Intercambio gaseoso pulmonar en ambientes especiales : Una revisión narrativa
dc.contributor.advisor | Corzo Zamora, Maria Alejandra | spa |
dc.contributor.author | Castañeda Niño, Fabián Andrés | spa |
dc.date.accessioned | 2025-04-02T14:41:18Z | |
dc.date.available | 2025-04-02T14:41:18Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | El intercambio gaseoso alveolo-capilar es una de las funciones primordiales de los organismos más evolucionados. La descripción de sus mecanismos adaptativos ante la exposición a los diversos ambientes especiales (altura, aviación, ambientes hiperbáricos y microgravedad) se hace relevante ante la exposición frecuente a estos. La dificultad conceptual y la escasa información en idioma español sobre la fisiología respiratoria en ambientes especiales, específicamente del intercambio alveolo capilar, hace necesario plantear estrategias que permitan su conocimiento. Por lo cual, se realizó una revisión narrativa que revisa los elementos fisiológicos involucrados en intercambio gaseoso a nivel pulmonar en condiciones fisiológicas habituales y en ambientes especiales (alta montaña, aviación, submarinismo y espacio). A través de una búsqueda por palabras clave en las bases de datos PubMed, EMBASE y SCOPUS, se seleccionaron 126 artículos para su elaboración. Resultados: Se describe la fisiología del intercambio alveolo-capilar básica de cada uno de sus determinantes y sus variaciones en ambientes especiales. Conclusiones: La adaptación fisiológica ambiental es variable y depende de la naturaleza del estímulo al configurarse una respuesta diversa en cada uno de sus determinantes al mantener el intercambio gaseoso. Las respuestas fisiológicas ambientales pueden desencadenar cambios fisiopatológicos que inciden en la función de intercambio alveolo-capilar (Texto tomado de la fuente). | spa |
dc.description.abstract | Pulmonary gas exchange is one of the primary functions of the most evolved organisms. The description of its adaptive mechanisms in the face of exposure to various special environments (altitude, aviation, hyperbaric environments and microgravity) becomes relevant in the face of frequent exposure to these environments. The conceptual difficulty and the scarce information in Spanish about respiratory physiology in special environments, specifically the pulmonary gas exchange, makes it necessary to propose strategies that allow its knowledge. Therefore, a narrative review was carried out to review the physiological elements involved in gas exchange at pulmonary level in normal physiological conditions and in special environments (high mountain, aviation, diving and space). Through a keyword search in PubMed, EMBASE and SCOPUS databases, 126 articles were selected for its elaboration. Results: The basic alveolar-capillary exchange physiology of each of its determinants and its variations in special environments are described. Conclusions: Environmental physiological adaptation is variable and depends on the nature of the stimulus by configuring a diverse response in each of its determinants in maintaining gas exchange. Environmental physiological responses can trigger pathophysiological changes that affect pulmonary gas exchange. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Fisiología | spa |
dc.description.methods | Para el desarrollo de la revisión narrativa, se empleó la estrategia de PICO como método de búsqueda y del planteamiento de la pregunta de investigación. | spa |
dc.description.researcharea | Fisiología en Ambientes Especiales | spa |
dc.format.extent | 153 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87817 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Fisiología | spa |
dc.relation.references | Agostoni, P., Swenson, E. R., Bussotti, M., Revera, M., Meriggi, P., Faini, A., Lombardi, C., Bilo, G., Giuliano, A., Bonacina, D., Modesti, P. A., Mancia, G., & Parati, G. (2011). High-altitude exposure of three weeks duration increases lung diffusing capacity in humans. Journal of Applied Physiology (Bethesda, Md. : 1985), 110(6), 1564-1571. https://doi.org/10.1152/japplphysiol.01167.2010 | spa |
dc.relation.references | Agostoni, P., Swenson, E. R., Fumagalli, R., Salvioni, E., Cattadori, G., Farina, S., Bussotti, M., Tamplenizza, M., Lombardi, C., Bonacina, D., Brioschi, M., Caravita, S., Modesti, P., Revera, M., Giuliano, A., Meriggi, P., Faini, A., Bilo, G., Banfi, C., & Parati, G. (2013). Acute high-altitude exposure reduces lung diffusion: Data from the HIGHCARE Alps project. Respiratory Physiology & Neurobiology, 188(2), 223-228. https://doi.org/10.1016/j.resp.2013.04.005 | spa |
dc.relation.references | Anderson, L. C., & Krichbaum, K. E. (2017). Best practices for learning physiology: Combining classroom and online methods. Advances in Physiology Education, 41(3), 383-389. https://doi.org/10.1152/advan.00099.2016 | spa |
dc.relation.references | Andersson, J. P. A., Biasoletto-Tjellström, G., & Schagatay, E. K. A. (2008). Pulmonary gas exchange is reduced by the cardiovascular diving response in resting humans. Respiratory Physiology & Neurobiology, 160(3), 320-324. https://doi.org/10.1016/j.resp.2007.10.016 | spa |
dc.relation.references | Andrade P, A., & Bertrand N, P. (2022). FISIOLOGÍA RESPIRATORIA: DIFUSIÓN DE GASES. Neumología Pediátrica, 17(1), 6-8. https://doi.org/10.51451/np.v17i1.472 | spa |
dc.relation.references | Arriaza, K., Cuevas, C., Pena, E., Siques, P., & Brito, J. (2022). Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. International Journal of Molecular Sciences, 23(13), 6974. https://doi.org/10.3390/ijms23136974 | spa |
dc.relation.references | Aubert, A. E., Larina, I., Momken, I., Blanc, S., White, O., Kim Prisk, G., & Linnarsson, D. (2016). Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. npj Microgravity, 2(1), 16031. https://doi.org/10.1038/npjmgrav.2016.31 | spa |
dc.relation.references | Babu, G., Upchurch, B. D., Young, W. H., & Levine, B. D. (2020). Medicine in Extreme Environments: A New Medical Student Elective Class for Wilderness, Aerospace, Hyperbaric, Exercise, and Combat Medicine. Wilderness & Environmental Medicine, 31(1), 110-115. https://doi.org/10.1016/j.wem.2019.10.006 | spa |
dc.relation.references | Baggish, A. L., Fulco, C. S., Muza, S., Rock, P. B., Beidleman, B., Cymerman, A., Yared, K., Fagenholz, P., Systrom, D., Wood, M. J., Weyman, A. E., Picard, M. H., & Harris, N. S. (2010). The Impact of Moderate-Altitude Staging on Pulmonary Arterial Hemodynamics after Ascent to High Altitude. High Altitude Medicine & Biology, 11(2), 139-145. https://doi.org/10.1089/ham.2009.1073 | spa |
dc.relation.references | Baloglu, E., Nonnenmacher, G., Seleninova, A., Berg, L., Velineni, K., Ermis‐Kaya, E., & Mairbäurl, H. (2020). The role of hypoxia‐induced modulation of alveolar epithelial Na + ‐ transport in hypoxemia at high altitude. Pulmonary Circulation, 10(S1), 50-58. https://doi.org/10.1177/2045894020936662 | spa |
dc.relation.references | Barrow, A., & Pandit, J. J. (2014). Lung ventilation and the physiology of breathing. Surgery (Oxford), 32(5), 221-227. https://doi.org/10.1016/j.mpsur.2014.02.010 | spa |
dc.relation.references | Bärtsch, P., & Saltin, B. (2008). General introduction to altitude adaptation and mountain sickness. Scandinavian Journal of Medicine & Science in Sports, 18 Suppl 1, 1-10. https://doi.org/10.1111/j.1600-0838.2008.00827.x | spa |
dc.relation.references | Bell, M., Thake, C. D., & Wolff, C. B. (2011). Effect of Inspiration of 12%O2 (Balance N2) on Cardiac Output, Respiration, Oxygen Saturation, and Oxygen Delivery. En J. C. LaManna, M. A. Puchowicz, K. Xu, D. K. Harrison, & D. F. Bruley (Eds.), Oxygen Transport to Tissue XXXII (Vol. 701, pp. 327-332). Springer US. https://doi.org/10.1007/978-1-4419-7756-4_44 | spa |
dc.relation.references | Bellis, F., Parris, R., Thake, D., & Richards, P. (2005). Difficult Decisions at Altitude: The Management of an Acutely Dyspneic Porter at 5000 Meters. Wilderness & Environmental Medicine, 16(4), 212-218. https://doi.org/10.1580/PR27-04.1 | spa |
dc.relation.references | Beretta, E., Lanfranconi, F., Grasso, G. S., Bartesaghi, M., Alemayehu, H. K., & Miserocchi, G. (2017). Reappraisal of DLCO adjustment to interpret the adaptive response of the air-blood barrier to hypoxia. Respiratory Physiology & Neurobiology, 238, 59-65. https://doi.org/10.1016/j.resp.2016.08.009 | spa |
dc.relation.references | Beretta, E., Lanfranconi, F., Grasso, G. S., Bartesaghi, M., Alemayehu, H. K., Pratali, L., Catuzzo, B., Giardini, G., & Miserocchi, G. (2017). Air blood barrier phenotype correlates with alveolo-capillary O 2 equilibration in hypobaric hypoxia. Respiratory Physiology & Neurobiology, 246, 53-58. https://doi.org/10.1016/j.resp.2017.08.006 | spa |
dc.relation.references | Berger, M. M., Hesse, C., Dehnert, C., Siedler, H., Kleinbongard, P., Bardenheuer, H. J., Kelm, M., Bärtsch, P., & Haefeli, W. E. (2005). Hypoxia Impairs Systemic Endothelial Function in Individuals Prone to High-Altitude Pulmonary Edema. American Journal of Respiratory and Critical Care Medicine, 172(6), 763-767. https://doi.org/10.1164/rccm.200504-654OC | spa |
dc.relation.references | Bigatello, L., & Pesenti, A. (2019). Respiratory Physiology for the Anesthesiologist. Anesthesiology, 130(6), 1064-1077. https://doi.org/10.1097/ALN.0000000000002666 | spa |
dc.relation.references | Boron, W. F., & Boulpaep, E. L. (Eds.). (2017). Medical physiology (Third edition). Elsevier. | spa |
dc.relation.references | Brutsaert, T. (2016). Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development. Advances in Experimental Medicine and Biology, 903, 101-112. https://doi.org/10.1007/978-1-4899-7678-9_7 | spa |
dc.relation.references | Buckley, R. (2006). Adventure tourism. CABI Pub. | spa |
dc.relation.references | Burtscher, M., Gatterer, H., Burtscher, J., & Mairbäurl, H. (2018). Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Frontiers in Physiology, 9, 572. https://doi.org/10.3389/fphys.2018.00572 | spa |
dc.relation.references | Calzia, E., & Radermacher, P. (2003). Alveolar ventilation and pulmonary blood flow: The V?A/Q? concept. Intensive Care Medicine, 29(8), 1229-1232. https://doi.org/10.1007/s00134-003-1835-7 | spa |
dc.relation.references | Conkin, J., Wessel, J. H. 3rd, Norcross, J. R., Bekdash, O. S., Abercromby, A. F. J., Koslovsky, M. D., & Gernhardt, M. L. (2017). Hemoglobin Oxygen Saturation with Mild Hypoxia and Microgravity. Aerospace Medicine and Human Performance, 88(6), 527-534. https://doi.org/10.3357/AMHP.4804.2017 | spa |
dc.relation.references | Costalat, G., Coquart, J., Castres, I., Joulia, F., Sirost, O., Clua, E., & Lemaître, F. (2017). The oxygen-conserving potential of the diving response: A kinetic-based analysis. Journal of Sports Sciences, 35(7), 678-687. https://doi.org/10.1080/02640414.2016.1183809 | spa |
dc.relation.references | Costalat, G., Pichon, A., Joulia, F., & Lemaître, F. (2015). Modeling the diving bradycardia: Toward an “oxygen-conserving breaking point”? European Journal of Applied Physiology, 115(7), 1475-1484. https://doi.org/10.1007/s00421-015-3129-5 | spa |
dc.relation.references | Cummins, E. P., & Keogh, C. E. (2016). Respiratory gases and the regulation of transcription: Oxygen, carbon dioxide and gene expression. Experimental Physiology, 101(8), 986-1002. https://doi.org/10.1113/EP085715 | spa |
dc.relation.references | de Bisschop, C., Kiger, L., Marden, M. C., Ajata, A., Huez, S., Faoro, V., Martinot, J.-B., Naeije, R., & Guénard, H. (2010). Pulmonary capillary blood volume and membrane conductance in Andeans and lowlanders at high altitude: A cross-sectional study. Nitric Oxide : Biology and Chemistry, 23(3), 187-193. https://doi.org/10.1016/j.niox.2010.05.288 | spa |
dc.relation.references | Doolette, D. J., & Mitchell, S. J. (2011). Hyperbaric conditions. Comprehensive Physiology, 1(1), 163-201. https://doi.org/10.1002/cphy.c091004 | spa |
dc.relation.references | Dorrington, K. L., & Talbot, N. P. (2004). Human pulmonary vascular responses to hypoxia and hypercapnia. Pfl�gers Archiv - European Journal of Physiology, 449(1), 1-15. https://doi.org/10.1007/s00424-004-1296-z | spa |
dc.relation.references | Dueñas Castell, MD., C., Fortich Salvador, MD., A., & Ortiz Ruiz, MD., G. (2016). La membrana alveolo-capilar. Revista Colombiana de Neumología, 26(3). https://doi.org/10.30789/rcneumologia.v26.n3.2014.38 | spa |
dc.relation.references | Duffin, J. (2010). The role of the central chemoreceptors: A modeling perspective. Respiratory Physiology & Neurobiology, 173(3), 230-243. https://doi.org/10.1016/j.resp.2010.03.010 | spa |
dc.relation.references | Dujic, Z., Bakovic, D., Marinovic-Terzic, I., & Eterovic, D. (2005). Acute effects of a single open sea air dive and post-dive posture on cardiac output and pulmonary gas exchange in recreational divers. British Journal of Sports Medicine, 39(5), e24. https://doi.org/10.1136/bjsm.2004.014308 | spa |
dc.relation.references | Dunham-Snary, K. J., Wu, D., Sykes, E. A., Thakrar, A., Parlow, L. R. G., Mewburn, J. D., Parlow, J. L., & Archer, S. L. (2017). Hypoxic Pulmonary Vasoconstriction. Chest, 151(1), 181-192. https://doi.org/10.1016/j.chest.2016.09.001 | spa |
dc.relation.references | Edge, C. J. (2008). Recreational diving medicine. Current Anaesthesia & Critical Care, 19(4), 235-246. https://doi.org/10.1016/j.cacc.2008.06.001 | spa |
dc.relation.references | Ercan, E. (2021). Effects of aerospace environments on the cardiovascular system. The Anatolian Journal of Cardiology, 25(Supp1), S3-S6. https://doi.org/10.5152/AnatolJCardiol.2021.S103 | spa |
dc.relation.references | Evans, A. M., Mahmoud, A. D., Moral-Sanz, J., & Hartmann, S. (2016). The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochemical Journal, 473(17), 2561-2572. https://doi.org/10.1042/BCJ20160002 | spa |
dc.relation.references | Farias, J. G., Osorio, J., Soto, G., Brito, J., Siques, P., & Reyes, J. G. (2006). Sustained acclimatization in Chilean mine workers subjected to chronic intermittent hypoxia. High Altitude Medicine & Biology, 7(4), 302-306. https://doi.org/10.1089/ham.2006.7.302 | spa |
dc.relation.references | Farrell, S., & Curley, G. F. (2021). Respiration: Ventilation. Anaesthesia & Intensive Care Medicine, 22(3), 179-184. https://doi.org/10.1016/j.mpaic.2021.01.008 | spa |
dc.relation.references | Firth, P. G., Zheng, H., Windsor, J. S., Sutherland, A. I., Imray, C. H., Moore, G. W. K., Semple, J. L., Roach, R. C., & Salisbury, R. A. (2008). Mortality on Mount Everest, 1921-2006: Descriptive study. BMJ, 337, a2654. https://doi.org/10.1136/bmj.a2654 | spa |
dc.relation.references | Fitz-Clarke, J. R. (2007). Mechanics of airway and alveolar collapse in human breath-hold diving. Respiratory Physiology & Neurobiology, 159(2), 202-210. https://doi.org/10.1016/j.resp.2007.07.006 | spa |
dc.relation.references | Fitz-Clarke, J. R. (2009). Lung compression effects on gas exchange in human breath-hold diving. Respiratory Physiology & Neurobiology, 165(2-3), 221-228. https://doi.org/10.1016/j.resp.2008.12.006 | spa |
dc.relation.references | Foster, G. E., Ainslie, P. N., Stembridge, M., Day, T. A., Bakker, A., Lucas, S. J. E., Lewis, N. C. S., MacLeod, D. B., & Lovering, A. T. (2014). Resting pulmonary haemodynamics and shunting: A comparison of sea-level inhabitants to high altitude Sherpas. The Journal of Physiology, 592(6), 1397-1409. https://doi.org/10.1113/jphysiol.2013.266593 | spa |
dc.relation.references | Frappell, P. B., León-Velarde, F., & Rivera-Ch, M. (2007). Oxygen transport at high altitude—An integrated perspective. Introduction. Respiratory Physiology & Neurobiology, 158(2-3), 115-120. https://doi.org/10.1016/j.resp.2007.08.002 | spa |
dc.relation.references | Garbella, E., Piarulli, A., Fornai, E., Pingitore, A., & Prediletto, R. (2011). Preliminary observations on the effect of hypoxic and hyperbaric stress on pulmonary gas exchange in breath-hold divers. Diving and Hyperbaric Medicine, 41(2), 97-100. | spa |
dc.relation.references | Gochicoa-Rangel, L., Del-Río-Hidalgo, R., Álvarez-Arroyo, M. R., Martínez-Briseño, D., Mora-Romero, U., Martínez-Valdeavellano, L., Navarrete-Rivera, J., Rodríguez-Moreno, L., Guerrero-Zúñiga, S., Fernández-Plata, R., Cantú-González, G., Cid-Juárez, S., García-Sancho, C., Thirión-Romero, I., Silva-Cerón, M., Pérez-Padilla, R., & Torre-Bouscoulet, L. (2019). Diffusing Capacity of the Lung for Carbon Monoxide in Mexican/Latino Children. Quality Control and Reference Values. Annals of the American Thoracic Society, 16(2), 240-247. https://doi.org/10.1513/AnnalsATS.201712-922OC | spa |
dc.relation.references | Guyton, A. C., Hall, J. E., & Hall, M. E. (2021). Tratado de fisiología médica. (14a. ed.). Elsevier. | spa |
dc.relation.references | Hainsworth, R., & Drinkhill, M. J. (2007). Cardiovascular adjustments for life at high altitude. Respiratory Physiology & Neurobiology, 158(2-3), 204-211. https://doi.org/10.1016/j.resp.2007.05.006 | spa |
dc.relation.references | Hall, G. L., Verheggen, M., & Stick, S. M. (2007). Assessing fitness to fly in young infants and children. Thorax, 62(3), 278-279. https://doi.org/10.1136/thx.2006.071118 | spa |
dc.relation.references | Hevroni, A., Goldman, A., & Kerem, E. (2015). High Altitude: Physiology and Pathophysiology in Adults and Children A Review. Clinical Pulmonary Medicine, 22(3), 105-113. https://doi.org/10.1097/CPM.0000000000000093 | spa |
dc.relation.references | Howden, R., & Kleeberger, S. R. (2012). Genetic and Environmental Influences on Gas Exchange. En R. Terjung (Ed.), Comprehensive Physiology (1.a ed., pp. 2595-2614). Wiley. https://doi.org/10.1002/cphy.c110060 | spa |
dc.relation.references | Hughes, J. M. B. (2007). Assessing gas exchange. Chronic Respiratory Disease, 4(4), 205-214. https://doi.org/10.1177/1479972307084446 | spa |
dc.relation.references | Hughes, J. M. B. (2016). Hypoxic pulmonary vasoconstriction: Clinical implications. European Respiratory Journal, 47(1), 31-34. https://doi.org/10.1183/13993003.01753-2015 | spa |
dc.relation.references | Huicho, L. (2007). Postnatal cardiopulmonary adaptations to high altitude. Respiratory Physiology & Neurobiology, 158(2-3), 190-203. https://doi.org/10.1016/j.resp.2007.05.004 | spa |
dc.relation.references | Imray, C. H. E., Grocott, M. P. W., Wilson, M. H., Hughes, A., & Auerbach, P. S. (2015). Extreme, expedition, and wilderness medicine. The Lancet, 386(10012), 2520-2525. https://doi.org/10.1016/S0140-6736(15)01165-4 | spa |
dc.relation.references | Imray, C., Wright, A., Subudhi, A., & Roach, R. (2010). Acute Mountain Sickness: Pathophysiology, Prevention, and Treatment. High Altitude Cardiopulmonary Physiology, Pathophysiology and Disease, 52(6), 467-484. https://doi.org/10.1016/j.pcad.2010.02.003 | spa |
dc.relation.references | Ito, S., Sasano, H., Sasano, N., Hayano, J., Fisher, J. A., & Katsuya, H. (2006). Vagal nerve activity contributes to improve the efficiency of pulmonary gas exchange in hypoxic humans: Vagal nerve and pulmonary gas exchange in humans. Experimental Physiology, 91(5), 935-941. https://doi.org/10.1113/expphysiol.2006.034421 | spa |
dc.relation.references | Jain, M. (2005). Effects of Hypoxia on the Alveolar Epithelium. Proceedings of the American Thoracic Society, 2(3), 202-205. https://doi.org/10.1513/pats.200501-006AC | spa |
dc.relation.references | Johnson, D. L., Ambrose, S. H., Bassett, T. J., Bowen, M. L., Crummey, D. E., Isaacson, J. S., Johnson, D. N., Lamb, P., Saul, M., & Winter-Nelson, A. E. (1997). Meanings of Environmental Terms. Journal of Environmental Quality, 26(3), 581-589. https://doi.org/10.2134/jeq1997.00472425002600030002x | spa |
dc.relation.references | Johnson, N. J., Luks, A. M., & Glenny, R. W. (2017). Gas Exchange in the Prone Posture. Respiratory Care, 62(8), 1097-1110. https://doi.org/10.4187/respcare.05512 | spa |
dc.relation.references | Jones, R., & Berry, R. (2015). Mechanisms of hypoxaemia and the interpretation of arterial blood gases. Surgery (Oxford), 33(10), 461-466. https://doi.org/10.1016/j.mpsur.2015.07.014 | spa |
dc.relation.references | Joyner, M. J. (2011). Why Physiology Matters in Medicine. Physiology, 26(2), 72-75. https://doi.org/10.1152/physiol.00003.2011 | spa |
dc.relation.references | Karavidas, M. K., & Lehrer, P. M. (2009). In-Flight Hyperventilation Among Airline Pilots. Aviation, Space, and Environmental Medicine, 80(5), 495-496. https://doi.org/10.3357/ASEM.2424.2009 | spa |
dc.relation.references | Karlsson, L. L., Kerckx, Y., Gustafsson, L. E., Hemmingsson, T. E., & Linnarsson, D. (2009). Microgravity decreases and hypergravity increases exhaled nitric oxide. Journal of Applied Physiology (Bethesda, Md. : 1985), 107(5), 1431-1437. https://doi.org/10.1152/japplphysiol.91081.2008 | spa |
dc.relation.references | Kelley, E. F., Carlson, A. R., Wentz, R. J., Ziegler, B. L., & Johnson, B. D. (2022). Influence of rapidly oscillating inspired O2 and N2 concentrations on pulmonary vascular function and lung fluid balance in healthy adults. Frontiers in Physiology, 13, 1018057. https://doi.org/10.3389/fphys.2022.1018057 | spa |
dc.relation.references | Koehle, M. S., Hodges, A. N. H., Lynn, B. M., Rachich, M. F., & McKenzie, D. C. (2006). Diffusing capacity and spirometry following a 60-minute dive to 4.5 meters. Undersea & Hyperbaric Medicine : Journal of the Undersea and Hyperbaric Medical Society, Inc, 33(2), 109-118. | spa |
dc.relation.references | Lemoine, M., & Pradeu, T. (2018). Dissecting the Meanings of “Physiology” to Assess the Vitality of the Discipline. Physiology, 33(4), 236-245. https://doi.org/10.1152/physiol.00015.2018 | spa |
dc.relation.references | Levitzky, M. (2015). Función y estructura del sistema respiratorio. En H. Raff & M. Levitzky (Eds.), Fisiología médica. Un enfoque por aparatos y sistemas (1-Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1118397932 | spa |
dc.relation.references | Lott, M. E. J., Hogeman, C., Herr, M., Bhagat, M., Kunselman, A., & Sinoway, L. I. (2009). Vasoconstrictor responses in the upper and lower limbs to increases in transmural pressure. Journal of Applied Physiology, 106(1), 302-310. https://doi.org/10.1152/japplphysiol.90449.2008 | spa |
dc.relation.references | Luks, A. M., Levett, D., Martin, D. S., Goss, C. H., Mitchell, K., Fernandez, B. O., Feelisch, M., Grocott, M. P., & Swenson, E. R. (2017). Changes in acute pulmonary vascular responsiveness to hypoxia during a progressive ascent to high altitude (5300 m). Experimental Physiology, 102(6), 711-724. https://doi.org/10.1113/EP086083 | spa |
dc.relation.references | Lumb, A. B. (2017). Nunn’s applied respiratory physiology (Eighth edition). Elsevier. | spa |
dc.relation.references | Martin, D. S., Levett, D. Z. H., Grocott, M. P. W., & Montgomery, H. E. (2010). Variation in human performance in the hypoxic mountain environment. Experimental Physiology, 95(3), 463-470. https://doi.org/10.1113/expphysiol.2009.047589 | spa |
dc.relation.references | Martinot, J.-B., Mulè, M., de Bisschop, C., Overbeek, M. J., Le-Dong, N.-N., Naeije, R., & Guénard, H. (2013). Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers. Journal of Applied Physiology (Bethesda, Md. : 1985), 115(2), 157-166. https://doi.org/10.1152/japplphysiol.01455.2012 | spa |
dc.relation.references | McAuliffe, F., Kametas, N., Rafferty, G. F., Greenough, A., & Nicolaides, K. (2003). Pulmonary diffusing capacity in pregnancy at sea level and at high altitude. Respiratory Physiology & Neurobiology, 134(2), 85-92. https://doi.org/10.1016/s1569-9048(02)00212-4 | spa |
dc.relation.references | McGraw, D., & Gluckman, S. J. (2005). The Perceived Benefits of a Medical School Course in Wilderness Medicine. Wilderness & Environmental Medicine, 16(2), 106-110. https://doi.org/10.1580/1080-6032(2005)16[106:TPBOAM]2.0.CO;2 | spa |
dc.relation.references | McLaughlin, C. W., Skabelund, A. J., & George, A. D. (2017). Impact of High Altitude on Military Operations. Current Pulmonology Reports, 6(2), 146-154. https://doi.org/10.1007/s13665-017-0181-0 | spa |
dc.relation.references | Moon, R. E., Cherry, A. D., Stolp, B. W., & Camporesi, E. M. (2009). Pulmonary gas exchange in diving. Journal of Applied Physiology (Bethesda, Md. : 1985), 106(2), 668-677. https://doi.org/10.1152/japplphysiol.91104.2008 | spa |
dc.relation.references | Moore, G. S., Wong, S. C., Darquenne, C., Neuman, T. S., West, J. B., & Kim Prisk, G. (2009). Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure. European Journal of Applied Physiology, 107(5), 545-552. https://doi.org/10.1007/s00421-009-1150-2 | spa |
dc.relation.references | Morris, L. E., Flück, D., Ainslie, P. N., & McManus, A. M. (2017). Cerebrovascular and ventilatory responses to acute normobaric hypoxia in girls and women. Physiological Reports, 5(15), e13372. https://doi.org/10.14814/phy2.13372 | spa |
dc.relation.references | Murphy, F. G., Hada, E. A., Doolette, D. J., & Howle, L. E. (2018). Probabilistic pharmacokinetic models of decompression sickness in humans: Part 2, coupled perfusion-diffusion models. Computers in Biology and Medicine, 92, 90-97. https://doi.org/10.1016/j.compbiomed.2017.11.011 | spa |
dc.relation.references | Muth, C. M., Radermacher, P., Pittner, A., Steinacker, J., Schabana, R., Hamich, S., Paulat, K., & Calzia, E. (2003). Arterial Blood Gases During Diving in Elite Apnea Divers. International Journal of Sports Medicine, 24(2), 104-107. https://doi.org/10.1055/s-2003-38401 | spa |
dc.relation.references | Nagel, M. J., Jarrard, C. P., & Lalande, S. (2020). Effect of a Single Session of Intermittent Hypoxia on Erythropoietin and Oxygen-Carrying Capacity. International Journal of Environmental Research and Public Health, 17(19), 7257. https://doi.org/10.3390/ijerph17197257 | spa |
dc.relation.references | Nieto, M. J. R., Suárez, L. Á., Roisín, R. R., & Mangado, N. G. (2020). Intercambio pulmonar de gases. En J. A. Fernández-Tresguerres, V. Cachofeiro, D. P. Cardinali, E. Delpón, E. R. Díaz-Rubio, E. E. Escriche, V. L. Juliá, F. M. Teruel, & M. R. Pardo (Eds.), Fisiología humana, 5e (1-Book, Section). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1189499958 | spa |
dc.relation.references | Olszowka, A. J., Shykoff, B. E., Pendergast, D. R., Lundgren, C. E. G., & Farhi, L. E. (2003). Cardiac output: A view from Buffalo. European Journal of Applied Physiology, 90(3-4), 292-304. https://doi.org/10.1007/s00421-003-0921-4 | spa |
dc.relation.references | Otis, A. B. (2011). An Overview of Gas Exchange. En Comprehensive Physiology (pp. 1-11). https://doi.org/10.1002/cphy.cp030401 | spa |
dc.relation.references | Ottestad, W., Hansen, T. A., Pradhan, G., Stepanek, J., Høiseth, L. Ø., & Kåsin, J. I. (2017). Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure. Journal of Applied Physiology, 123(6), 1443-1450. https://doi.org/10.1152/japplphysiol.00169.2017 | spa |
dc.relation.references | Paganini, M., Moon, R. E., Boccalon, N., Melloni, G. E. M., Giacon, T. A., Camporesi, E. M., & Bosco, G. (2022). Blood gas analyses in hyperbaric and underwater environments: A systematic review. Journal of Applied Physiology, 132(2), 283-293. https://doi.org/10.1152/japplphysiol.00569.2021 | spa |
dc.relation.references | Palada, I., Bakovic, D., Valic, Z., Obad, A., Ivancev, V., Eterovic, D., Shoemaker, J. K., & Dujic, Z. (2008). Restoration of hemodynamics in apnea struggle phase in association with involuntary breathing movements. Respiratory Physiology & Neurobiology, 161(2), 174-181. https://doi.org/10.1016/j.resp.2008.01.008 | spa |
dc.relation.references | Patiño Restrepo, J. F., Rodríguez, E. C., & Díaz Cortés, J. C. (2015). Gases sanguíneos, fisiología de la respiración e insuficiencia respiratoria aguda. (2a. reimp., 8a. ed.). Editorial Médica Panamericana. | spa |
dc.relation.references | Pendergast, D. R., & Lundgren, C. E. G. (2009a). The physiology and pathophysiology of the hyperbaric and diving environments. Journal of Applied Physiology, 106(1), 274-275. https://doi.org/10.1152/japplphysiol.91477.2008 | spa |
dc.relation.references | Pendergast, D. R., & Lundgren, C. E. G. (2009b). The underwater environment: Cardiopulmonary, thermal, and energetic demands. Journal of Applied Physiology, 106(1), 276-283. https://doi.org/10.1152/japplphysiol.90984.2008 | spa |
dc.relation.references | Perry, S. F., & Burggren, W. W. (2007). Why respiratory biology? The meaning and significance of respiration and its integrative study. Integrative and Comparative Biology, 47(4), 506-509. https://doi.org/10.1093/icb/icm033 | spa |
dc.relation.references | Prabhakar, N. R., & Kline, D. D. (2002). Ventilatory Changes During Intermittent Hypoxia: Importance of Pattern and Duration. High Altitude Medicine & Biology, 3(2), 195-204. https://doi.org/10.1089/15270290260131920 | spa |
dc.relation.references | Prisk, G. K. (2011a). Pulmonary Circulation in Extreme Environments. En R. Terjung (Ed.), Comprehensive Physiology (1.a ed., pp. 319-338). Wiley. https://doi.org/10.1002/cphy.c090006 | spa |
dc.relation.references | Prisk, G. K. (2011b). Gas exchange under altered gravitational stress. Comprehensive Physiology, 1(1), 339-355. https://doi.org/10.1002/cphy.c090007 | spa |
dc.relation.references | Prisk, G. K. (2014). Microgravity and the respiratory system. The European Respiratory Journal, 43(5), 1459-1471. https://doi.org/10.1183/09031936.00001414 | spa |
dc.relation.references | Prisk, G. K., Fine, J. M., Cooper, T. K., & West, J. B. (2005). Pulmonary gas exchange is not impaired 24 h after extravehicular activity. Journal of Applied Physiology (Bethesda, Md. : 1985), 99(6), 2233-2238. https://doi.org/10.1152/japplphysiol.00847.2005 | spa |
dc.relation.references | Prisk, G. K., Fine, J. M., Cooper, T. K., & West, J. B. (2006). Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. Journal of Applied Physiology (Bethesda, Md. : 1985), 101(2), 439-447. https://doi.org/10.1152/japplphysiol.01419.2005 | spa |
dc.relation.references | Qureshi, S. M. (2008). Measurement of respiratory function: gas exchange. Anaesthesia & Intensive Care Medicine, 9(11), 487-491. | spa |
dc.relation.references | Rainford, D., & Gradwell, D. P. (Eds.). (2016). Ernsting’s aviation and space medicine (Fifth edition). CRC Press, Taylor & Francis Group. | spa |
dc.relation.references | Richalet, J.-P., Donoso, M. V., Jiménez, D., Antezana, A.-M., Hudson, C., Cortès, G., Osorio, J., & Leòn, A. (2002). Chilean miners commuting from sea level to 4500 m: A prospective study. High Altitude Medicine & Biology, 3(2), 159-166. https://doi.org/10.1089/15270290260131894 | spa |
dc.relation.references | Richalet, J.-P., Magnan, M.-A., Gavet, A., & Lafère, P. (2022). Expert group syndrome at high altitude. Sports Medicine and Health Science, 4(3), 215-218. https://doi.org/10.1016/j.smhs.2022.07.001 | spa |
dc.relation.references | Román-Vistraín, G., Muñoz-Ramírez, C. M., Márquez-González, H., Álvarez-Valencia, J. L., & Zárate-Castañón, P. (2015). Valoración respiratoria durante la guardia. 2015, 10(2), 63-68. | spa |
dc.relation.references | Sackett, J. R., Schlader, Z. J., Sarker, S., Chapman, C. L., & Johnson, B. D. (2017). Peripheral chemosensitivity is not blunted during 2 h of thermoneutral head out water immersion in healthy men and women. Physiological Reports, 5(20), e13472. https://doi.org/10.14814/phy2.13472 | spa |
dc.relation.references | Sandberg, C., & Naylor, J. (2011). Respiratory physiology at altitude. Journal of the Royal Army Medical Corps, 157(1), 29-32. https://doi.org/10.1136/jramc-157-01-05 | spa |
dc.relation.references | Schoene, R. B. (2005). Limits of Respiration at High Altitude. Clinics in Chest Medicine, 26(3), 405-414. https://doi.org/10.1016/j.ccm.2005.06.015 | spa |
dc.relation.references | Self, D. A., G. Mandella, J., Prinzo, O. V., M. Forster, E., & Shaffstall, R. M. (2011). Physiological Equivalence of Normobaric and Hypobaric Exposures of Humans to 25,000 Feet (7620 m). Aviation, Space, and Environmental Medicine, 82(2), 97-103. https://doi.org/10.3357/ASEM.2908.2011 | spa |
dc.relation.references | Shykoff B. E. (2014). Cumulative effects of repeated exposure to pO2 = 200 kPa (2 atm). Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc, 41(4), 291–300. | spa |
dc.relation.references | Snyder, E. M., Stepanek, J., Bishop, S. L., & Johnson, B. D. (2007). Ventilatory Responses to Hypoxia and High Altitude During Sleep in Aconcagua Climbers. Wilderness & Environmental Medicine, 18(2), 138-145. https://doi.org/10.1580/06-WEME-BR-041R.1 | spa |
dc.relation.references | Soria, R., Egger, M., Scherrer, U., Bender, N., & Rimoldi, S. F. (2016). Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: Systematic review and meta-analysis. Journal of Applied Physiology, 121(5), 1151-1159. https://doi.org/10.1152/japplphysiol.00394.2016 | spa |
dc.relation.references | Stillman, J. H. (2019). Environmental Physiology: Adaptation of Life to Earth’s Diverse Habitats and Response to Global Change. BioScience, 69(2), 152-153. https://doi.org/10.1093/biosci/biy134 | spa |
dc.relation.references | Susilovic-Grabovac, Z., Banfi, C., Brusoni, D., Mapelli, M., Ghilardi, S., Obad, A., Bakovic-Kramaric, D., Dujic, Z., & Agostoni, P. (2017). Diving and pulmonary physiology: Surfactant binding protein, lung fluid and cardiopulmonary test changes in professional divers. Respiratory Physiology & Neurobiology, 243, 27-31. https://doi.org/10.1016/j.resp.2017.04.012 | spa |
dc.relation.references | Sylvester, J. T., Shimoda, L. A., Aaronson, P. I., & Ward, J. P. (2012). Hypoxic pulmonary vasoconstriction. Physiological reviews, 92(1), 367–520. https://doi.org/10.1152/physrev.00041.2010 | spa |
dc.relation.references | Taboni, A., Fagoni, N., Moia, C., Vinetti, G., & Ferretti, G. (2019). Gas exchange and cardiovascular responses during breath-holding in divers. Respiratory Physiology & Neurobiology, 267, 27-34. https://doi.org/10.1016/j.resp.2019.06.002 | spa |
dc.relation.references | Talbot, N. P., Smith, T. G., & Dorrington, K. L. (2011). The mechanics and control of ventilation. Surgery (Oxford), 29(5), 212-216. https://doi.org/10.1016/j.mpsur.2011.02.004 | spa |
dc.relation.references | Taylor, B. J., Stewart, G. M., Marck, J. W., Summerfield, D. T., Issa, A. N., & Johnson, B. D. (2017). Interstitial lung fluid balance in healthy lowlanders exposed to high-altitude. Respiratory Physiology & Neurobiology, 243, 77-85. https://doi.org/10.1016/j.resp.2017.05.010 | spa |
dc.relation.references | Tetzlaff, K., Scholz, T., Walterspacher, S., Muth, C. M., Metzger, J., Roecker, K., & Sorichter, S. (2008). Characteristics of the respiratory mechanical and muscle function of competitive breath-hold divers. European Journal of Applied Physiology, 103(4), 469-475. https://doi.org/10.1007/s00421-008-0731-9 | spa |
dc.relation.references | Tetzlaff, K., & Thomas, P. S. (2017). Short- and long-term effects of diving on pulmonary function. European Respiratory Review, 26(143), 160097. https://doi.org/10.1183/16000617.0097-2016 | spa |
dc.relation.references | Tiel-van Buul, M. M. C., & Verzijlbergen, J. F. (2004). Ventilation-Perfusion Lung Scintigraphy. Imaging Decisions MRI, 8(4), 3-14. https://doi.org/10.1111/j.1617-0830.2004.00031.x | spa |
dc.relation.references | Tipton, M. J. (2016). Environmental extremes: Origins, consequences and amelioration in humans: Extreme environments. Experimental Physiology, 101(1), 1-14. https://doi.org/10.1113/EP085362 | spa |
dc.relation.references | Tourtier, J. P., Astaud, C., & Domanski, L. (2012). Specificity of desaturation during air transport. Journal of Trauma and Acute Care Surgery, 73(3), 778-779. Embase. https://doi.org/10.1097/TA.0b013e31826601ce | spa |
dc.relation.references | van Ooij, P. J. A. M., van Hulst, R. A., Houtkooper, A., & Sterk, P. J. (2011). Differences in spirometry and diffusing capacity after a 3-h wet or dry oxygen dive with a PO(2) of 150 kPa. Clinical Physiology and Functional Imaging, 31(5), 405-410. https://doi.org/10.1111/j.1475-097X.2011.01034.x | spa |
dc.relation.references | van Ooij, P. J. A. M., van Hulst, R. A., Houtkooper, A., & Sterk, P. J. (2014). Nitric oxide and carbon monoxide diffusing capacity after a 1-h oxygen dive to 9 m of sea water. Clinical Physiology and Functional Imaging, 34(3), 199-208. https://doi.org/10.1111/cpf.12082 | spa |
dc.relation.references | van Ooij, P. J. A. M., van Hulst, R. A., Houtkooper, A., van der Weide, T. J. S., & Sterk, P. J. (2012). Lung function before and after oxygen diving: A randomized crossover study. Undersea & Hyperbaric Medicine : Journal of the Undersea and Hyperbaric Medical Society, Inc, 39(3), 699-707. | spa |
dc.relation.references | van Ooij, P.-J. A. M., Sterk, P. J., & van Hulst, R. A. (2016). Oxygen, the lung and the diver: Friends and foes? European Respiratory Review : An Official Journal of the European Respiratory Society, 25(142), 496-505. https://doi.org/10.1183/16000617.0049-2016 | spa |
dc.relation.references | Vázquez-García, J. C., Pérez-Padilla, R., Casas, A., Schönffeldt-Guerrero, P., Pereira, J., Vargas-Domínguez, C., Velázquez-Uncal, M., Martínez-Briseño, D., Torre-Bouscoulet, L., & Gochicoa-Rangel, L. (2016). Reference Values for the Diffusing Capacity Determined by the Single-Breath Technique at Different Altitudes: The Latin American Single-Breath Diffusing Capacity Reference Project. Respiratory Care, 61(9), 1217-1223. https://doi.org/10.4187/respcare.04590 | spa |
dc.relation.references | Wagner, P. D. (2007). Assessment of gas exchange in lung disease: Balancing accuracy against feasibility. Critical Care, 11(6), 182. https://doi.org/10.1186/cc6198 | spa |
dc.relation.references | Wagner, P. D. (2015). The physiological basis of pulmonary gas exchange: Implications for clinical interpretation of arterial blood gases. European Respiratory Journal, 45(1), 227-243. https://doi.org/10.1183/09031936.00039214 | spa |
dc.relation.references | Wagner, P. D. (2022). Altitude physiology then (1921) and now (2021): Meat on the bones. Physiological Reviews, 102(1), 323-332. https://doi.org/10.1152/physrev.00033.2021 | spa |
dc.relation.references | Wagner, P. D., Araoz, M., Boushel, R., Calbet, J. A. L., Jessen, B., Rådegran, G., Spielvogel, H., Søndegaard, H., Wagner, H., & Saltin, B. (2002). Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. Journal of Applied Physiology (Bethesda, Md. : 1985), 92(4), 1393-1400. https://doi.org/10.1152/japplphysiol.00093.2001 | spa |
dc.relation.references | Weitz, C. A., & Garruto, R. M. (2007). A comparative analysis of arterial oxygen saturation among Tibetans and Han born and raised at high altitude. High Altitude Medicine & Biology, 8(1), 13-26. https://doi.org/10.1089/ham.2006.1043 | spa |
dc.relation.references | West, J. B. (2002). Importance of gravity in determining the distribution of pulmonary blood flow. Journal of Applied Physiology, 93(5), 1888-1891. https://doi.org/10.1152/japplphysiol.00459.2002 | spa |
dc.relation.references | West, J. B. (2006). Adventures in high-altitude physiology. Advances in Experimental Medicine and Biology, 588, 7-16. https://doi.org/10.1007/978-0-387-34817-9_2 | spa |
dc.relation.references | West, J. B. (2010). American medical research expedition to Everest. High Altitude Medicine & Biology, 11(2), 103-110. https://doi.org/10.1089/ham.2009.1089 | spa |
dc.relation.references | West, J. B. (2013). A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft. Journal of Applied Physiology, 115(1), 145-149. https://doi.org/10.1152/japplphysiol.00094.2013 | spa |
dc.relation.references | Whittaker, L. A., & Kaminsky, D. A. (2006). Respiratory Physiology in Extreme Environments. Clinical Pulmonary Medicine, 13(5), 282-288. https://doi.org/10.1097/01.cpm.0000237209.06455.4f | spa |
dc.relation.references | Widmaier, E. P. (2004). Vander, Sherman, & Luciano’s human physiology: The mechanisms of body function. Ninth edition / Eric P. Widmaier, Hershel Raff, Kevin T. Strang ; contributions by Mary Erskine. Boston : McGraw-Hill Higher Education, [2004] ©2004. https://search.library.wisc.edu/catalog/999952969802121 | spa |
dc.relation.references | Yaqub, F. (2015). Space travel: Medicine in extremes. The Lancet Respiratory Medicine, 3(1), 20-21. https://doi.org/10.1016/S2213-2600(14)70192-4 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.decs | Intercambio Gaseoso Pulmonar | spa |
dc.subject.decs | Pulmonary Gas Exchange | eng |
dc.subject.decs | Capacidad de Difusión Pulmonar | spa |
dc.subject.decs | Pulmonary Diffusing Capacity | eng |
dc.subject.decs | Barrera Alveolocapilar | spa |
dc.subject.decs | Blood-Air Barrier | eng |
dc.subject.decs | Fenómenos Fisiológicos Respiratorios | spa |
dc.subject.decs | Respiratory Physiological Phenomena | eng |
dc.subject.proposal | Inercambio gaseoso pulmonar | spa |
dc.subject.proposal | Humano | spa |
dc.subject.proposal | Altura | spa |
dc.subject.proposal | Microgravedad | spa |
dc.subject.proposal | Aviación | spa |
dc.subject.proposal | Inmersión | spa |
dc.subject.proposal | Pulmonary gas exchange | eng |
dc.subject.proposal | Human | eng |
dc.subject.proposal | Altitude | eng |
dc.subject.proposal | Weightlessness | eng |
dc.subject.proposal | Aviation | eng |
dc.subject.proposal | Diving | eng |
dc.title | Intercambio gaseoso pulmonar en ambientes especiales : Una revisión narrativa | spa |
dc.title.translated | Pulmonary gas exchange in special environments : A narrative review | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018459853.2025.pdf
- Tamaño:
- 2.36 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestria en Fisiologia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: