Desarrollo de encapsulados a base de aceites esenciales con actividad inhibitoria de la acetilcolinesterasa
dc.contributor.advisor | Ávila Murillo, Mónica Constanza | |
dc.contributor.advisor | Castellanos Márquez, Nelson Jair | |
dc.contributor.author | Bustos Coral, Sebastian | |
dc.contributor.researchgroup | Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab) | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-15T16:17:31Z | |
dc.date.available | 2025-09-15T16:17:31Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías | spa |
dc.description.abstract | La acetilcolinesterasa es la enzima encargada de la regulación de las conexiones nerviosas en animales, por ello su inhibición es objeto de estudio en diversas aplicaciones. El objetivo de este trabajo fue el estudio de la actividad inhibitoria de la acetilcolinesterasa exhibida por aceites esenciales de cítricos y hierbas aromáticas y la generación de encapsulados de estos. El estudio se dividió en dos partes: el primer capítulo se centró en el análisis del efecto de los cambios en la composición de los aceites sobre su actividad inhibitoria, inicialmente analizando cambios obtenidos como consecuencia del secado de los materiales vegetales y posteriormente estudiando el proceso de autooxidación del aceite esencial de naranja y su incidencia en la actividad inhibitoria de la enzima objeto de estudio. En general, en los estudios de secado no evidenciaron cambios drásticos en la composición de los aceites esenciales, ni en su actividad inhibitoria, mientras que el proceso de autooxidación del aceite esencial de naranja sí permitió aumentar de forma sustancial la actividad inhibitoria del aceite esencial como consecuencia de la producción de compuestos oxigenados. La segunda parte de la investigación, descrita en el capítulo 2, se centró en el estudio de la encapsulación en sílica gel y β-ciclodextrina de los aceites esenciales de naranja oxidado, limón Tahití y menta, seleccionados por sus inhibiciones in vitro en el rango del 65 al 100%. Se observó que en el caso de la sílica gel se obtiene una gran selectividad hacia los compuestos oxigenados de los aceites mientras que la β-ciclodextrina generó una encapsulación menos selectiva pero más eficiente, llegando a obtener eficiencias de encapsulación de entre 73 y 94%. Los análisis de termogravimetría y de cromatografía de gases de espacio de cabeza permitieron evidenciar estabilidad térmica de los encapsulados, mientras que los análisis de espectroscopía infrarroja dieron indicios sobre la interacción de los componentes de los aceites esenciales con los agentes encapsulantes. Los encapsulados preparados mostraron actividad inhibitoria de la acetilcolinesterasa, destacando los encapsulados de aceite esencial de naranja oxidado que mostraron inhibición de hasta el 100 % de la actividad enzimática. (Texto tomado de la fuente) | spa |
dc.description.abstract | Acetylcholinesterase is the enzyme responsible for regulating nerve connections in animals, making its inhibition a subject of study in various applications. This work aimed to investigate the inhibitory activity of acetylcholinesterase exhibited by essential oils from citrus fruits and aromatic herbs, and to develop encapsulated formulations of these oils. The study was divided into two parts: the first chapter focused on analyzing the effect of changes in the composition of essential oils on their inhibitory activity. This included examining alterations resulting from the drying of plant materials, and subsequently, the process of autoxidation of orange essential oil and its impact on the enzyme's inhibitory activity. In general, the drying studies did not show significant changes in the essential oil composition or their inhibitory activity. However, the autoxidation process of orange essential oil led to a substantial increase in its inhibitory activity due to the formation of oxygenated compounds. The second part of the research, described in Chapter 2, focused on the encapsulation of oxidized orange, Tahiti lime, and mint essential oils using silica gel and β-cyclodextrin, these oils were selected based on their in vitro inhibition values ranging from 65% to 100%. It was observed that silica gel showed high selectivity toward oxygenated compounds in the oils, while β-cyclodextrin yielded a less selective but more efficient encapsulation, achieving efficiencies between 73% and 94%. Thermogravimetric analysis and headspace gas chromatography confirmed the thermal stability of the encapsulated oils, while infrared spectroscopy provided evidence of interactions between essential oil components and the encapsulating agents. The prepared encapsulated products exhibited acetylcholinesterase inhibitory activity, with oxidized orange essential oil encapsulates standing out by achieving up to 100% inhibition of enzymatic activity. | eng |
dc.description.curriculararea | Química.Sede Bogotá | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Química | |
dc.description.researcharea | Productos Naturales | |
dc.format.extent | xv, 131 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88760 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.relation.references | [1] Hack, B.; Egger, H.; Uhlemann, J.; Henriet, M.; Wirth, W.; Vermeer, A. W. P.; Duff, D. Advanced Agrochemical Formulations through Encapsulation Strategies? Chem Ing Tech, 2012, 84 (3), 223–234. https://doi.org/10.1002/cite.201100212. | |
dc.relation.references | [2] Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids and Surfaces B: Biointerfaces. 2010, pp 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001. | |
dc.relation.references | [3] Pavia, D.; Lampman, G.; Kriz, G.; Engel, R. Introduction to Organic Laboratory Techniques: A Microscale Approach; 1999. | |
dc.relation.references | [4] Franz, C.; Novak, J. Sources of Essential Oils. In Handbook of Essential Oils; 2020; pp 41–84. https://doi.org/10.1201/9781351246460-3. | |
dc.relation.references | [5] Furuta, T.; Yasunishi, A.; Yoshii, H.; Kobayashi, T.; Nishitarumi, T. Powdery Encapsulation of D-Limonene by Kneading with Mixed Powders of β-Cyclodextrin and Maltodextrin at Low Water Content. Biosci Biotechnol Biochem, 1994, 58 (5), 847–850. https://doi.org/10.1271/bbb.58.847. | |
dc.relation.references | [6] Thies, C. Microcapsules for Cosmetic Applications. Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 1990, 63, 243–244. | |
dc.relation.references | [7] Kubeczka, K.-H. History and Sources of Essential Oil Research. In Handbook of Essential Oils; 2020. https://doi.org/10.1201/9781351246460-2. | |
dc.relation.references | [8] Vishwanathan, A. S. Ethnobotany: A Bridge between Traditional Knowledge and Biotechnological Studies on Medicinal and Aromatic Plants. In Biotechnological Approaches for Medicinal and Aromatic Plants: Conservation, Genetic Improvement and Utilization; 2018; pp 383–394. https://doi.org/10.1007/978-981-13-0535-1_17 | |
dc.relation.references | [9] Dahham, S. S.; Tabana, Y. M.; Iqbal, M. A.; Ahamed, M. B. K.; Ezzat, M. O.; Majid, A. S. A.; Majid, A. M. S. A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules, 2015, 20 (7), 11808–11829. https://doi.org/10.3390/molecules200711808. | |
dc.relation.references | [10] Ruberto, G.; Baratta, M. T. Antioxidant Activity of Selected Essential Oil Components in Two Lipid Model Systems. Food Chem, 2000, 69 (2), 167–174. https://doi.org/10.1016/S0308-8146(99)00247-2. | |
dc.relation.references | [11] Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals. 2013, pp 1451–1474. https://doi.org/10.3390/ph6121451. | |
dc.relation.references | [12] Ikbal, C.; Pavela, R. Essential Oils as Active Ingredients of Botanical Insecticides against Aphids. Journal of Pest Science. 2019, pp 971–986. https://doi.org/10.1007/s10340-019-01089-6. | |
dc.relation.references | [13] Colovic, M. B.; Krstic, D. Z.; Lazarevic-Pasti, T. D.; Bondzic, A. M.; Vasic, V. M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol, 2013, 11 (3), 315–335. https://doi.org/10.2174/1570159X11311030006. | |
dc.relation.references | [14] Fukuto, T. R. Mechanism of Action of Organophosphorus and Carbamate Insecticides. In Environmental Health Perspectives; 1990; Vol. 87, pp 245–254. https://doi.org/10.1289/ehp.9087245. | |
dc.relation.references | [15] Abobakr, Y.; Al-Hussein, F. I.; Bayoumi, A. E.; Alzabib, A. A.; Al-Sarar, A. S. Organophosphate Insecticides Resistance in Field Populations of House Flies, Musca Domestica L.: Levels of Resistance and Acetylcholinesterase Activity. Insects, 2022, 13 (2), 192. https://doi.org/10.3390/insects13020192. | |
dc.relation.references | [16] Lane, R. M.; Potkin, S. G.; Enz, A. Targeting Acetylcholinesterase and Butyrylcholinesterase in Dementia. International Journal of Neuropsychopharmacology. 2006, pp 101–124. https://doi.org/10.1017/S1461145705005833. | |
dc.relation.references | [17] Peitzika, S. C.; Pontiki, E. A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules. 2023, p 1084. https://doi.org/10.3390/molecules28031084. | |
dc.relation.references | [18] da Silva Duarte Oliveira, A. C.; Fernandes, C. C.; Vieira, T. M.; Crotti, A. E. M.; de Souza, J. M.; Martins, C. H. G.; Miranda, M. L. D. Essential Oils from Different Citrus Species and Evaluation of Their in Vitro Antibacterial, Antiacetylcholinesterase, Anti-Inflammatory and Antifungal Activities. Aust J Crop Sci, 2022, 16 (1), 86–92. https://doi.org/10.21475/ajcs.22.16.01.p3281. | |
dc.relation.references | [19] Park, C. G.; Jang, M.; Yoon, K. A.; Kim, J. Insecticidal and Acetylcholinesterase Inhibitory Activities of Lamiaceae Plant Essential Oils and Their Major Components against Drosophila Suzukii (Diptera: Drosophilidae). Ind Crops Prod, 2016, 89, 507–513. https://doi.org/10.1016/j.indcrop.2016.06.008. | |
dc.relation.references | [20] Inanoglu, S.; Goksen, G.; Nayik, G. A.; Mozaffari Nejad, A. S. Essential Oils from Lamiaceae Family (Rosemary, Thyme, Mint, Basil). In Essential Oils; 2023; pp 309–324. https://doi.org/10.1016/b978-0-323-91740-7.00019-0. | |
dc.relation.references | [21] Kaur, G.; Kaur, K.; Saluja, P. Citrus Essential Oil (Grapefruit, Orange, Lemon). In Essential Oils; 2023. https://doi.org/10.1016/b978-0-323-91740-7.00018-9. | |
dc.relation.references | [22] Sousa, F. L.; Santos, M.; Rocha, S. M.; Trindade, T. Encapsulation of Essential Oils in SiO2 Microcapsules and Release Behaviour of Volatile Compounds. J Microencapsul, 2014, 31 (7), 627–635. https://doi.org/10.3109/02652048.2014.911376. | |
dc.relation.references | [23] Marques, H. M. C. A Review on Cyclodextrin Encapsulation of Essential Oils and Volatiles. Flavour and Fragrance Journal. 2010, pp 313–326. https://doi.org/10.1002/ffj.2019. | |
dc.relation.references | [24] Svoboda K P; Svoboda T G; Syred A D; Syred P M. Secretory Structures of Aromatic and Medicinal Plants. A Review and Atlas of Micrographs; 2000. | |
dc.relation.references | [25] Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Changes in Chemical Composition and Biological Activity of Essential Oil from Thomson Navel Orange (Citrus Sinensis L. Osbeck) Peel under Freezing, Convective, Vacuum, and Microwave Drying Methods. Food Sci Nutr, 2020, 8 (1), 124–138. https://doi.org/10.1002/fsn3.1279. | |
dc.relation.references | [26] Razola-Díaz, M. del C.; Guerra-Hernández, E. J.; García-Villanova, B.; Verardo, V. Recent Developments in Extraction and Encapsulation Techniques of Orange Essential Oil. Food Chem, 2021, 354, 129575. https://doi.org/10.1016/j.foodchem.2021.129575. | |
dc.relation.references | [27] Wang, H.; Ren, J.; Zhou, S.; Duan, Y.; Zhu, C.; Chen, C.; Liu, Z.; Zheng, Q.; Xiang, S.; Xie, Z.; et al. Molecular Regulation of Oil Gland Development and Biosynthesis of Essential Oils in Citrus Spp. Science (1979), 2024, 383 (6683), 659–666. https://doi.org/10.1126/SCIENCE.ADL2953/SUPPL_FILE/SCIENCE.ADL2953_DATA_S1_TO_S4.ZIP. | |
dc.relation.references | [28] Gersbach, P.; Wyllie, S. G.; Sarafis, V. A New Histochemical Method for Localization of the Site of Monoterpene Phenol Accumulation in Plant Secretory Structures. 521–525. https://doi.org/10.1006/anbo.2001.1480. | |
dc.relation.references | [29] Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M. H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods. 2019. https://doi.org/10.3390/foods8110523. | |
dc.relation.references | [30] Newman, D. J. Developing Natural Product Drugs: Supply Problems and How They Have Been Overcome. Pharmacol Ther, 2016, 162, 1–9. https://doi.org/10.1016/J.PHARMTHERA.2015.12.002. | |
dc.relation.references | [31] Suri, S.; Singh, A.; Nema, P. K. Current Applications of Citrus Fruit Processing Waste: A Scientific Outlook. Applied Food Research. 2022, p 100050. https://doi.org/10.1016/j.afres.2022.100050. | |
dc.relation.references | [32] Moufida, S.; Marzouk, B. Biochemical Characterization of Blood Orange, Sweet Orange, Lemon, Bergamot and Bitter Orange. Phytochemistry, 2003, 62 (8), 1283–1289. https://doi.org/10.1016/S0031-9422(02)00631-3. | |
dc.relation.references | [33] Hussein, H. S.; Tawfeek, M. E.; Abdelgaleil, S. A. M. Chemical Composition, Aphicidal and Antiacetylcholinesterase Activities of Essential Oils against Aphis Nerii Boyer de Fonscolombe (Hemiptera: Aphididae). J Asia Pac Entomol, 2021, 24 (2), 259–265. https://doi.org/10.1016/j.aspen.2021.02.001. | |
dc.relation.references | [34] Cao, J.; Zheng, W.; Chen, B.; Yan, Z.; Tang, X.; Li, J.; Zhang, Z.; Ang, S.; Li, C.; Wu, R.; et al. Chemical Composition of Essential Oil from Citrus Reticulata Blanco Cv. Chachiensis (Chachi) and Its Anti-Mosquito Activity against Pyrethroid-Resistant Aedes Albopictus. Insects, 2024, 15 (5), 345. https://doi.org/10.3390/insects15050345. | |
dc.relation.references | [35] Tundis, R.; Loizzo, M. R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Colica, C.; Menichini, F. Comparative Study on the Antioxidant Capacity and Cholinesterase Inhibitory Activity of Citrus Aurantifolia Swingle, C. Aurantium L., and C. Bergamia Risso and Poit. Peel Essential Oils. J Food Sci, 2012, 77 (1), H40–H46. https://doi.org/10.1111/j.1750-3841.2011.02511.x. | |
dc.relation.references | [36] Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, Chemotaxonomy, Ethnopharmacology, and Nutraceutics of Lamiaceae. Studies in Natural Products Chemistry, 2019, 62, 125–178. https://doi.org/10.1016/B978-0-444-64185-4.00004-6. | |
dc.relation.references | [37] Colombia alcanzó récord de exportaciones de hierbas aromáticas en 2022 con US$49,5 millones https://forbes.co/2023/02/24/economia-y-finanzas/colombia-alcanzo-record-de-exportaciones-de-hierbas-aromaticas-en-2022-con-us495-millones (accessed Jan 30, 2025). | |
dc.relation.references | [38] Ministerio de Agricultura de Colombia. CADENA DE PLANTAS AROMATICAS, MEDICINALES, CONDIMENTARIAS Y AFINES - PAMCA https://sioc.minagricultura.gov.co/PlantasAromaticas/Documentos/2018-12-30%20Cifras%20Sectoriales.pdf (accessed Jan 29, 2025). | |
dc.relation.references | [39] Wu, Z.; Jin, C.; Chen, Y.; Yang, S.; Yang, X.; Zhang, D.; Xie, Y. Mentha Spp. Essential Oils: A Potential Toxic Fumigant with Inhibition of Acetylcholinesterase Activity on Reticulitermes Dabieshanensis. Plants, 2023, 12 (23), 4034. https://doi.org/10.3390/PLANTS12234034/S1. | |
dc.relation.references | [40] Ben Jemia, M.; Tundis, R.; Pugliese, A.; Menichini, F.; Senatore, F.; Bruno, M.; Kchouk, M. E.; Loizzo, M. R. Effect of Bioclimatic Area on the Composition and Bioactivity of Tunisian Rosmarinus Officinalis Essential Oils. Nat Prod Res, 2015, 29 (3), 213–222. https://doi.org/10.1080/14786419.2014.942305. | |
dc.relation.references | [41] Alimi, D.; Hajri, A.; Jallouli, S.; Sebai, H. Acaricidal and Anthelmintic Efficacy of Ocimum Basilicum Essential Oil and Its Major Constituents Estragole and Linalool, with Insights on Acetylcholinesterase Inhibition. Vet Parasitol, 2022, 309, 109743. https://doi.org/10.1016/J.VETPAR.2022.109743. | |
dc.relation.references | [42] Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical Composition and in Vitro Evaluation of Antioxidant, Antimicrobial, Cytotoxicity and Anti-Acetylcholinesterase Properties of Tunisian Origanum Majorana L. Essential Oil. Microb Pathog, 2016, 95, 86–94. https://doi.org/10.1016/J.MICPATH.2016.03.003. | |
dc.relation.references | [43] Perry, N. S. L.; Houghton, P. J.; Theobald, A.; Jenner, P.; Perry, E. K. In-Vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia Lavandulaefolia Essential Oil and Constituent Terpenes . Journal of Pharmacy and Pharmacology, 2010, 52 (7), 809–902. https://doi.org/10.1211/0022357001774598. | |
dc.relation.references | [44] Lee, S. E.; Lee, B. H.; Choi, W. S.; Park, B. S.; Kim, J. G.; Campbell, B. C. Fumigant Toxicity of Volatile Natural Products from Korean Spices and Medicinal Plants towards the Rice Weevil, Sitophilus Oryzae (L). Pest Manag Sci, 2001, 57 (6), 548–553. https://doi.org/10.1002/ps.322. | |
dc.relation.references | [45] Savelev, S. U.; Okello, E. J.; Perry, E. K. Butyryl- and Acetyl-Cholinesterase Inhibitory Activities in Essential Oils of Salvia Species and Their Constituents. Phytotherapy Research, 2004, 18 (4), 315–324. https://doi.org/10.1002/ptr.1451. | |
dc.relation.references | [46] Kim, S. W.; Kang, J.; Park, I. K. Fumigant Toxicity of Apiaceae Essential Oils and Their Constituents against Sitophilus Oryzae and Their Acetylcholinesterase Inhibitory Activity. J Asia Pac Entomol, 2013, 16 (4), 443–448. https://doi.org/10.1016/j.aspen.2013.07.002. | |
dc.relation.references | [47] Seo, S. M.; Jung, C. S.; Kang, J.; Lee, H. R.; Kim, S. W.; Hyun, J.; Park, I. K. Larvicidal and Acetylcholinesterase Inhibitory Activities of Apiaceae Plant Essential Oils and Their Constituents against Aedes Albopictus and Formulation Development. J Agric Food Chem, 2015, 63 (45), 9977–9986. https://doi.org/10.1021/acs.jafc.5b03586. | |
dc.relation.references | [48] Seo, S. M.; Kim, J.; Kang, J.; Koh, S. H.; Ahn, Y. J.; Kang, K. S.; Park, I. K. Fumigant Toxicity and Acetylcholinesterase Inhibitory Activity of 4 Asteraceae Plant Essential Oils and Their Constituents against Japanese Termite (Reticulitermes Speratus Kolbe). Pestic Biochem Physiol, 2014, 113 (1), 55–61. https://doi.org/10.1016/j.pestbp.2014.06.001. | |
dc.relation.references | [49] Kang, J. S.; Kim, E.; Lee, S. H.; Park, I. K. Inhibition of Acetylcholinesterases of the Pinewood Nematode, Bursaphelenchus Xylophilus, by Phytochemicals from Plant Essential Oils. Pestic Biochem Physiol, 2013, 105 (1), 50–56. https://doi.org/10.1016/j.pestbp.2012.11.007. | |
dc.relation.references | [50] Dohi, S.; Terasaki, M.; Makino, M. Acetylcholinesterase Inhibitory Activity and Chemical Composition of Commercial Essential Oils. J Agric Food Chem, 2009, 57 (10), 4313–4318. https://doi.org/10.1021/jf804013j. | |
dc.relation.references | [51] Abdelgaleil, S. A. M.; Badawy, M. E. I.; Mahmoud, N. F.; Marei, A. E. S. M. Acaricidal Activity, Biochemical Effects and Molecular Docking of Some Monoterpenes against Two-Spotted Spider Mite (Tetranychus Urticae Koch). Pestic Biochem Physiol, 2019, 156, 105–115. https://doi.org/10.1016/j.pestbp.2019.02.006. | |
dc.relation.references | [52] Saad, M. M. G.; Abou-Taleb, H. K.; Abdelgaleil, S. A. M. Insecticidal Activities of Monoterpenes and Phenylpropenes against Sitophilus Oryzae and Their Inhibitory Effects on Acetylcholinesterase and Adenosine Triphosphatases. Appl Entomol Zool, 2018, 53 (2), 173–181. https://doi.org/10.1007/s13355-017-0532-x. | |
dc.relation.references | [53] Saad, M. M. G.; El-Deeb, D. A.; Abdelgaleil, S. A. M. Insecticidal Potential and Repellent and Biochemical Effects of Phenylpropenes and Monoterpenes on the Red Flour Beetle, Tribolium Castaneum Herbst. Environmental Science and Pollution Research, 2019, 26 (7), 6801–6810. https://doi.org/10.1007/s11356-019-04151-z. | |
dc.relation.references | [54] Hieu, T. T.; Kim, S. Il; Ahn, Y. J. Toxicity of Zanthoxylum Piperitum and Zanthoxylum Armatum Oil Constituents and Related Compounds to Stomoxys Calcitrans (Diptera: Muscidae). J Med Entomol, 2012, 49 (5), 1084–1091. https://doi.org/10.1603/ME12047. | |
dc.relation.references | [55] Almadiy, A.; Nenaah, G. Chemical Profile, Bioactivity, and Biosafety Evaluations of Essential Oils and Main Terpenes of Two Plant Species against Trogoderma Granarium. Agronomy, 2022, 12 (12), 3112. https://doi.org/10.3390/agronomy12123112. | |
dc.relation.references | [56] Hong, T. kyun; Perumalsamy, H.; Jang, K. hwa; Na, E. shik; Ahn, Y. J. Ovicidal and Larvicidal Activity and Possible Mode of Action of Phenylpropanoids and Ketone Identified in Syzygium Aromaticum Bud against Bradysia Procera. Pestic Biochem Physiol, 2018, 145, 29–38. https://doi.org/10.1016/j.pestbp.2018.01.003. | |
dc.relation.references | [57] Orhan, I.; Şener, B.; Kartal, M.; Kan, Y. Activity of Essential Oils and Individual Components against Acetyl-and Butyrylcholinesterase. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 2008, 63 (7–8), 547–553. https://doi.org/10.1515/znc-2008-7-813. | |
dc.relation.references | [58] Savelev, S.; Okello, E.; Perry, N. S. L.; Wilkins, R. M.; Perry, E. K. Synergistic and Antagonistic Interactions of Anticholinesterase Terpenoids in Salvia Lavandulaefolia Essential Oil. Pharmacol Biochem Behav, 2003, 75 (3), 661–668. https://doi.org/10.1016/S0091-3057(03)00125-4. | |
dc.relation.references | [59] Lomarat, P.; Sripha, K.; Phanthong, P.; Kitphati, W.; Thirapanmethee, K.; Bunyapraphatsara, N. In Vitro Biological Activities of Black Pepper Essential Oil and Its Major Components Relevant to the Prevention of Alzheimer’s Disease. Thai Journal of Pharmaceutical Sciences, 2015, 39 (3), 94–101. https://doi.org/10.56808/3027-7922.1951. | |
dc.relation.references | [60] Alimi, D.; Hajri, A.; Jallouli, S.; Sebai, H. Pistacia Lentiscus Essential Oil and Its Pure Active Components as Acaricides to Control Dermanyssus Gallinae (Acari: Mesostigmata). Vet Parasitol, 2023, 322, 110028. https://doi.org/10.1016/j.vetpar.2023.110028. | |
dc.relation.references | [61] Menichini, F.; Tundis, R.; Loizzo, M. R.; Bonesi, M.; Marrelli, M.; Statti, G. A.; Menichini, F.; Conforti, F. Acetylcholinesterase and Butyrylcholinesterase Inhibition of Ethanolic Extract and Monoterpenes from Pimpinella Anisoides V Brig. (Apiaceae). Fitoterapia, 2009, 80 (5), 297–300. https://doi.org/10.1016/j.fitote.2009.03.008. | |
dc.relation.references | [62] Aazza, S.; Lyoussi, B.; Miguel, M. G. Antioxidant and Antiacetylcholinesterase Activities of Some Commercial Essential Oils and Their Major Compounds. Molecules. 2011, pp 7672–7290. https://doi.org/10.3390/molecules16097672. | |
dc.relation.references | [63] Peng, X.; Yang, X.; Gu, H.; Yang, L.; Gao, H. Essential Oil Extraction from Fresh Needles of Pinus Pumila (Pall.) Regel Using a Solvent-Free Microwave-Assisted Methodology and an Evaluation of Acetylcholinesterase Inhibition Activity in Vitro Compared to That of Its Main Components. Ind Crops Prod, 2021, 167, 113549. https://doi.org/10.1016/j.indcrop.2021.113549. | |
dc.relation.references | [64] Almadiy, A. A. Chemical Composition, Insecticidal and Biochemical Effects of Two Plant Oils and Their Major Fractions against Aedes Aegypti, the Common Vector of Dengue Fever. Heliyon, 2020, 6 (9), e04915. https://doi.org/10.1016/j.heliyon.2020.e04915. | |
dc.relation.references | [65] Madeswaran, A.; Mohan, S. Neuroprotective Effects of Terpenoids against Streptozotocin-Nicotinamide-Induced Diabetic Rats: An in Silico, in Vitro and in Vivo Study. Int J Biol Macromol, 2023, 247, 125817. https://doi.org/10.1016/j.ijbiomac.2023.125817. | |
dc.relation.references | [66] Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of Octopaminergic Receptors by Essential Oil Constituents Isolated from Aromatic Plants: Possible Mode of Action against Insect Pests. Pest Manag Sci, 2002, 58 (11), 1101–1106. https://doi.org/10.1002/ps.548. | |
dc.relation.references | [67] Abdelgaleil, S. A. M.; Mohamed, M. I. E.; Badawy, M. E. I.; El-Arami, S. A. A. Fumigant and Contact Toxicities of Monoterpenes to Sitophilus Oryzae (L.) and Tribolium Castaneum (Herbst) and Their Inhibitory Effects on Acetylcholinesterase Activity. J Chem Ecol, 2009, 35 (5), 518–525. https://doi.org/10.1007/s10886-009-9635-3. | |
dc.relation.references | [68] Rants’o, T. A.; Koekemoer, L. L.; van Zyl, R. L. In Vitro and in Silico Analysis of the Anopheles Anticholinesterase Activity of Terpenoids. Parasitol Int, 2023, 93, 102713. https://doi.org/10.1016/j.parint.2022.102713. | |
dc.relation.references | [69] Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M. R.; Conforti, F.; Passalacqua, N. G.; Statti, G. A.; Menichini, F. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Pinus Species Essential Oils and Their Constituents. J Enzyme Inhib Med Chem, 2010, 25 (5), 622–628. https://doi.org/10.3109/14756360903389856. | |
dc.relation.references | [70] Ryan, M. F.; Byrne, O. Plant-Insect Coevolution and Inhibition of Acetylcholinesterase. J Chem Ecol, 1988, 14 (10), 1965–1975. https://doi.org/10.1007/BF01013489. | |
dc.relation.references | [71] Farag, M. A.; Ezzat, S. M.; Salama, M. M.; Tadros, M. G.; Serya, R. A. T. Anti-Acetylcholinesterase Activity of Essential Oils and Their Major Constituents from Four Ocimum Species. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 2016, 71 (11–12), 393–402. https://doi.org/10.1515/znc-2016-0030. | |
dc.relation.references | [72] Liu, J.; Hua, J.; Qu, B.; Guo, X.; Wang, Y.; Shao, M.; Luo, S. Insecticidal Terpenes From the Essential Oils of Artemisia Nakaii and Their Inhibitory Effects on Acetylcholinesterase. Front Plant Sci, 2021, 12, 720816. https://doi.org/10.3389/fpls.2021.720816. | |
dc.relation.references | [73] Yeom, H. J.; Kang, J.; Kim, S. W.; Park, I. K. Fumigant and Contact Toxicity of Myrtaceae Plant Essential Oils and Blends of Their Constituents against Adults of German Cockroach (Blattella Germanica) and Their Acetylcholinesterase Inhibitory Activity. Pestic Biochem Physiol, 2013, 107 (2), 200–206. https://doi.org/10.1016/j.pestbp.2013.07.003. | |
dc.relation.references | [74] Herrera, J. M.; Zunino, M. P.; Dambolena, J. S.; Pizzolitto, R. P.; Gañan, N. A.; Lucini, E. I.; Zygadlo, J. A. Terpene Ketones as Natural Insecticides against Sitophilus Zeamais. Ind Crops Prod, 2015, 70, 435–442. https://doi.org/10.1016/j.indcrop.2015.03.074. | |
dc.relation.references | [75] Fujiwaraj, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase Inhibitory Activity of Volatile Oil from Peltophorum Dasyrachis Kurz Ex Bakar (Yellow Batai) and Bisabolane-Type Sesquiterpenoids. J Agric Food Chem, 2010, 58 (5), 2824–2829. https://doi.org/10.1021/jf9042387. | |
dc.relation.references | [76] Jang, M.; Kim, J.; Yoon, K. A.; Lee, S. H.; Park, C. G. Biological Activity of Myrtaceae Plant Essential Oils and Their Major Components against Drosophila Suzukii (Diptera: Drosophilidae). Pest Manag Sci, 2017, 73 (2), 404–409. https://doi.org/10.1002/ps.4430. | |
dc.relation.references | [77] Szwajgier, D.; Baranowska-Wójcik, E. Terpenes and Phenylpropanoids as Acetyl- and Butyrylcholinesterase Inhibitors: A Comparative Study. Curr Alzheimer Res, 2019, 16 (10), 963–973. https://doi.org/10.2174/1567205016666191010105115. | |
dc.relation.references | [78] Alimi, D.; Hajri, A.; Jallouli, S.; Sebai, H. Toxicity, Repellency, and Anti-Cholinesterase Activities of Bioactive Molecules from Clove Buds Syzygium Aromaticum L. as an Ecological Alternative in the Search for Control Hyalomma Scupense (Acari: Ixodidae). Heliyon, 2023, 9 (8), e188899. https://doi.org/10.1016/j.heliyon.2023.e18899. | |
dc.relation.references | [79] Abuhamdah, S.; Abuhamdah, R.; Howes, M. J.; Uttley, G.; Chazot, P. L. A Molecular Docking Study of Aloysia Citrodora Palau. Leaf Essential Oil Constituents towards Human Acetylcholinesterase: Implications for Alzheimer’s Disease. Jordan J Biol Sci, 2020, 13, 575–580. | |
dc.relation.references | [80] Shanmuganathan, B.; Malar, D. S.; Sathya, S.; Devi, K. P. Antiaggregation Potential of Padina Gymnospora against the Toxic Alzheimer’s Beta-Amyloid Peptide 25-35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds. PLoS One, 2015, 10 (11), e0141708. https://doi.org/10.1371/journal.pone.0141708. | |
dc.relation.references | [81] Alimi, D.; Hraoui, M.; Hajri, A.; Taamalli, W.; Selmi, S.; Sebai, H. Bioactivity and Molecular Docking Studies of Selected Plant Compounds. J Sci Food Agric, 2024, 104 (7), 4391–4399. https://doi.org/10.1002/jsfa.13327. | |
dc.relation.references | [82] Orhan, I. Nature: A Substantial Source of Auspicious Substances with Acetylcholinesterase Inhibitory Action. Curr Neuropharmacol, 2013, 11 (4), 379–387. https://doi.org/10.2174/1570159x11311040003. | |
dc.relation.references | [83] Acetylcholinesterase | Sigma-Aldrich https://www.sigmaaldrich.com/CO/en/search/acetylcholinesterase?focus=products&page=1&perpage=30&sort=relevance&term=acetylcholinesterase&type=product_name (accessed Feb 2, 2025). | |
dc.relation.references | [84] Jones, W. P.; Kinghorn, A. D. Extraction of Plant Secondary Metabolites. Methods in Molecular Biology, 2012, 864. https://doi.org/10.1007/978-1-61779-624-1_13. | |
dc.relation.references | [85] Lewicki, P. P.; Pawlak, G. Effect of Drying on Microstructure of Plant Tissue. Drying Technology, 2003, 21 (4), 657–683. https://doi.org/10.1081/drt-120019057. | |
dc.relation.references | [86] Rahimmalek, M.; Goli, S. A. H. Evaluation of Six Drying Treatments with Respect to Essential Oil Yield, Composition and Color Characteristics of Thymys Daenensis Subsp. Daenensis. Celak Leaves. Ind Crops Prod, 2013, 42 (1), 613–619. https://doi.org/10.1016/j.indcrop.2012.06.012. | |
dc.relation.references | [87] Khater, E. S. G.; Bahnasawy, A. H.; Abd El-All, M. H.; Mustafa, H. M. M.; Mousa, A. M. Effect of Drying System, Layer Thickness and Drying Temperature on the Drying Parameters, Product Quality, Energy Consumption and Cost of the Marjoram Leaves. Scientific Reports 2024 14:1, 2024, 14 (1), 1–15. https://doi.org/10.1038/s41598-024-55007-7. | |
dc.relation.references | [88] Pena, A.; Veiga, S.; Sapelli, M.; Martínez, N.; Márquez, V.; Dellacassa, E.; Bussi, J. Limonene Oxidation by Molecular Oxygen under Solvent-Free Conditions: The Influence of Peroxides and Catalysts on the Reaction Rate. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107 (2), 263–275. https://doi.org/10.1007/s11144-012-0485-6. | |
dc.relation.references | [89] Chalchat, J. C.; Chiron, F.; Garry, R. P.; Lacoste, J.; Sautou, V. Photochemical Hydroperoxidation of Terpenes. Antimicrobial Activity of α-Pinene, β-Pinene and Limonene Hydroperoxides. Journal of Essential Oil Research, 2000, 12 (1), 125–134. https://doi.org/10.1080/10412905.2000.9712059. | |
dc.relation.references | [90] Oladimeji, F. A.; Orafidiya, O. O.; Okeke, I. N.; Dagne, E. Effect of Autoxidation on the Composition and Antimicrobial Activity of Essential Oil of Lippia Multiflora. Pharmaceutical and Pharmacological Letters, 2001, 11 (2), 64–67. | |
dc.relation.references | [91] Takahashi, M.; Inouye, S.; Abe, S. Anti-Candida Activity of the Air-Oxidised d-Limonene. International Journal of Essential Oil Therapeutics, 2009, 3 (2), 51–55. | |
dc.relation.references | [92] Ziegler, M.; Brandauer, H.; Ziegler, E.; Ziegler, G. A Different Aging Model for Orange Oil: Deterioration Products. Journal of Essential Oil Research, 1991, 3 (4), 209–220. https://doi.org/10.1080/10412905.1991.9697931. | |
dc.relation.references | [93] Kern, S.; Granier, T.; Dkhil, H.; Haupt, T.; Ellis, G.; Natsch, A. Stability of Limonene and Monitoring of a Hydroperoxide in Fragranced Products. Flavour Fragr J, 2014, 29 (5), 277–286. https://doi.org/10.1002/ffj.3210. | |
dc.relation.references | [94] Bråred Christensson, J.; Karlberg, A. T.; Andersen, K. E.; Bruze, M.; Johansen, J. D.; Garcia-Bravo, B.; Giménez Arnau, A.; Goh, C. L.; Nixon, R.; White, I. R. Oxidized Limonene and Oxidized Linalool - Concomitant Contact Allergy to Common Fragrance Terpenes. Contact Dermatitis, 2016, 74 (5), 273–280. https://doi.org/10.1111/cod.12545. | |
dc.relation.references | [95] H., V.; Pudil, F.; Farouk, A.; Janda, V.; Z., P.; J, P. Effect of Oxidation Products on the Sensory Profile of Limonen. Flavour 2000, 2001, 414–418. | |
dc.relation.references | [96] Gupta, K. C.; Kumar Sutar, A.; Lin, C. C. Polymer-Supported Schiff Base Complexes in Oxidation Reactions. Coordination Chemistry Reviews. 2009, pp 1926–1946. https://doi.org/10.1016/j.ccr.2009.03.019. | |
dc.relation.references | [97] Fahlbusch, K.-G.; Hammerschmidt, F.-J.; Panten, J.; Pickenhagen, W.; Schatkowski, D.; Bauer, K.; Garbe, D.; Surburg, H. Flavors and Fragrances. Ullmann’s Encyclopedia of Industrial Chemistry, 2003. https://doi.org/10.1002/14356007.A11_141. | |
dc.relation.references | [98] Babushok, V. I.; Linstrom, P. J.; Zenkevich, I. G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J Phys Chem Ref Data, 2011, 40 (4), 043101. https://doi.org/10.1063/1.3653552. | |
dc.relation.references | [99] Marston, A.; Kissling, J.; Hostettmann, K. A Rapid TLC Bioautographic Method for the Detection of Acetylcholinesterase and Butyrylcholinesterase Inhibitors in Plants. Phytochemical Analysis, 2002, 13 (1), 51–54. https://doi.org/10.1002/pca.623.abs. | |
dc.relation.references | [100] Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem Pharmacol, 1961, 7 (2), 88–90. https://doi.org/10.1016/0006-2952(61)90145-9. | |
dc.relation.references | [101] Gao, S.; Kang, H.; An, X.; Cheng, Y.; Chen, H.; Chen, Y.; Li, S. Non-Destructive Storage Time Prediction of Newhall Navel Oranges Based on the Characteristics of Rind Oil Glands. Front Plant Sci, 2022, 13, 811630. https://doi.org/10.3389/FPLS.2022.811630. | |
dc.relation.references | [102] Kalemba, D.; Synowiec, A. Agrobiological Interactions of Essential Oils of Two Menthol Mints: Mentha Piperita and Mentha Arvensis. Molecules, 2019, 25 (1), 59. https://doi.org/10.3390/MOLECULES25010059. | |
dc.relation.references | [103] Orduz, J.; Mateus, D. Generalidades de Los Cítricos y Recomendaciones Agronómicas Para Su Cultivo En Colombia. In La Ecofisiología de los Cítricos en el Trópico: El Caso del Piedemonte Llanero de Colombia; 2019; Vol. 2. | |
dc.relation.references | [104] Bernal, H. Y.; Garc, H.; Quevedo, F. Pautas Para El Conocimiento, Conservación y Uso Sostenible de Las Plantas Medicinales Nativas En Colombia; 2011. | |
dc.relation.references | [105] Yang, X.; Tian, H.; Ho, C. T.; Huang, Q. Stability of Citral in Emulsions Coated with Cationic Biopolymer Layers. J Agric Food Chem, 2011, 60 (1), 402–409. https://doi.org/10.1021/JF203847B. | |
dc.relation.references | [106] de Lima Silva, J. R.; dos Santos, L. B.; Hassan, W.; Kamdem, J. P.; Duarte, A. E.; Soufan, W.; El Sabagh, A.; Ibrahim, M. Exploring the Therapeutic Potential of the Oxygenated Monoterpene Linalool in Alleviating Saline Stress Effects on Allium Cepa L. Environmental Science and Pollution Research, 2024, 31 (35), 47598–47610. https://doi.org/10.1007/S11356-024-34285-8/FIGURES/5. | |
dc.relation.references | [107] da Silva Duarte Oliveira, A. C.; Fernandes, C. C.; Vieira, T. M.; Crotti, A. E. M.; de Souza, J. M.; Martins, C. H. G.; Miranda, M. L. D. Essential Oils from Different Citrus Species and Evaluation of Their in Vitro Antibacterial, Antiacetylcholinesterase, Anti-Inflammatory and Antifungal Activities. Aust J Crop Sci, 2022, 16 (1), 86–92. https://doi.org/10.21475/ajcs.22.16.01.p3281. | |
dc.relation.references | [108] Benabdallah, A.; Boumendjel, M.; Aissi, O.; Rahmoune, C.; Boussaid, M.; Messaoud, C. Chemical Composition, Antioxidant Activity and Acetylcholinesterase Inhibitory of Wild Mentha Species from Northeastern Algeria. South African Journal of Botany, 2018, 116, 131–139. https://doi.org/10.1016/J.SAJB.2018.03.002. | |
dc.relation.references | [109] Hussain, A. I.; Anwar, F.; Hussain Sherazi, S. T.; Przybylski, R. Chemical Composition, Antioxidant and Antimicrobial Activities of Basil (Ocimum Basilicum) Essential Oils Depends on Seasonal Variations. Food Chem, 2008, 108 (3), 986–995. https://doi.org/10.1016/j.foodchem.2007.12.010. | |
dc.relation.references | [110] Croteau, R. B.; Davis, E. M.; Ringer, K. L.; Wildung, M. R. (-)-Menthol Biosynthesis and Molecular Genetics. Naturwissenschaften, 2005, 92 (12), 562–577. https://doi.org/10.1007/S00114-005-0055-0/METRICS. | |
dc.relation.references | [111] Alfred Ngenge, T.; Kucukaydin, S.; Ceylan, O.; Duru, M. E. Evaluation of Enzyme Inhibition and Anti-Quorum Sensing Potentials of Melaleuca Alternifolia and Citrus Sinensis Essential Oils. Nat Prod Commun, 2021, 16 (9). https://doi.org/10.1177/1934578X211044565. | |
dc.relation.references | [112] Schieberle, P.; Maier, W.; Firl, J.; Grosch, W. HRGC Separation of Hydroperoxides Formed during the Photosensitized Oxidation of (R)—(+)-Limonene. Journal of High Resolution Chromatography, 1987, 10 (11), 588–593. https://doi.org/10.1002/JHRC.1240101102. | |
dc.relation.references | [113] Zhu, Y.; Shi, D.; Chen, A.; Wang, Y.; Liu, L.; Bai, B. Mechanism of Active Acetylcholinesterase Inhibition by Organic Sulfanes in Garlic: Non-Covalent Binding and Covalent Modifications. Int J Biol Macromol, 2023, 245, 124972. https://doi.org/10.1016/J.IJBIOMAC.2023.124972. | |
dc.relation.references | [114] Yildiz, A. Y.; Öztekin, S.; Anaya, K. Effects of Plant-Derived Antioxidants to the Oxidative Stability of Edible Oils under Thermal and Storage Conditions: Benefits, Challenges and Sustainable Solutions. Food Chem, 2025, 479, 143752. https://doi.org/10.1016/j.foodchem.2025.143752. | |
dc.relation.references | [115] dos Santos Filho, L. G. A.; dos Reis, R. B.; de Queiroz Souza, A. S.; Canuto, K. M.; de Carvalho Castro, K. N.; Pereira, A. M. L.; Diniz, F. M. Essential Oil Composition, Antioxidant and Antibacterial Activity against Vibrio Parahaemolyticus from Five Lamiaceae Species. Journal of Essential Oil Research, 2022, 34 (4), 313–321. https://doi.org/10.1080/10412905.2022.2066212. | |
dc.relation.references | [116] Burits, M.; Bucar, F. Antioxidant Activity of Nigella Sativa Essential Oil. Phytotherapy Research, 2000, 14 (5), 323–328. https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q. | |
dc.relation.references | [117] Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants. Front Aging Neurosci, 2017, 9 (MAY), 168. https://doi.org/10.3389/fnagi.2017.00168 | |
dc.relation.references | [118] Dindar, Z.; Anbaraki, A.; Hosseini, S. S.; Harati, Z.; Bahrami, A.; Balalaie, S.; Ghobeh, M.; Mahdavi, M.; Seyedarabi, A. The Use of Natural Volatile Compounds on the Fibrillation Domain of Amyloid Beta (GSNKGAIIGLM)─Towards Promising Agents to Combat Alzheimer’s Disease. ACS Chem Neurosci, 2025, 16 (6), 1086–1102. https://doi.org/10.1021/acschemneuro.4c00768. | |
dc.relation.references | [119] Wang, S. Y.; Li, M. M.; Sun, Y.; Wu, J. T.; Guan, W.; Jiang, Y. K.; Yao, H. Y.; He, X. X.; Yan, J. jiang; Chen, Q. shan; et al. Volatile Oils of Schisandra Chinensis (Turcz.) Baill Alleviates Parkinson’s Disease by Activating the Nrf2 Pathway to Positively Regulate Autophagy and Oxidative Stress. Bioorg Chem, 2025, 157, 108277. https://doi.org/10.1016/j.bioorg.2025.108277. | |
dc.relation.references | [120] Norris, E. J.; Gross, A. D.; Bartholomay, L. C.; Coats, J. R. Plant Essential Oils Synergize Various Pyrethroid Insecticides and Antagonize Malathion in Aedes Aegypti. Med Vet Entomol, 2019, 33 (4), 453–466. https://doi.org/10.1111/mve.12380. | |
dc.relation.references | [121] Spinozzi, E.; Ferrati, M.; Baldassarri, C.; Rossi, P.; Favia, G.; Cameli, G.; Benelli, G.; Canale, A.; De Fazi, L.; Pavela, R.; et al. Essential Oil and Furanosesquiterpenes from Myrrh Oleo-Gum Resin: A Breakthrough in Mosquito Vector Management. Nat Prod Bioprospect, 2025, 15 (1), 12. https://doi.org/10.1007/s13659-024-00492-6. | |
dc.relation.references | [122] Regnault-Roger, C.; Vincent, C.; Arnason, J. T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu Rev Entomol, 2012, 57, 405–424. https://doi.org/10.1146/annurev-ento-120710-100554. | |
dc.relation.references | [123] Li, Y. xin; Erhunmwunsee, F.; Liu, M.; Yang, K.; Zheng, W.; Tian, J. Antimicrobial Mechanisms of Spice Essential Oils and Application in Food Industry. Food Chem, 2022, 382, 132312. https://doi.org/10.1016/J.FOODCHEM.2022.132312. | |
dc.relation.references | [124] Zabot, G. L.; Schaefer Rodrigues, F.; Polano Ody, L.; Vinícius Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J. S.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers. 2022, p 4194. https://doi.org/10.3390/polym14194194. | |
dc.relation.references | [125] Reis, D. R.; Ambrosi, A.; Luccio, M. Di. Encapsulated Essential Oils: A Perspective in Food Preservation. Future Foods, 2022, 5, 100126. https://doi.org/10.1016/J.FUFO.2022.100126. | |
dc.relation.references | [126] Turasan, H.; Sahin, S.; Sumnu, G. Encapsulation of Rosemary Essential Oil. LWT - Food Science and Technology, 2015, 64 (1), 112–119. https://doi.org/10.1016/J.LWT.2015.05.036. | |
dc.relation.references | [127] Sattary, M.; Amini, J.; Hallaj, R. Antifungal Activity of the Lemongrass and Clove Oil Encapsulated in Mesoporous Silica Nanoparticles against Wheat’s Take-All Disease. Pestic Biochem Physiol, 2020, 170, 104696. https://doi.org/10.1016/j.pestbp.2020.104696. | |
dc.relation.references | [128] Zhang, J.; Hassane Hamadou, A.; Chen, C.; Xu, B. Encapsulation of Phenolic Compounds within Food-Grade Carriers and Delivery Systems by PH-Driven Method: A Systematic Review. Crit Rev Food Sci Nutr, 2023, 63 (19), 4153–4174. https://doi.org/10.1080/10408398.2021.1998761. | |
dc.relation.references | [129] Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. Journal of Controlled Release, 2017, 252, 28–49. https://doi.org/10.1016/J.JCONREL.2017.03.008. | |
dc.relation.references | [130] Maes, C.; Bouquillon, S.; Fauconnier, M. L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules. 2019, p 2539. https://doi.org/10.3390/molecules24142539. | |
dc.relation.references | [131] Liu, Z.; Xu, W.; Kovaleva, E. G.; Cheng, J.; Li, H. Recent Progress in Encapsulation and Controlled Release of Pesticides Based on Cyclodextrin Derivative Carriers. Advanced Agrochem, 2022, 1 (2), 89–99. https://doi.org/10.1016/J.AAC.2022.11.008. | |
dc.relation.references | [132] Perumal, A. B.; Huang, L.; Nambiar, R. B.; He, Y.; Li, X.; Sellamuthu, P. S. Application of Essential Oils in Packaging Films for the Preservation of Fruits and Vegetables: A Review. Food Chem, 2022, 375, 131810. https://doi.org/10.1016/J.FOODCHEM.2021.131810. | |
dc.relation.references | [133] Kfoury, M.; Auezova, L.; Fourmentin, S.; Greige-Gerges, H. Investigation of Monoterpenes Complexation with Hydroxypropyl-β-Cyclodextrin. J Incl Phenom Macrocycl Chem, 2014, 80 (1–2), 51–60. https://doi.org/10.1007/S10847-014-0385-7/METRICS. | |
dc.relation.references | [134] Wadhwa, G.; Kumar, S.; Chhabra, L.; Mahant, S.; Rao, R. Essential Oil–Cyclodextrin Complexes: An Updated Review. J Incl Phenom Macrocycl Chem, 2017, 89 (1–2), 39–58. https://doi.org/10.1007/S10847-017-0744-2/METRICS. | |
dc.relation.references | [135] Rehman, A.; Jafari, S. M.; Aadil, R. M.; Assadpour, E.; Randhawa, M. A.; Mahmood, S. Development of Active Food Packaging via Incorporation of Biopolymeric Nanocarriers Containing Essential Oils. Trends Food Sci Technol, 2020, 101, 106–121. https://doi.org/10.1016/J.TIFS.2020.05.001. | |
dc.relation.references | [136] Doadrio, A.; Salinas, A.; Sánchez-Montero, J.; Vallet-Regí, M. Drug Release from Ordered Mesoporous Silicas. Curr Pharm Des, 2015, 21 (42), 6213–6819. https://doi.org/10.2174/1381612822666151106121419. | |
dc.relation.references | [137] Marzuki, N. H. C.; Wahab, R. A.; Hamid, M. A. An Overview of Nanoemulsion: Concepts of Development and Cosmeceutical Applications. Biotechnology & Biotechnological Equipment, 2019, 33 (1), 779–797. https://doi.org/10.1080/13102818.2019.1620124. | |
dc.relation.references | [138] Mehnert, W.; Mäder, K. Solid Lipid Nanoparticles: Production, Characterization and Applications. Adv Drug Deliv Rev, 2012, 64 (SUPPL.), 83–101. https://doi.org/10.1016/J.ADDR.2012.09.021. | |
dc.relation.references | [139] Baldim, I.; Souza, C. R. F.; Oliveira, W. P. Encapsulation of Essential Oils in Lipid-Based Nanosystems. In Phytotechnology: A Sustainable Platform for the Development of Herbal Products; 2022. https://doi.org/10.1201/9781003225416-10. | |
dc.relation.references | [140] Botrel, D. A.; Fernandes, R. V. de B.; Borges, S. V. Microencapsulation of Essential Oils Using Spray Drying Technology. Microencapsulation and Microspheres for Food Applications, 2015, 235–251. https://doi.org/10.1016/B978-0-12-800350-3.00013-3. | |
dc.relation.references | [141] Hernández-Nava, R.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M. T. Encapsulation of Oregano Essential Oil (Origanum Vulgare) by Complex Coacervation between Gelatin and Chia Mucilage and Its Properties after Spray Drying. Food Hydrocoll, 2020, 109, 106077. https://doi.org/10.1016/J.FOODHYD.2020.106077. | |
dc.relation.references | [142] Theisinger, S.; Schoeller, K.; Osborn, B.; Sarkar, M.; Landfester, K. Encapsulation of a Fragrance via Miniemulsion Polymerization for Temperature-Controlled Release. Macromol Chem Phys, 2009, 210 (6), 411–420. https://doi.org/10.1002/macp.200800499. | |
dc.relation.references | [143] Mascheroni, E.; Fuenmayor, C. A.; Cosio, M. S.; Silvestro, G. Di; Piergiovanni, L.; Mannino, S.; Schiraldi, A. Encapsulation of Volatiles in Nanofibrous Polysaccharide Membranes for Humidity-Triggered Release. Carbohydr Polym, 2013, 98 (1), 17–25. https://doi.org/10.1016/j.carbpol.2013.04.068. | |
dc.relation.references | [144] Sharma, S.; Mulrey, L.; Byrne, M.; Jaiswal, A. K.; Jaiswal, S. Encapsulation of Essential Oils in Nanocarriers for Active Food Packaging. Foods. 2022, p 2337. https://doi.org/10.3390/foods11152337. | |
dc.relation.references | [145] Chai, C.; Park, J. Food Liposomes: Structures, Components, Preparations, and Applications. Food Chem, 2024, 432, 137228. https://doi.org/10.1016/J.FOODCHEM.2023.137228. | |
dc.relation.references | [146] Chai, C.; Park, J. Food Liposomes: Structures, Components, Preparations, and Applications. Food Chemistry. 2024, p 137228. https://doi.org/10.1016/j.foodchem.2023.137228. | |
dc.relation.references | [147] Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon, 2022, 8 (5), e09394. https://doi.org/10.1016/J.HELIYON.2022.E09394. | |
dc.relation.references | [148] DeMarino, C.; Schwab, A.; Pleet, M.; Mathiesen, A.; Friedman, J.; El-Hage, N.; Kashanchi, F. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. Journal of Neuroimmune Pharmacology, 2017, 12 (1), 31–50. https://doi.org/10.1007/S11481-016-9692-7. | |
dc.relation.references | [149] Lingayat, V. J.; Zarekar, N. S.; Shendge, R. S. Solid Lipid Nanoparticles: A Review. Nanoscience and Nanotechnology Research, Vol. 4, 2017, Pages 67-72, 2017, 4 (2), 67–72. https://doi.org/10.12691/NNR-4-2-5. | |
dc.relation.references | [150] Fuenmayor, C. A.; Baron-Cangrejo, O. G.; Salgado-Rivera, P. A. Encapsulation of Carotenoids as Food Colorants via Formation of Cyclodextrin Inclusion Complexes: A Review. Polysaccharides 2021, Vol. 2, Pages 454-476, 2021, 2 (2), 454–476. https://doi.org/10.3390/POLYSACCHARIDES2020028. | |
dc.relation.references | [151] Kfoury, M.; Hădărugă, N. G.; Hădărugă, D. I.; Fourmentin, S. Cyclodextrins as Encapsulation Material for Flavors and Aroma. In Encapsulations: Nanotechnology in the Agri-Food Industry: Volume 2; 2016; Vol. 2, pp 127–192. https://doi.org/10.1016/B978-0-12-804307-3.00004-1. | |
dc.relation.references | [152] Gonzalez-Gaitano, G.; Isasi, J. R.; Velaz, I.; Zornoza, A. Drug Carrier Systems Based on Cyclodextrin Supramolecular Assemblies and Polymers: Present and Perspectives. Curr Pharm Des, 2017, 23 (3), 411–432. https://doi.org/10.2174/1381612823666161118145309. | |
dc.relation.references | [153] Szente, L.; Fenyvesi, É. Cyclodextrin-Enabled Polymer Composites for Packaging. Molecules 2018, Vol. 23, Page 1556, 2018, 23 (7), 1556. https://doi.org/10.3390/MOLECULES23071556. | |
dc.relation.references | [154] Kong, M.; Chen, X. G.; Kweon, D. K.; Park, H. J. Investigations on Skin Permeation of Hyaluronic Acid Based Nanoemulsion as Transdermal Carrier. Carbohydr Polym, 2011, 86 (2), 837–843. https://doi.org/10.1016/J.CARBPOL.2011.05.027. | |
dc.relation.references | [155] Hong, Y.; Tang, L. Z. Research on Properties of Antibacterial Paper Sprayed by Nano-Chitosan. Adv Mat Res, 2014, 926, 214–217. https://doi.org/10.4028/www.scientific.net/AMR.926-930.214. | |
dc.relation.references | [156] Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int J Food Microbiol, 2010, 144 (1), 51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012. | |
dc.relation.references | [157] Jamiri, F.; Nayeri Fasaei, B.; Joghataei, S. M.; Yahyaraeyat, R.; Mazloom-Jalali, A. Synergistic Antibacterial Activity of Chitosan-Polyethylene Glycol Nanocomposites Films Containing ZIF-8 and Doxycycline. BMC Biotechnol, 2025, 25 (1), 19. https://doi.org/10.1186/s12896-025-00953-x. | |
dc.relation.references | [158] Radhakrishnan, K.; Thomas, M. B.; Pulakkat, S.; Gnanadhas, D. P.; Chakravortty, D.; Raichur, A. M. Stimuli-Responsive Protamine-Based Biodegradable Nanocapsules for Enhanced Bioavailability and Intracellular Delivery of Anticancer Agents. Journal of Nanoparticle Research, 2015, 17 (8), 1–12. https://doi.org/10.1007/S11051-015-3145-8/METRICS. | |
dc.relation.references | [159] Rehman, A.; Jafari, S. M.; Aadil, R. M.; Assadpour, E.; Randhawa, M. A.; Mahmood, S. Development of Active Food Packaging via Incorporation of Biopolymeric Nanocarriers Containing Essential Oils. Trends Food Sci Technol, 2020, 101, 106–121. https://doi.org/10.1016/J.TIFS.2020.05.001. | |
dc.relation.references | [160] Varma, R. S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain Chem Eng, 2019, 7 (7), 6458–6470. https://doi.org/10.1021/ACSSUSCHEMENG.8B06550. | |
dc.relation.references | [161] Abdoul-Latif, F. M.; Ainane, A.; Mohamed, H.; Ali, A. M.; Cacciatore, S.; Ainane, T. Advanced Formulation of Ecological Bioinsecticides Based on Citrus Limonum in Clayey Matrices: Optimization of Diffusive Dynamics. Sustainability 2025, Vol. 17, Page 785, 2025, 17 (2), 785. https://doi.org/10.3390/SU17020785. | |
dc.relation.references | [162] Massaro, M.; Colletti, C. G.; Lazzara, G.; Riela, S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. Journal of Functional Biomaterials 2018, Vol. 9, Page 58, 2018, 9 (4), 58. https://doi.org/10.3390/JFB9040058. | |
dc.relation.references | [163] Beidaghy Dizaji, H.; Zeng, T.; Hölzig, H.; Bauer, J.; Klöß, G.; Enke, D. Ash Transformation Mechanism during Combustion of Rice Husk and Rice Straw. Fuel, 2022, 307, 121768. https://doi.org/10.1016/J.FUEL.2021.121768. | |
dc.relation.references | [164] Wu, S. H.; Lin, H. P. Synthesis of Mesoporous Silica Nanoparticles. Chem Soc Rev, 2013, 42 (9), 3862–3875. https://doi.org/10.1039/C3CS35405A. | |
dc.relation.references | [165] Alswieleh, A. M. Modification of Mesoporous Silica Surface by Immobilization of Functional Groups for Controlled Drug Release. J Chem, 2020, 2020 (1), 9176257. https://doi.org/10.1155/2020/9176257. | |
dc.relation.references | [166] Flörke, O. W.; Graetsch, H. A.; Brunk, F.; Benda, L.; Paschen, S.; Bergna, H. E.; Roberts, W. O.; Welsh, W. A.; Libanati, C.; Ettlinger, M.; et al. Silica. Ullmann’s Encyclopedia of Industrial Chemistry, 2008. https://doi.org/10.1002/14356007.A23_583.PUB3. | |
dc.relation.references | [167] Ciriminna, R.; Pagliaro, M. Sol-Gel Microencapsulation of Odorants and Flavors: Opening the Route to Sustainable Fragrances and Aromas. Chemical Society Reviews. 2013, pp 9243–9250. https://doi.org/10.1039/c3cs60286a. | |
dc.relation.references | [168] Crini, G.; Aleya, L. Cyclodextrin Applications in Pharmacy, Biology, Medicine, and Environment. Environmental Science and Pollution Research, 2022, 29 (1), 167–170. https://doi.org/10.1007/S11356-021-16871-2/FIGURES/2. | |
dc.relation.references | [169] Capelezzo, A. P.; Mohr, L. C.; Dalcanton, F.; Mello, J. M. M. de; Fiori, M. A. β-Cyclodextrins as Encapsulating Agents of Essential Oils. Cyclodextrin - A Versatile Ingredient, 2018. https://doi.org/10.5772/INTECHOPEN.73568. | |
dc.relation.references | [170] Paiva-Santos, A. C.; Ferreira, L.; Peixoto, D.; Silva, F.; Soares, M. J.; Zeinali, M.; Zafar, H.; Mascarenhas-Melo, F.; Raza, F.; Mazzola, P. G.; et al. Cyclodextrins as an Encapsulation Molecular Strategy for Volatile Organic Compounds— Pharmaceutical Applications. Colloids and Surfaces B: Biointerfaces. 2022, p 112758. https://doi.org/10.1016/j.colsurfb.2022.112758. | |
dc.relation.references | [171] Alabrahim, O. A. A.; Azzazy, H. M. E. S. Antimicrobial Activities of Pistacia Lentiscus Essential Oils Nanoencapsulated into Hydroxypropyl-Beta-Cyclodextrins. ACS Omega, 2024, 9 (11), 12622–12634. https://doi.org/10.1021/acsomega.3c07413. | |
dc.relation.references | [172] Huang, J.; Pu, J.; Yang, Z.; Zhang, S.; Zhang, Z.; Lu, Q.; Song, D.; Li, X.; Fang, Z.; Liu, Y.; et al. Development of a Syzygium Aromaticum, L. Essential Oil/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Preparation, Characterization, and Evaluation. Ind Crops Prod, 2024, 214, 118500. https://doi.org/10.1016/j.indcrop.2024.118500. | |
dc.relation.references | [173] Balci-Torun, F. Encapsulation of Origanum Onites Essential Oil with Different Wall Material Using Spray Drying. Phytochemical Analysis, 2024, 35 (8), 1736–1747. https://doi.org/10.1002/PCA.3218. | |
dc.relation.references | [174] Budiman, A.; Aulifa, D. L. Encapsulation of Drug into Mesoporous Silica by Solvent Evaporation: A Comparative Study of Drug Characterization in Mesoporous Silica with Various Molecular Weights. Heliyon, 2021, 7 (12), e08627. https://doi.org/10.1016/j.heliyon.2021.e08627. | |
dc.relation.references | [175] Morante-Zarcero, S.; Endrino, A.; Casado, N.; Pérez-Quintanilla, D.; Sierra, I. Evaluation of Mesostructured Silica Materials with Different Structures and Morphologies as Carriers for Quercetin and Naringin Encapsulation. Journal of Porous Materials, 2022, 29 (1), 33–48. https://doi.org/10.1007/s10934-021-01144-7. | |
dc.relation.references | [176] Cid-Samamed, A.; Rakmai, J.; Mejuto, J. C.; Simal-Gandara, J.; Astray, G. Cyclodextrins Inclusion Complex: Preparation Methods, Analytical Techniques and Food Industry Applications. Food Chemistry. 2022, p 132467. https://doi.org/10.1016/j.foodchem.2022.132467. | |
dc.relation.references | [177] Boonyarattanakalin, K.; Viernstein, H.; Wolschann, P.; Lawtrakul, L. Influence of Ethanol as a Co-Solvent in Cyclodextrin Inclusion Complexation: A Molecular Dynamics Study. Sci Pharm, 2015, 83 (2), 387. https://doi.org/10.3797/SCIPHARM.1412-08. | |
dc.relation.references | [178] Rachmawati, H.; Edityaningrum, C. A.; Mauludin, R. Molecular Inclusion Complex of Curcumin-β-Cyclodextrin Nanoparticle to Enhance Curcumin Skin Permeability from Hydrophilic Matrix Gel. AAPS PharmSciTech, 2013, 14 (4), 1303–1312. https://doi.org/10.1208/s12249-013-0023-5. | |
dc.relation.references | [179] Kavetsou, E.; Pitterou, I.; Katopodi, A.; Petridou, G.; Adjali, A.; Grigorakis, S.; Detsi, A. Preparation, Characterization, and Acetylcholinesterase Inhibitory Ability of the Inclusion Complex of β-Cyclodextrin–Cedar (Juniperus Phoenicea) Essential Oil. Micro 2021, Vol. 1, Pages 250-266, 2021, 1 (2), 250–266. https://doi.org/10.3390/MICRO1020019. | |
dc.relation.references | [180] Miyazawa, M.; Yamafuji, C. Inhibition of Acetylcholinesterase Activity by Bicyclic Monoterpenoids. J Agric Food Chem, 2005, 53 (5), 1765–1768. https://doi.org/10.1021/JF040019B. | |
dc.relation.references | [181] Jie, Y.; Shi, T.; Yang, D.; Zhang, Z. Essential Oil of Citrus Limon Osbeck: An Insecticidal Natural Product against Cryptolestes Pusillus SchÖnherr. J Asia Pac Entomol, 2024, 27 (1), 102203. https://doi.org/10.1016/J.ASPEN.2024.102203. | |
dc.relation.references | [182] Eddin, L. B.; Jha, N. K.; Meeran, M. F. N.; Kesari, K. K.; Beiram, R.; Ojha, S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021, Vol. 26, Page 4535, 2021, 26 (15), 4535. https://doi.org/10.3390/MOLECULES26154535. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.bne | Esencias y aceites esenciales -- Composición | spa |
dc.subject.bne | Essences and essential oils -- Composition | eng |
dc.subject.bne | Aceites de cítricos | spa |
dc.subject.bne | Citrus oils | eng |
dc.subject.bne | Plantas aromáticas | spa |
dc.subject.bne | Aromatic plants | eng |
dc.subject.bne | Extractos de plantas | spa |
dc.subject.bne | Plant extracts | eng |
dc.subject.ddc | 540 - Química y ciencias afines | |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | |
dc.subject.decs | Inhibidores de la colinesterasa -- Química | spa |
dc.subject.decs | Cholinesterase inhibitors -- Chemistry | eng |
dc.subject.decs | Aceites volátiles -- Farmacología | spa |
dc.subject.decs | Oils, volatile -- Pharmacology | eng |
dc.subject.decs | Aceites volátiles -- Química | spa |
dc.subject.decs | Oils, volatile -- Chemistry | eng |
dc.subject.decs | Cápsulas -- Farmacología | spa |
dc.subject.decs | Capsules -- Pharmacology | eng |
dc.subject.decs | Gel de sílice | spa |
dc.subject.decs | Silica gel | eng |
dc.subject.decs | 2-Hidroxipropil-beta-Ciclodextrina | spa |
dc.subject.decs | 2-Hydroxypropyl-beta-cyclodextrin | eng |
dc.subject.decs | Ciclodextrinas -- Química | spa |
dc.subject.decs | Cyclodextrins -- Chemistry | eng |
dc.subject.other | Composición química | spa |
dc.subject.other | Chemical composition | eng |
dc.subject.proposal | Aceites esenciales | spa |
dc.subject.proposal | Acetilcolinesterasa | spa |
dc.subject.proposal | Encapsulación | spa |
dc.subject.proposal | Ciclodextrina | spa |
dc.subject.proposal | Sílica | spa |
dc.subject.proposal | Complejos de inclusión | spa |
dc.subject.proposal | Essential oil | eng |
dc.subject.proposal | Acetylcholinesterase | eng |
dc.subject.proposal | Encapsulation | eng |
dc.subject.proposal | Cyclodextrin | eng |
dc.subject.proposal | Silica | eng |
dc.subject.proposal | Inclusion complexes | eng |
dc.subject.unam | Plantas -- Efectos de los productos químicos | spa |
dc.subject.unam | Plants -- Effect of chemicals on | eng |
dc.title | Desarrollo de encapsulados a base de aceites esenciales con actividad inhibitoria de la acetilcolinesterasa | spa |
dc.title.translated | Development of essential oil-based encapsulates with acetylcholinesterase inhibitory activity | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis - Version final - Repositorio - Sin firma.pdf
- Tamaño:
- 4.47 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: