lactoferricin with proven anticancer activityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032489937.2023.pdf
Tamaño:
3.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: