Intercambio gaseoso pulmonar en ambientes especiales : Una revisión narrativa

dc.contributor.advisorCorzo Zamora, Maria Alejandraspa
dc.contributor.authorCastañeda Niño, Fabián Andrésspa
dc.date.accessioned2025-04-02T14:41:18Z
dc.date.available2025-04-02T14:41:18Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl intercambio gaseoso alveolo-capilar es una de las funciones primordiales de los organismos más evolucionados. La descripción de sus mecanismos adaptativos ante la exposición a los diversos ambientes especiales (altura, aviación, ambientes hiperbáricos y microgravedad) se hace relevante ante la exposición frecuente a estos. La dificultad conceptual y la escasa información en idioma español sobre la fisiología respiratoria en ambientes especiales, específicamente del intercambio alveolo capilar, hace necesario plantear estrategias que permitan su conocimiento. Por lo cual, se realizó una revisión narrativa que revisa los elementos fisiológicos involucrados en intercambio gaseoso a nivel pulmonar en condiciones fisiológicas habituales y en ambientes especiales (alta montaña, aviación, submarinismo y espacio). A través de una búsqueda por palabras clave en las bases de datos PubMed, EMBASE y SCOPUS, se seleccionaron 126 artículos para su elaboración. Resultados: Se describe la fisiología del intercambio alveolo-capilar básica de cada uno de sus determinantes y sus variaciones en ambientes especiales. Conclusiones: La adaptación fisiológica ambiental es variable y depende de la naturaleza del estímulo al configurarse una respuesta diversa en cada uno de sus determinantes al mantener el intercambio gaseoso. Las respuestas fisiológicas ambientales pueden desencadenar cambios fisiopatológicos que inciden en la función de intercambio alveolo-capilar (Texto tomado de la fuente).spa
dc.description.abstractPulmonary gas exchange is one of the primary functions of the most evolved organisms. The description of its adaptive mechanisms in the face of exposure to various special environments (altitude, aviation, hyperbaric environments and microgravity) becomes relevant in the face of frequent exposure to these environments. The conceptual difficulty and the scarce information in Spanish about respiratory physiology in special environments, specifically the pulmonary gas exchange, makes it necessary to propose strategies that allow its knowledge. Therefore, a narrative review was carried out to review the physiological elements involved in gas exchange at pulmonary level in normal physiological conditions and in special environments (high mountain, aviation, diving and space). Through a keyword search in PubMed, EMBASE and SCOPUS databases, 126 articles were selected for its elaboration. Results: The basic alveolar-capillary exchange physiology of each of its determinants and its variations in special environments are described. Conclusions: Environmental physiological adaptation is variable and depends on the nature of the stimulus by configuring a diverse response in each of its determinants in maintaining gas exchange. Environmental physiological responses can trigger pathophysiological changes that affect pulmonary gas exchange.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisiologíaspa
dc.description.methodsPara el desarrollo de la revisión narrativa, se empleó la estrategia de PICO como método de búsqueda y del planteamiento de la pregunta de investigación.spa
dc.description.researchareaFisiología en Ambientes Especialesspa
dc.format.extent153 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87817
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.referencesAgostoni, P., Swenson, E. R., Bussotti, M., Revera, M., Meriggi, P., Faini, A., Lombardi, C., Bilo, G., Giuliano, A., Bonacina, D., Modesti, P. A., Mancia, G., & Parati, G. (2011). High-altitude exposure of three weeks duration increases lung diffusing capacity in humans. Journal of Applied Physiology (Bethesda, Md. : 1985), 110(6), 1564-1571. https://doi.org/10.1152/japplphysiol.01167.2010spa
dc.relation.referencesAgostoni, P., Swenson, E. R., Fumagalli, R., Salvioni, E., Cattadori, G., Farina, S., Bussotti, M., Tamplenizza, M., Lombardi, C., Bonacina, D., Brioschi, M., Caravita, S., Modesti, P., Revera, M., Giuliano, A., Meriggi, P., Faini, A., Bilo, G., Banfi, C., & Parati, G. (2013). Acute high-altitude exposure reduces lung diffusion: Data from the HIGHCARE Alps project. Respiratory Physiology & Neurobiology, 188(2), 223-228. https://doi.org/10.1016/j.resp.2013.04.005spa
dc.relation.referencesAnderson, L. C., & Krichbaum, K. E. (2017). Best practices for learning physiology: Combining classroom and online methods. Advances in Physiology Education, 41(3), 383-389. https://doi.org/10.1152/advan.00099.2016spa
dc.relation.referencesAndersson, J. P. A., Biasoletto-Tjellström, G., & Schagatay, E. K. A. (2008). Pulmonary gas exchange is reduced by the cardiovascular diving response in resting humans. Respiratory Physiology & Neurobiology, 160(3), 320-324. https://doi.org/10.1016/j.resp.2007.10.016spa
dc.relation.referencesAndrade P, A., & Bertrand N, P. (2022). FISIOLOGÍA RESPIRATORIA: DIFUSIÓN DE GASES. Neumología Pediátrica, 17(1), 6-8. https://doi.org/10.51451/np.v17i1.472spa
dc.relation.referencesArriaza, K., Cuevas, C., Pena, E., Siques, P., & Brito, J. (2022). Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. International Journal of Molecular Sciences, 23(13), 6974. https://doi.org/10.3390/ijms23136974spa
dc.relation.referencesAubert, A. E., Larina, I., Momken, I., Blanc, S., White, O., Kim Prisk, G., & Linnarsson, D. (2016). Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. npj Microgravity, 2(1), 16031. https://doi.org/10.1038/npjmgrav.2016.31spa
dc.relation.referencesBabu, G., Upchurch, B. D., Young, W. H., & Levine, B. D. (2020). Medicine in Extreme Environments: A New Medical Student Elective Class for Wilderness, Aerospace, Hyperbaric, Exercise, and Combat Medicine. Wilderness & Environmental Medicine, 31(1), 110-115. https://doi.org/10.1016/j.wem.2019.10.006spa
dc.relation.referencesBaggish, A. L., Fulco, C. S., Muza, S., Rock, P. B., Beidleman, B., Cymerman, A., Yared, K., Fagenholz, P., Systrom, D., Wood, M. J., Weyman, A. E., Picard, M. H., & Harris, N. S. (2010). The Impact of Moderate-Altitude Staging on Pulmonary Arterial Hemodynamics after Ascent to High Altitude. High Altitude Medicine & Biology, 11(2), 139-145. https://doi.org/10.1089/ham.2009.1073spa
dc.relation.referencesBaloglu, E., Nonnenmacher, G., Seleninova, A., Berg, L., Velineni, K., Ermis‐Kaya, E., & Mairbäurl, H. (2020). The role of hypoxia‐induced modulation of alveolar epithelial Na + ‐ transport in hypoxemia at high altitude. Pulmonary Circulation, 10(S1), 50-58. https://doi.org/10.1177/2045894020936662spa
dc.relation.referencesBarrow, A., & Pandit, J. J. (2014). Lung ventilation and the physiology of breathing. Surgery (Oxford), 32(5), 221-227. https://doi.org/10.1016/j.mpsur.2014.02.010spa
dc.relation.referencesBärtsch, P., & Saltin, B. (2008). General introduction to altitude adaptation and mountain sickness. Scandinavian Journal of Medicine & Science in Sports, 18 Suppl 1, 1-10. https://doi.org/10.1111/j.1600-0838.2008.00827.xspa
dc.relation.referencesBell, M., Thake, C. D., & Wolff, C. B. (2011). Effect of Inspiration of 12%O2 (Balance N2) on Cardiac Output, Respiration, Oxygen Saturation, and Oxygen Delivery. En J. C. LaManna, M. A. Puchowicz, K. Xu, D. K. Harrison, & D. F. Bruley (Eds.), Oxygen Transport to Tissue XXXII (Vol. 701, pp. 327-332). Springer US. https://doi.org/10.1007/978-1-4419-7756-4_44spa
dc.relation.referencesBellis, F., Parris, R., Thake, D., & Richards, P. (2005). Difficult Decisions at Altitude: The Management of an Acutely Dyspneic Porter at 5000 Meters. Wilderness & Environmental Medicine, 16(4), 212-218. https://doi.org/10.1580/PR27-04.1spa
dc.relation.referencesBeretta, E., Lanfranconi, F., Grasso, G. S., Bartesaghi, M., Alemayehu, H. K., & Miserocchi, G. (2017). Reappraisal of DLCO adjustment to interpret the adaptive response of the air-blood barrier to hypoxia. Respiratory Physiology & Neurobiology, 238, 59-65. https://doi.org/10.1016/j.resp.2016.08.009spa
dc.relation.referencesBeretta, E., Lanfranconi, F., Grasso, G. S., Bartesaghi, M., Alemayehu, H. K., Pratali, L., Catuzzo, B., Giardini, G., & Miserocchi, G. (2017). Air blood barrier phenotype correlates with alveolo-capillary O 2 equilibration in hypobaric hypoxia. Respiratory Physiology & Neurobiology, 246, 53-58. https://doi.org/10.1016/j.resp.2017.08.006spa
dc.relation.referencesBerger, M. M., Hesse, C., Dehnert, C., Siedler, H., Kleinbongard, P., Bardenheuer, H. J., Kelm, M., Bärtsch, P., & Haefeli, W. E. (2005). Hypoxia Impairs Systemic Endothelial Function in Individuals Prone to High-Altitude Pulmonary Edema. American Journal of Respiratory and Critical Care Medicine, 172(6), 763-767. https://doi.org/10.1164/rccm.200504-654OCspa
dc.relation.referencesBigatello, L., & Pesenti, A. (2019). Respiratory Physiology for the Anesthesiologist. Anesthesiology, 130(6), 1064-1077. https://doi.org/10.1097/ALN.0000000000002666spa
dc.relation.referencesBoron, W. F., & Boulpaep, E. L. (Eds.). (2017). Medical physiology (Third edition). Elsevier.spa
dc.relation.referencesBrutsaert, T. (2016). Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development. Advances in Experimental Medicine and Biology, 903, 101-112. https://doi.org/10.1007/978-1-4899-7678-9_7spa
dc.relation.referencesBuckley, R. (2006). Adventure tourism. CABI Pub.spa
dc.relation.referencesBurtscher, M., Gatterer, H., Burtscher, J., & Mairbäurl, H. (2018). Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Frontiers in Physiology, 9, 572. https://doi.org/10.3389/fphys.2018.00572spa
dc.relation.referencesCalzia, E., & Radermacher, P. (2003). Alveolar ventilation and pulmonary blood flow: The V?A/Q? concept. Intensive Care Medicine, 29(8), 1229-1232. https://doi.org/10.1007/s00134-003-1835-7spa
dc.relation.referencesConkin, J., Wessel, J. H. 3rd, Norcross, J. R., Bekdash, O. S., Abercromby, A. F. J., Koslovsky, M. D., & Gernhardt, M. L. (2017). Hemoglobin Oxygen Saturation with Mild Hypoxia and Microgravity. Aerospace Medicine and Human Performance, 88(6), 527-534. https://doi.org/10.3357/AMHP.4804.2017spa
dc.relation.referencesCostalat, G., Coquart, J., Castres, I., Joulia, F., Sirost, O., Clua, E., & Lemaître, F. (2017). The oxygen-conserving potential of the diving response: A kinetic-based analysis. Journal of Sports Sciences, 35(7), 678-687. https://doi.org/10.1080/02640414.2016.1183809spa
dc.relation.referencesCostalat, G., Pichon, A., Joulia, F., & Lemaître, F. (2015). Modeling the diving bradycardia: Toward an “oxygen-conserving breaking point”? European Journal of Applied Physiology, 115(7), 1475-1484. https://doi.org/10.1007/s00421-015-3129-5spa
dc.relation.referencesCummins, E. P., & Keogh, C. E. (2016). Respiratory gases and the regulation of transcription: Oxygen, carbon dioxide and gene expression. Experimental Physiology, 101(8), 986-1002. https://doi.org/10.1113/EP085715spa
dc.relation.referencesde Bisschop, C., Kiger, L., Marden, M. C., Ajata, A., Huez, S., Faoro, V., Martinot, J.-B., Naeije, R., & Guénard, H. (2010). Pulmonary capillary blood volume and membrane conductance in Andeans and lowlanders at high altitude: A cross-sectional study. Nitric Oxide : Biology and Chemistry, 23(3), 187-193. https://doi.org/10.1016/j.niox.2010.05.288spa
dc.relation.referencesDoolette, D. J., & Mitchell, S. J. (2011). Hyperbaric conditions. Comprehensive Physiology, 1(1), 163-201. https://doi.org/10.1002/cphy.c091004spa
dc.relation.referencesDorrington, K. L., & Talbot, N. P. (2004). Human pulmonary vascular responses to hypoxia and hypercapnia. Pfl�gers Archiv - European Journal of Physiology, 449(1), 1-15. https://doi.org/10.1007/s00424-004-1296-zspa
dc.relation.referencesDueñas Castell, MD., C., Fortich Salvador, MD., A., & Ortiz Ruiz, MD., G. (2016). La membrana alveolo-capilar. Revista Colombiana de Neumología, 26(3). https://doi.org/10.30789/rcneumologia.v26.n3.2014.38spa
dc.relation.referencesDuffin, J. (2010). The role of the central chemoreceptors: A modeling perspective. Respiratory Physiology & Neurobiology, 173(3), 230-243. https://doi.org/10.1016/j.resp.2010.03.010spa
dc.relation.referencesDujic, Z., Bakovic, D., Marinovic-Terzic, I., & Eterovic, D. (2005). Acute effects of a single open sea air dive and post-dive posture on cardiac output and pulmonary gas exchange in recreational divers. British Journal of Sports Medicine, 39(5), e24. https://doi.org/10.1136/bjsm.2004.014308spa
dc.relation.referencesDunham-Snary, K. J., Wu, D., Sykes, E. A., Thakrar, A., Parlow, L. R. G., Mewburn, J. D., Parlow, J. L., & Archer, S. L. (2017). Hypoxic Pulmonary Vasoconstriction. Chest, 151(1), 181-192. https://doi.org/10.1016/j.chest.2016.09.001spa
dc.relation.referencesEdge, C. J. (2008). Recreational diving medicine. Current Anaesthesia & Critical Care, 19(4), 235-246. https://doi.org/10.1016/j.cacc.2008.06.001spa
dc.relation.referencesErcan, E. (2021). Effects of aerospace environments on the cardiovascular system. The Anatolian Journal of Cardiology, 25(Supp1), S3-S6. https://doi.org/10.5152/AnatolJCardiol.2021.S103spa
dc.relation.referencesEvans, A. M., Mahmoud, A. D., Moral-Sanz, J., & Hartmann, S. (2016). The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochemical Journal, 473(17), 2561-2572. https://doi.org/10.1042/BCJ20160002spa
dc.relation.referencesFarias, J. G., Osorio, J., Soto, G., Brito, J., Siques, P., & Reyes, J. G. (2006). Sustained acclimatization in Chilean mine workers subjected to chronic intermittent hypoxia. High Altitude Medicine & Biology, 7(4), 302-306. https://doi.org/10.1089/ham.2006.7.302spa
dc.relation.referencesFarrell, S., & Curley, G. F. (2021). Respiration: Ventilation. Anaesthesia & Intensive Care Medicine, 22(3), 179-184. https://doi.org/10.1016/j.mpaic.2021.01.008spa
dc.relation.referencesFirth, P. G., Zheng, H., Windsor, J. S., Sutherland, A. I., Imray, C. H., Moore, G. W. K., Semple, J. L., Roach, R. C., & Salisbury, R. A. (2008). Mortality on Mount Everest, 1921-2006: Descriptive study. BMJ, 337, a2654. https://doi.org/10.1136/bmj.a2654spa
dc.relation.referencesFitz-Clarke, J. R. (2007). Mechanics of airway and alveolar collapse in human breath-hold diving. Respiratory Physiology & Neurobiology, 159(2), 202-210. https://doi.org/10.1016/j.resp.2007.07.006spa
dc.relation.referencesFitz-Clarke, J. R. (2009). Lung compression effects on gas exchange in human breath-hold diving. Respiratory Physiology & Neurobiology, 165(2-3), 221-228. https://doi.org/10.1016/j.resp.2008.12.006spa
dc.relation.referencesFoster, G. E., Ainslie, P. N., Stembridge, M., Day, T. A., Bakker, A., Lucas, S. J. E., Lewis, N. C. S., MacLeod, D. B., & Lovering, A. T. (2014). Resting pulmonary haemodynamics and shunting: A comparison of sea-level inhabitants to high altitude Sherpas. The Journal of Physiology, 592(6), 1397-1409. https://doi.org/10.1113/jphysiol.2013.266593spa
dc.relation.referencesFrappell, P. B., León-Velarde, F., & Rivera-Ch, M. (2007). Oxygen transport at high altitude—An integrated perspective. Introduction. Respiratory Physiology & Neurobiology, 158(2-3), 115-120. https://doi.org/10.1016/j.resp.2007.08.002spa
dc.relation.referencesGarbella, E., Piarulli, A., Fornai, E., Pingitore, A., & Prediletto, R. (2011). Preliminary observations on the effect of hypoxic and hyperbaric stress on pulmonary gas exchange in breath-hold divers. Diving and Hyperbaric Medicine, 41(2), 97-100.spa
dc.relation.referencesGochicoa-Rangel, L., Del-Río-Hidalgo, R., Álvarez-Arroyo, M. R., Martínez-Briseño, D., Mora-Romero, U., Martínez-Valdeavellano, L., Navarrete-Rivera, J., Rodríguez-Moreno, L., Guerrero-Zúñiga, S., Fernández-Plata, R., Cantú-González, G., Cid-Juárez, S., García-Sancho, C., Thirión-Romero, I., Silva-Cerón, M., Pérez-Padilla, R., & Torre-Bouscoulet, L. (2019). Diffusing Capacity of the Lung for Carbon Monoxide in Mexican/Latino Children. Quality Control and Reference Values. Annals of the American Thoracic Society, 16(2), 240-247. https://doi.org/10.1513/AnnalsATS.201712-922OCspa
dc.relation.referencesGuyton, A. C., Hall, J. E., & Hall, M. E. (2021). Tratado de fisiología médica. (14a. ed.). Elsevier.spa
dc.relation.referencesHainsworth, R., & Drinkhill, M. J. (2007). Cardiovascular adjustments for life at high altitude. Respiratory Physiology & Neurobiology, 158(2-3), 204-211. https://doi.org/10.1016/j.resp.2007.05.006spa
dc.relation.referencesHall, G. L., Verheggen, M., & Stick, S. M. (2007). Assessing fitness to fly in young infants and children. Thorax, 62(3), 278-279. https://doi.org/10.1136/thx.2006.071118spa
dc.relation.referencesHevroni, A., Goldman, A., & Kerem, E. (2015). High Altitude: Physiology and Pathophysiology in Adults and Children A Review. Clinical Pulmonary Medicine, 22(3), 105-113. https://doi.org/10.1097/CPM.0000000000000093spa
dc.relation.referencesHowden, R., & Kleeberger, S. R. (2012). Genetic and Environmental Influences on Gas Exchange. En R. Terjung (Ed.), Comprehensive Physiology (1.a ed., pp. 2595-2614). Wiley. https://doi.org/10.1002/cphy.c110060spa
dc.relation.referencesHughes, J. M. B. (2007). Assessing gas exchange. Chronic Respiratory Disease, 4(4), 205-214. https://doi.org/10.1177/1479972307084446spa
dc.relation.referencesHughes, J. M. B. (2016). Hypoxic pulmonary vasoconstriction: Clinical implications. European Respiratory Journal, 47(1), 31-34. https://doi.org/10.1183/13993003.01753-2015spa
dc.relation.referencesHuicho, L. (2007). Postnatal cardiopulmonary adaptations to high altitude. Respiratory Physiology & Neurobiology, 158(2-3), 190-203. https://doi.org/10.1016/j.resp.2007.05.004spa
dc.relation.referencesImray, C. H. E., Grocott, M. P. W., Wilson, M. H., Hughes, A., & Auerbach, P. S. (2015). Extreme, expedition, and wilderness medicine. The Lancet, 386(10012), 2520-2525. https://doi.org/10.1016/S0140-6736(15)01165-4spa
dc.relation.referencesImray, C., Wright, A., Subudhi, A., & Roach, R. (2010). Acute Mountain Sickness: Pathophysiology, Prevention, and Treatment. High Altitude Cardiopulmonary Physiology, Pathophysiology and Disease, 52(6), 467-484. https://doi.org/10.1016/j.pcad.2010.02.003spa
dc.relation.referencesIto, S., Sasano, H., Sasano, N., Hayano, J., Fisher, J. A., & Katsuya, H. (2006). Vagal nerve activity contributes to improve the efficiency of pulmonary gas exchange in hypoxic humans: Vagal nerve and pulmonary gas exchange in humans. Experimental Physiology, 91(5), 935-941. https://doi.org/10.1113/expphysiol.2006.034421spa
dc.relation.referencesJain, M. (2005). Effects of Hypoxia on the Alveolar Epithelium. Proceedings of the American Thoracic Society, 2(3), 202-205. https://doi.org/10.1513/pats.200501-006ACspa
dc.relation.referencesJohnson, D. L., Ambrose, S. H., Bassett, T. J., Bowen, M. L., Crummey, D. E., Isaacson, J. S., Johnson, D. N., Lamb, P., Saul, M., & Winter-Nelson, A. E. (1997). Meanings of Environmental Terms. Journal of Environmental Quality, 26(3), 581-589. https://doi.org/10.2134/jeq1997.00472425002600030002xspa
dc.relation.referencesJohnson, N. J., Luks, A. M., & Glenny, R. W. (2017). Gas Exchange in the Prone Posture. Respiratory Care, 62(8), 1097-1110. https://doi.org/10.4187/respcare.05512spa
dc.relation.referencesJones, R., & Berry, R. (2015). Mechanisms of hypoxaemia and the interpretation of arterial blood gases. Surgery (Oxford), 33(10), 461-466. https://doi.org/10.1016/j.mpsur.2015.07.014spa
dc.relation.referencesJoyner, M. J. (2011). Why Physiology Matters in Medicine. Physiology, 26(2), 72-75. https://doi.org/10.1152/physiol.00003.2011spa
dc.relation.referencesKaravidas, M. K., & Lehrer, P. M. (2009). In-Flight Hyperventilation Among Airline Pilots. Aviation, Space, and Environmental Medicine, 80(5), 495-496. https://doi.org/10.3357/ASEM.2424.2009spa
dc.relation.referencesKarlsson, L. L., Kerckx, Y., Gustafsson, L. E., Hemmingsson, T. E., & Linnarsson, D. (2009). Microgravity decreases and hypergravity increases exhaled nitric oxide. Journal of Applied Physiology (Bethesda, Md. : 1985), 107(5), 1431-1437. https://doi.org/10.1152/japplphysiol.91081.2008spa
dc.relation.referencesKelley, E. F., Carlson, A. R., Wentz, R. J., Ziegler, B. L., & Johnson, B. D. (2022). Influence of rapidly oscillating inspired O2 and N2 concentrations on pulmonary vascular function and lung fluid balance in healthy adults. Frontiers in Physiology, 13, 1018057. https://doi.org/10.3389/fphys.2022.1018057spa
dc.relation.referencesKoehle, M. S., Hodges, A. N. H., Lynn, B. M., Rachich, M. F., & McKenzie, D. C. (2006). Diffusing capacity and spirometry following a 60-minute dive to 4.5 meters. Undersea & Hyperbaric Medicine : Journal of the Undersea and Hyperbaric Medical Society, Inc, 33(2), 109-118.spa
dc.relation.referencesLemoine, M., & Pradeu, T. (2018). Dissecting the Meanings of “Physiology” to Assess the Vitality of the Discipline. Physiology, 33(4), 236-245. https://doi.org/10.1152/physiol.00015.2018spa
dc.relation.referencesLevitzky, M. (2015). Función y estructura del sistema respiratorio. En H. Raff & M. Levitzky (Eds.), Fisiología médica. Un enfoque por aparatos y sistemas (1-Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1118397932spa
dc.relation.referencesLott, M. E. J., Hogeman, C., Herr, M., Bhagat, M., Kunselman, A., & Sinoway, L. I. (2009). Vasoconstrictor responses in the upper and lower limbs to increases in transmural pressure. Journal of Applied Physiology, 106(1), 302-310. https://doi.org/10.1152/japplphysiol.90449.2008spa
dc.relation.referencesLuks, A. M., Levett, D., Martin, D. S., Goss, C. H., Mitchell, K., Fernandez, B. O., Feelisch, M., Grocott, M. P., & Swenson, E. R. (2017). Changes in acute pulmonary vascular responsiveness to hypoxia during a progressive ascent to high altitude (5300 m). Experimental Physiology, 102(6), 711-724. https://doi.org/10.1113/EP086083spa
dc.relation.referencesLumb, A. B. (2017). Nunn’s applied respiratory physiology (Eighth edition). Elsevier.spa
dc.relation.referencesMartin, D. S., Levett, D. Z. H., Grocott, M. P. W., & Montgomery, H. E. (2010). Variation in human performance in the hypoxic mountain environment. Experimental Physiology, 95(3), 463-470. https://doi.org/10.1113/expphysiol.2009.047589spa
dc.relation.referencesMartinot, J.-B., Mulè, M., de Bisschop, C., Overbeek, M. J., Le-Dong, N.-N., Naeije, R., & Guénard, H. (2013). Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers. Journal of Applied Physiology (Bethesda, Md. : 1985), 115(2), 157-166. https://doi.org/10.1152/japplphysiol.01455.2012spa
dc.relation.referencesMcAuliffe, F., Kametas, N., Rafferty, G. F., Greenough, A., & Nicolaides, K. (2003). Pulmonary diffusing capacity in pregnancy at sea level and at high altitude. Respiratory Physiology & Neurobiology, 134(2), 85-92. https://doi.org/10.1016/s1569-9048(02)00212-4spa
dc.relation.referencesMcGraw, D., & Gluckman, S. J. (2005). The Perceived Benefits of a Medical School Course in Wilderness Medicine. Wilderness & Environmental Medicine, 16(2), 106-110. https://doi.org/10.1580/1080-6032(2005)16[106:TPBOAM]2.0.CO;2spa
dc.relation.referencesMcLaughlin, C. W., Skabelund, A. J., & George, A. D. (2017). Impact of High Altitude on Military Operations. Current Pulmonology Reports, 6(2), 146-154. https://doi.org/10.1007/s13665-017-0181-0spa
dc.relation.referencesMoon, R. E., Cherry, A. D., Stolp, B. W., & Camporesi, E. M. (2009). Pulmonary gas exchange in diving. Journal of Applied Physiology (Bethesda, Md. : 1985), 106(2), 668-677. https://doi.org/10.1152/japplphysiol.91104.2008spa
dc.relation.referencesMoore, G. S., Wong, S. C., Darquenne, C., Neuman, T. S., West, J. B., & Kim Prisk, G. (2009). Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure. European Journal of Applied Physiology, 107(5), 545-552. https://doi.org/10.1007/s00421-009-1150-2spa
dc.relation.referencesMorris, L. E., Flück, D., Ainslie, P. N., & McManus, A. M. (2017). Cerebrovascular and ventilatory responses to acute normobaric hypoxia in girls and women. Physiological Reports, 5(15), e13372. https://doi.org/10.14814/phy2.13372spa
dc.relation.referencesMurphy, F. G., Hada, E. A., Doolette, D. J., & Howle, L. E. (2018). Probabilistic pharmacokinetic models of decompression sickness in humans: Part 2, coupled perfusion-diffusion models. Computers in Biology and Medicine, 92, 90-97. https://doi.org/10.1016/j.compbiomed.2017.11.011spa
dc.relation.referencesMuth, C. M., Radermacher, P., Pittner, A., Steinacker, J., Schabana, R., Hamich, S., Paulat, K., & Calzia, E. (2003). Arterial Blood Gases During Diving in Elite Apnea Divers. International Journal of Sports Medicine, 24(2), 104-107. https://doi.org/10.1055/s-2003-38401spa
dc.relation.referencesNagel, M. J., Jarrard, C. P., & Lalande, S. (2020). Effect of a Single Session of Intermittent Hypoxia on Erythropoietin and Oxygen-Carrying Capacity. International Journal of Environmental Research and Public Health, 17(19), 7257. https://doi.org/10.3390/ijerph17197257spa
dc.relation.referencesNieto, M. J. R., Suárez, L. Á., Roisín, R. R., & Mangado, N. G. (2020). Intercambio pulmonar de gases. En J. A. Fernández-Tresguerres, V. Cachofeiro, D. P. Cardinali, E. Delpón, E. R. Díaz-Rubio, E. E. Escriche, V. L. Juliá, F. M. Teruel, & M. R. Pardo (Eds.), Fisiología humana, 5e (1-Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1189499958spa
dc.relation.referencesOlszowka, A. J., Shykoff, B. E., Pendergast, D. R., Lundgren, C. E. G., & Farhi, L. E. (2003). Cardiac output: A view from Buffalo. European Journal of Applied Physiology, 90(3-4), 292-304. https://doi.org/10.1007/s00421-003-0921-4spa
dc.relation.referencesOtis, A. B. (2011). An Overview of Gas Exchange. En Comprehensive Physiology (pp. 1-11). https://doi.org/10.1002/cphy.cp030401spa
dc.relation.referencesOttestad, W., Hansen, T. A., Pradhan, G., Stepanek, J., Høiseth, L. Ø., & Kåsin, J. I. (2017). Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure. Journal of Applied Physiology, 123(6), 1443-1450. https://doi.org/10.1152/japplphysiol.00169.2017spa
dc.relation.referencesPaganini, M., Moon, R. E., Boccalon, N., Melloni, G. E. M., Giacon, T. A., Camporesi, E. M., & Bosco, G. (2022). Blood gas analyses in hyperbaric and underwater environments: A systematic review. Journal of Applied Physiology, 132(2), 283-293. https://doi.org/10.1152/japplphysiol.00569.2021spa
dc.relation.referencesPalada, I., Bakovic, D., Valic, Z., Obad, A., Ivancev, V., Eterovic, D., Shoemaker, J. K., & Dujic, Z. (2008). Restoration of hemodynamics in apnea struggle phase in association with involuntary breathing movements. Respiratory Physiology & Neurobiology, 161(2), 174-181. https://doi.org/10.1016/j.resp.2008.01.008spa
dc.relation.referencesPatiño Restrepo, J. F., Rodríguez, E. C., & Díaz Cortés, J. C. (2015). Gases sanguíneos, fisiología de la respiración e insuficiencia respiratoria aguda. (2a. reimp., 8a. ed.). Editorial Médica Panamericana.spa
dc.relation.referencesPendergast, D. R., & Lundgren, C. E. G. (2009a). The physiology and pathophysiology of the hyperbaric and diving environments. Journal of Applied Physiology, 106(1), 274-275. https://doi.org/10.1152/japplphysiol.91477.2008spa
dc.relation.referencesPendergast, D. R., & Lundgren, C. E. G. (2009b). The underwater environment: Cardiopulmonary, thermal, and energetic demands. Journal of Applied Physiology, 106(1), 276-283. https://doi.org/10.1152/japplphysiol.90984.2008spa
dc.relation.referencesPerry, S. F., & Burggren, W. W. (2007). Why respiratory biology? The meaning and significance of respiration and its integrative study. Integrative and Comparative Biology, 47(4), 506-509. https://doi.org/10.1093/icb/icm033spa
dc.relation.referencesPrabhakar, N. R., & Kline, D. D. (2002). Ventilatory Changes During Intermittent Hypoxia: Importance of Pattern and Duration. High Altitude Medicine & Biology, 3(2), 195-204. https://doi.org/10.1089/15270290260131920spa
dc.relation.referencesPrisk, G. K. (2011a). Pulmonary Circulation in Extreme Environments. En R. Terjung (Ed.), Comprehensive Physiology (1.a ed., pp. 319-338). Wiley. https://doi.org/10.1002/cphy.c090006spa
dc.relation.referencesPrisk, G. K. (2011b). Gas exchange under altered gravitational stress. Comprehensive Physiology, 1(1), 339-355. https://doi.org/10.1002/cphy.c090007spa
dc.relation.referencesPrisk, G. K. (2014). Microgravity and the respiratory system. The European Respiratory Journal, 43(5), 1459-1471. https://doi.org/10.1183/09031936.00001414spa
dc.relation.referencesPrisk, G. K., Fine, J. M., Cooper, T. K., & West, J. B. (2005). Pulmonary gas exchange is not impaired 24 h after extravehicular activity. Journal of Applied Physiology (Bethesda, Md. : 1985), 99(6), 2233-2238. https://doi.org/10.1152/japplphysiol.00847.2005spa
dc.relation.referencesPrisk, G. K., Fine, J. M., Cooper, T. K., & West, J. B. (2006). Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. Journal of Applied Physiology (Bethesda, Md. : 1985), 101(2), 439-447. https://doi.org/10.1152/japplphysiol.01419.2005spa
dc.relation.referencesQureshi, S. M. (2008). Measurement of respiratory function: gas exchange. Anaesthesia & Intensive Care Medicine, 9(11), 487-491.spa
dc.relation.referencesRainford, D., & Gradwell, D. P. (Eds.). (2016). Ernsting’s aviation and space medicine (Fifth edition). CRC Press, Taylor & Francis Group.spa
dc.relation.referencesRichalet, J.-P., Donoso, M. V., Jiménez, D., Antezana, A.-M., Hudson, C., Cortès, G., Osorio, J., & Leòn, A. (2002). Chilean miners commuting from sea level to 4500 m: A prospective study. High Altitude Medicine & Biology, 3(2), 159-166. https://doi.org/10.1089/15270290260131894spa
dc.relation.referencesRichalet, J.-P., Magnan, M.-A., Gavet, A., & Lafère, P. (2022). Expert group syndrome at high altitude. Sports Medicine and Health Science, 4(3), 215-218. https://doi.org/10.1016/j.smhs.2022.07.001spa
dc.relation.referencesRomán-Vistraín, G., Muñoz-Ramírez, C. M., Márquez-González, H., Álvarez-Valencia, J. L., & Zárate-Castañón, P. (2015). Valoración respiratoria durante la guardia. 2015, 10(2), 63-68.spa
dc.relation.referencesSackett, J. R., Schlader, Z. J., Sarker, S., Chapman, C. L., & Johnson, B. D. (2017). Peripheral chemosensitivity is not blunted during 2 h of thermoneutral head out water immersion in healthy men and women. Physiological Reports, 5(20), e13472. https://doi.org/10.14814/phy2.13472spa
dc.relation.referencesSandberg, C., & Naylor, J. (2011). Respiratory physiology at altitude. Journal of the Royal Army Medical Corps, 157(1), 29-32. https://doi.org/10.1136/jramc-157-01-05spa
dc.relation.referencesSchoene, R. B. (2005). Limits of Respiration at High Altitude. Clinics in Chest Medicine, 26(3), 405-414. https://doi.org/10.1016/j.ccm.2005.06.015spa
dc.relation.referencesSelf, D. A., G. Mandella, J., Prinzo, O. V., M. Forster, E., & Shaffstall, R. M. (2011). Physiological Equivalence of Normobaric and Hypobaric Exposures of Humans to 25,000 Feet (7620 m). Aviation, Space, and Environmental Medicine, 82(2), 97-103. https://doi.org/10.3357/ASEM.2908.2011spa
dc.relation.referencesShykoff B. E. (2014). Cumulative effects of repeated exposure to pO2 = 200 kPa (2 atm). Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc, 41(4), 291–300.spa
dc.relation.referencesSnyder, E. M., Stepanek, J., Bishop, S. L., & Johnson, B. D. (2007). Ventilatory Responses to Hypoxia and High Altitude During Sleep in Aconcagua Climbers. Wilderness & Environmental Medicine, 18(2), 138-145. https://doi.org/10.1580/06-WEME-BR-041R.1spa
dc.relation.referencesSoria, R., Egger, M., Scherrer, U., Bender, N., & Rimoldi, S. F. (2016). Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: Systematic review and meta-analysis. Journal of Applied Physiology, 121(5), 1151-1159. https://doi.org/10.1152/japplphysiol.00394.2016spa
dc.relation.referencesStillman, J. H. (2019). Environmental Physiology: Adaptation of Life to Earth’s Diverse Habitats and Response to Global Change. BioScience, 69(2), 152-153. https://doi.org/10.1093/biosci/biy134spa
dc.relation.referencesSusilovic-Grabovac, Z., Banfi, C., Brusoni, D., Mapelli, M., Ghilardi, S., Obad, A., Bakovic-Kramaric, D., Dujic, Z., & Agostoni, P. (2017). Diving and pulmonary physiology: Surfactant binding protein, lung fluid and cardiopulmonary test changes in professional divers. Respiratory Physiology & Neurobiology, 243, 27-31. https://doi.org/10.1016/j.resp.2017.04.012spa
dc.relation.referencesSylvester, J. T., Shimoda, L. A., Aaronson, P. I., & Ward, J. P. (2012). Hypoxic pulmonary vasoconstriction. Physiological reviews, 92(1), 367–520. https://doi.org/10.1152/physrev.00041.2010spa
dc.relation.referencesTaboni, A., Fagoni, N., Moia, C., Vinetti, G., & Ferretti, G. (2019). Gas exchange and cardiovascular responses during breath-holding in divers. Respiratory Physiology & Neurobiology, 267, 27-34. https://doi.org/10.1016/j.resp.2019.06.002spa
dc.relation.referencesTalbot, N. P., Smith, T. G., & Dorrington, K. L. (2011). The mechanics and control of ventilation. Surgery (Oxford), 29(5), 212-216. https://doi.org/10.1016/j.mpsur.2011.02.004spa
dc.relation.referencesTaylor, B. J., Stewart, G. M., Marck, J. W., Summerfield, D. T., Issa, A. N., & Johnson, B. D. (2017). Interstitial lung fluid balance in healthy lowlanders exposed to high-altitude. Respiratory Physiology & Neurobiology, 243, 77-85. https://doi.org/10.1016/j.resp.2017.05.010spa
dc.relation.referencesTetzlaff, K., Scholz, T., Walterspacher, S., Muth, C. M., Metzger, J., Roecker, K., & Sorichter, S. (2008). Characteristics of the respiratory mechanical and muscle function of competitive breath-hold divers. European Journal of Applied Physiology, 103(4), 469-475. https://doi.org/10.1007/s00421-008-0731-9spa
dc.relation.referencesTetzlaff, K., & Thomas, P. S. (2017). Short- and long-term effects of diving on pulmonary function. European Respiratory Review, 26(143), 160097. https://doi.org/10.1183/16000617.0097-2016spa
dc.relation.referencesTiel-van Buul, M. M. C., & Verzijlbergen, J. F. (2004). Ventilation-Perfusion Lung Scintigraphy. Imaging Decisions MRI, 8(4), 3-14. https://doi.org/10.1111/j.1617-0830.2004.00031.xspa
dc.relation.referencesTipton, M. J. (2016). Environmental extremes: Origins, consequences and amelioration in humans: Extreme environments. Experimental Physiology, 101(1), 1-14. https://doi.org/10.1113/EP085362spa
dc.relation.referencesTourtier, J. P., Astaud, C., & Domanski, L. (2012). Specificity of desaturation during air transport. Journal of Trauma and Acute Care Surgery, 73(3), 778-779. Embase. https://doi.org/10.1097/TA.0b013e31826601cespa
dc.relation.referencesvan Ooij, P. J. A. M., van Hulst, R. A., Houtkooper, A., & Sterk, P. J. (2011). Differences in spirometry and diffusing capacity after a 3-h wet or dry oxygen dive with a PO(2) of 150 kPa. Clinical Physiology and Functional Imaging, 31(5), 405-410. https://doi.org/10.1111/j.1475-097X.2011.01034.xspa
dc.relation.referencesvan Ooij, P. J. A. M., van Hulst, R. A., Houtkooper, A., & Sterk, P. J. (2014). Nitric oxide and carbon monoxide diffusing capacity after a 1-h oxygen dive to 9 m of sea water. Clinical Physiology and Functional Imaging, 34(3), 199-208. https://doi.org/10.1111/cpf.12082spa
dc.relation.referencesvan Ooij, P. J. A. M., van Hulst, R. A., Houtkooper, A., van der Weide, T. J. S., & Sterk, P. J. (2012). Lung function before and after oxygen diving: A randomized crossover study. Undersea & Hyperbaric Medicine : Journal of the Undersea and Hyperbaric Medical Society, Inc, 39(3), 699-707.spa
dc.relation.referencesvan Ooij, P.-J. A. M., Sterk, P. J., & van Hulst, R. A. (2016). Oxygen, the lung and the diver: Friends and foes? European Respiratory Review : An Official Journal of the European Respiratory Society, 25(142), 496-505. https://doi.org/10.1183/16000617.0049-2016spa
dc.relation.referencesVázquez-García, J. C., Pérez-Padilla, R., Casas, A., Schönffeldt-Guerrero, P., Pereira, J., Vargas-Domínguez, C., Velázquez-Uncal, M., Martínez-Briseño, D., Torre-Bouscoulet, L., & Gochicoa-Rangel, L. (2016). Reference Values for the Diffusing Capacity Determined by the Single-Breath Technique at Different Altitudes: The Latin American Single-Breath Diffusing Capacity Reference Project. Respiratory Care, 61(9), 1217-1223. https://doi.org/10.4187/respcare.04590spa
dc.relation.referencesWagner, P. D. (2007). Assessment of gas exchange in lung disease: Balancing accuracy against feasibility. Critical Care, 11(6), 182. https://doi.org/10.1186/cc6198spa
dc.relation.referencesWagner, P. D. (2015). The physiological basis of pulmonary gas exchange: Implications for clinical interpretation of arterial blood gases. European Respiratory Journal, 45(1), 227-243. https://doi.org/10.1183/09031936.00039214spa
dc.relation.referencesWagner, P. D. (2022). Altitude physiology then (1921) and now (2021): Meat on the bones. Physiological Reviews, 102(1), 323-332. https://doi.org/10.1152/physrev.00033.2021spa
dc.relation.referencesWagner, P. D., Araoz, M., Boushel, R., Calbet, J. A. L., Jessen, B., Rådegran, G., Spielvogel, H., Søndegaard, H., Wagner, H., & Saltin, B. (2002). Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. Journal of Applied Physiology (Bethesda, Md. : 1985), 92(4), 1393-1400. https://doi.org/10.1152/japplphysiol.00093.2001spa
dc.relation.referencesWeitz, C. A., & Garruto, R. M. (2007). A comparative analysis of arterial oxygen saturation among Tibetans and Han born and raised at high altitude. High Altitude Medicine & Biology, 8(1), 13-26. https://doi.org/10.1089/ham.2006.1043spa
dc.relation.referencesWest, J. B. (2002). Importance of gravity in determining the distribution of pulmonary blood flow. Journal of Applied Physiology, 93(5), 1888-1891. https://doi.org/10.1152/japplphysiol.00459.2002spa
dc.relation.referencesWest, J. B. (2006). Adventures in high-altitude physiology. Advances in Experimental Medicine and Biology, 588, 7-16. https://doi.org/10.1007/978-0-387-34817-9_2spa
dc.relation.referencesWest, J. B. (2010). American medical research expedition to Everest. High Altitude Medicine & Biology, 11(2), 103-110. https://doi.org/10.1089/ham.2009.1089spa
dc.relation.referencesWest, J. B. (2013). A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft. Journal of Applied Physiology, 115(1), 145-149. https://doi.org/10.1152/japplphysiol.00094.2013spa
dc.relation.referencesWhittaker, L. A., & Kaminsky, D. A. (2006). Respiratory Physiology in Extreme Environments. Clinical Pulmonary Medicine, 13(5), 282-288. https://doi.org/10.1097/01.cpm.0000237209.06455.4fspa
dc.relation.referencesWidmaier, E. P. (2004). Vander, Sherman, & Luciano’s human physiology: The mechanisms of body function. Ninth edition / Eric P. Widmaier, Hershel Raff, Kevin T. Strang ; contributions by Mary Erskine. Boston : McGraw-Hill Higher Education, [2004] ©2004. https://search.library.wisc.edu/catalog/999952969802121spa
dc.relation.referencesYaqub, F. (2015). Space travel: Medicine in extremes. The Lancet Respiratory Medicine, 3(1), 20-21. https://doi.org/10.1016/S2213-2600(14)70192-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.decsIntercambio Gaseoso Pulmonarspa
dc.subject.decsPulmonary Gas Exchangeeng
dc.subject.decsCapacidad de Difusión Pulmonarspa
dc.subject.decsPulmonary Diffusing Capacityeng
dc.subject.decsBarrera Alveolocapilarspa
dc.subject.decsBlood-Air Barriereng
dc.subject.decsFenómenos Fisiológicos Respiratoriosspa
dc.subject.decsRespiratory Physiological Phenomenaeng
dc.subject.proposalInercambio gaseoso pulmonarspa
dc.subject.proposalHumanospa
dc.subject.proposalAlturaspa
dc.subject.proposalMicrogravedadspa
dc.subject.proposalAviaciónspa
dc.subject.proposalInmersiónspa
dc.subject.proposalPulmonary gas exchangeeng
dc.subject.proposalHumaneng
dc.subject.proposalAltitudeeng
dc.subject.proposalWeightlessnesseng
dc.subject.proposalAviationeng
dc.subject.proposalDivingeng
dc.titleIntercambio gaseoso pulmonar en ambientes especiales : Una revisión narrativaspa
dc.title.translatedPulmonary gas exchange in special environments : A narrative revieweng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018459853.2025.pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Fisiologia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: