Diseño de un sistema de medición de temperatura para líneas de transmisión y distribución de energía utilizando sensores ópticos basados en redes de difracción de Bragg

dc.contributor.advisorVarón Durán, Gloria Margaritaspa
dc.contributor.advisorAmortegui Gil, Francisco Javierspa
dc.contributor.authorBarón Moreno, Fabián Enriquespa
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)spa
dc.date.accessioned2020-05-19T16:04:47Zspa
dc.date.available2020-05-19T16:04:47Zspa
dc.date.issued2020-04-14spa
dc.description.abstractLas redes de transmisión de energía son limitadas principalmente por dos factores, flecha de la catenaria, cuyo aumento lleva a incumplir distancias de seguridad, y la temperatura del conductor, cuyo aumento produce pérdidas en su tensión de rotura y un envejecimiento prematuro. Para evitar esto, las redes de transmisión se dimensionan de dos formas: estática, suponiendo las peores condiciones de carga y medioambientales, y dinámica, usando la temperatura del conductor para ajustar la carga de la línea. Medir la temperatura en redes de transmisión de energía representa un reto dados los voltajes a los que ellas operan, para esto existen varios métodos y tecnologías que permiten medir directa o indirectamente la temperatura del conductor. Entre los métodos de medición directa está el uso de sensores de fibra óptica, los cuales tienen excelentes propiedades eléctricas y físicas propias de la fibra óptica. Dentro de los sensores ópticos están los sensores basados en redes de difracción de Bragg (FBG). En la presente investigación se hace uso de sensores FBG para medir la temperatura de un segmento a escala de una línea de transmisión bajo condiciones controladas, usando sensores FBG seleccionados de acuerdo con las condiciones de operación de las redes de transmisión colombianas. Se observa que la lluvia y radiación solar son las variables que más afectan la temperatura de la línea, se diseña un método de adhesión de los sensores FBG a la línea y finalmente se diseña un sistema de medición de energía para una línea ejemplo de 5 km.spa
dc.description.abstractPower transmission lines are mainly limited by two factors, Sag, since an increase of it can reduce the clearance to ground and nearby objects, and the temperature of the conductor, since a high temperature causes loss in tensile strength and a premature ageing. To avoid that, power transmission lines are rated in two ways: Static Rating, assuming the worst-case conditions of load and weather, and Dynamic Rating, using the temperature of the conductor to calculate the load of the line. Measuring the temperature of a power transmission line can be challenging due the high voltage that the sensors must withstand. Several methods and technologies exist to measure temperature directly or indirectly from the conductor. One of those direct measurement methods is the use of fiber optic-based sensors, which have excellent physical and electrical properties specific to fiber optics. Fiber Bragg Gratings sensors are one of the most used optical fiber sensor types. In this research FBG sensors are used to measure the temperature of a power line segment, under controlled conditions using FBG sensors selected according to the operation conditions of the Colombian power networks. It was observed that rain and solar radiation affect the temperature of the conductor. A union method of the FBG sensors to the line was designed and last, a temperature measuring system was designed for a 5 km sample power transmission line.spa
dc.description.additionalMagíster en Ingeniería – Telecomunicacionesspa
dc.description.degreelevelMaestríaspa
dc.format.extent99spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77535
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicacionesspa
dc.relation.references[1] J. Rosero and J. Chinchilla-Guarin, “Impact of Including Dynamic Line Rating Model on Colombian Power System,” 4th Int. Conf. Smart Energy Grid Eng., pp. 36–40, 2016.spa
dc.relation.references[2] D. Balango, B. Nemeth, and G. Gocsei, “Predicting conductor sag of power lines in a new model of dynamic line rating,” 33rd Electr. Insul. Conf. EIC 2015, no. June, pp. 41–44, 2015.spa
dc.relation.references[3] S. C. E. Jupe, D. Kadar, G. Murphy, M. G. Bartlett, and K. T. Jackson, “Application of a dynamic thermal rating system to a 132kV distribution network,” IEEE PES Innov. Smart Grid Technol. Conf. Eur., pp. 1–8, 2011.spa
dc.relation.references[4] M. Musavi, D. Chamberlain, and Q. Li, “Overhead conductor dynamic thermal rating measurement and prediction,” SMFG 2011 - IEEE Int. Conf. Smart Meas. Grids, Proc., no. 1, pp. 135–138, 2011.spa
dc.relation.references[5] D. J. Spoor and J. P. Roberts, “Development and Experimental Validation of a Weather-Based Dynamic Line Rating System,” IEEE PES Innov. Smart Grid Technol., 2011.spa
dc.relation.references[6] L. Bjerkan, “Application of fiber-optic bragg grating sensors in monitoring environmental loads of overhead power transmission lines.,” Appl. Opt., vol. 39, no. 4, pp. 554–560, 2000.spa
dc.relation.references[7] Q. Li, M. Musavi, and D. Chamberlain, “Overhead conductor thermal rating using neural networks,” SMFG 2011 - IEEE Int. Conf. Smart Meas. Grids, Proc., pp. 139–142, 2011.spa
dc.relation.references[8] M. Ntuli, R. Xezile, N. Mbuli, J. H. C. Pretorius, and L. Motsoeneng, “Increasing the capacity of transmission lines via current uprating: An updated review of benefits, considerations and developments,” Proc. 2016 Australas. Univ. Power Eng. Conf. AUPEC 2016, pp. 1–6, 2016.spa
dc.relation.references[9] A. H. Wijethunga, J. V. Wijayakulasooriya, J. B. Ekanayake, and N. De Silva, “Conductor temperature based low cost solution for dynamic line rating calculation of power distribution lines,” 2015 IEEE 10th Int. Conf. Ind. Inf. Syst. ICIIS 2015 - Conf. Proc., pp. 128–133, 2016.spa
dc.relation.references[10] I. Albizu, E. Fernández, A. J. Mazón, and J. Bengoechea, “Influence of the conductor temperature error on the overhead line ampacity monitoring systems,” IET Gener. Transm. Distrib., vol. 5, no. 4, p. 440, 2011.spa
dc.relation.references[11] L. C. Cradden and G. P. Harrison, “Adapting overhead lines to climate change: Are dynamic ratings the answer?,” Energy Policy, vol. 63, pp. 197–206, 2013.spa
dc.relation.references[12] J. A. Valencia Marín, C. A. García Botero, W. A. Martínez Moreno, and R. Rodríguez Hernández, “Proyección de la demanda de energía eléctrica y potencia máxima en Colombia,” UPME. SIEL, Bogotá, p. 55, 2016.spa
dc.relation.references[13] C. Desandré, M. Mathiou, V. Bottura, M. C. Borlino, L. Cerise, and E. Imperial, “Method for monitoring the electromagnetic impacts due to high voltage overheads lines in Aosta Valley,” IEEE Int. Symp. Electromagn. Compat., 2012.spa
dc.relation.references[14] R. Bhattarai, A. Haddad, H. Griffiths, and N. Harid, “Voltage uprating of overhead transmission lines,” Proc. Univ. Power Eng. Conf., 2010.spa
dc.relation.references[15] A. M. Mejía Solanilla, “Análisis técnico y económico de la repotenciación de líneas aéreas de alta tensión en un sistema de subtransmisión,” Universidad tecnológica de Pereira, 2008.spa
dc.relation.references[16] K. Kopsidas and S. M. Rowland, “Evaluating opportunities for increasing power capacity of existing overhead line systems,” IET Gener. Transm. Distrib., vol. 5, no. 1, p. 1, 2011.spa
dc.relation.references[17] B. Subba Reddy and D. Chatterjee, “Performance evaluation of high temperature high current conductors,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 3, pp. 1570–1579, 2016.spa
dc.relation.references[18] S. M. Téllez Gutiérrez, “Comportamiento de conductores eléctricos usados en líneas de transmisión ante esfuerzos electromecánicos y térmicos combinados,” Universidad Nacional de Colombia, 2011.spa
dc.relation.references[19] Minminas, “Reglamento Tecnico de Instalaciones Electricas, RETIE 2013,” 2013.spa
dc.relation.references[20] F. Jakl and A. Jakl, “Effect of elevated temperatures on mechanical properties of overhead conductors under steady state and short-circuit conditions,” IEEE Trans. Power Deliv., vol. 15, no. 1, pp. 242–246, 2000.spa
dc.relation.references[21] G. D. B. Moore P J, “Remote sensing of overhead line conductor temperature using an infra-red sensor,” IEE Conf. Publ., vol. 2000, no. CP478, pp. 385–389, 2000.spa
dc.relation.references[22] S. Beryozkina, A. Sauhats, A. Banga, and I. Jakusevics, “Testing thermal rating methods for the overhead high voltage line,” 12th Int. Conf. Environ. Electr. Eng. EEEIC 2013, pp. 215–220, 2013.spa
dc.relation.references[23] B. S. Reddy and D. Chatterjee, “Computation of current and temperature distribution for high temperature low sag conductors,” Proc. 6th IEEE Power India Int. Conf. PIICON 2014, pp. 1–6, 2014.spa
dc.relation.references[24] C. Tumelo-Chakonta and K. Kopsidas, “Assessing optimal conductor utilization under N-1 overload security studies,” 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, pp. 1–6, 2013.spa
dc.relation.references[25] IEEE Power Engineering Society, IEEE Guide for Determining the Effects of High-Temperature Operation on Conductors, Connectors, and Accessories, no. IEEE Std 1283TM-2004. 2005.spa
dc.relation.references[26] J. R. Harvey, “Effect of elevated temperature on the strength of aluminum conductors,” IEEE Trans. Power Appar. Syst., vol. 98, pp. 1769–1772, 1972.spa
dc.relation.references[27] A. N. Akpolat, S. V. Nese, and E. Dursun, “Towards to smart grid: Dynamic line rating,” Proc. - 2018 6th Int. Istanbul Smart Grids Cities Congr. Fair, ICSG 2018, pp. 96–100, 2018.spa
dc.relation.references[28] IEEE Power and Energy Society, IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. 2013.spa
dc.relation.references[29] C. R. Black and W. A. Chisholm, “Key Considerations for the Selection of Dynamic Thermal Line Rating Systems,” IEEE Trans. Power Deliv., vol. 30, no. 5, pp. 2154–2162, 2015.spa
dc.relation.references[30] R. G. Olsen and K. S. Edwards, “A New Method for Real-Time Monitoring of High-Voltage Transmission Line Conductor Sag,” IEEE Power Eng. Rev., vol. 22, no. 4, pp. 62–63, 2002.spa
dc.relation.references[31] A. K. Kazerooni, J. Mutale, M. Perry, S. Venkatesan, and D. Morrice, “Dynamic thermal rating application to facilitate wind energy integration,” 2011 IEEE PES Trondheim PowerTech Power Technol. a Sustain. Soc. POWERTECH 2011, 2011.spa
dc.relation.references[32] E. M. Carlini, S. Favuzza, S. E. Giangreco, F. Massaro, and C. Quaciari, “Uprating an overhead line. Italian TSO applications for integration of RES,” 4th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2013, pp. 470–475, 2013.spa
dc.relation.references[33] S. Jupe, M. Bartlett, and K. Jackson, “Dynamic thermal ratings: The state of the art,” CIRED 21st Int. Conf. Electr. Distrib., no. June, pp. 6–9, 2011.spa
dc.relation.references[34] CIGRE, Thermal Behaviour of overhead Conductors. 2002.spa
dc.relation.references[35] X. Meng, H. Diao, M. Yang, and F. Chen, “A dynamic tracking approach to the temperature of overhead transmission lines based on electrical measurements,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2015-March, no. March, pp. 1–4, 2014.spa
dc.relation.references[36] W. G. B. 3. CIGRE, Guide for Application of Direct Real-time Monitoring Systems, no. June. 2012.spa
dc.relation.references[37] D. Balango, I. Pacsonyi, and B. Nemeth, “Overview of a new dynamic line rating system, from modelling to measurement,” IYCE 2015 - Proc. 2015 5th Int. Youth Conf. Energy, pp. 1–6, 2015.spa
dc.relation.references[38] D. L. Alvarez, J. A. Rosero, F. Faria Da Silva, C. L. Bak, and E. E. Mombello, “Dynamic line rating - Technologies and challenges of PMU on overhead lines: A survey,” Proc. - 2016 51st Int. Univ. Power Eng. Conf. UPEC 2016, vol. 2017-Janua, pp. 1–6, 2017.spa
dc.relation.references[39] H. Braendle, P. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, and K. Bohnert, “Reliability of fiber Bragg grating based sensors for downhole applications Reliability of ® ber Bragg grating based sensors for downhole applications,” vol. 4247, no. FEBRUARY 2003, pp. 364–376, 2015.spa
dc.relation.references[40] H. Nakstad and J. T. Kringlebotn, “Probing oil fields,” Nat. Photonics, vol. 2, no. March, pp. 147–149, 2008.spa
dc.relation.references[41] S. Poeggel, G. Leen, K. Bremer, and E. Lewis, “Miniature Optical fiber combined pressure- and temperature sensor for medical applications,” Proc. IEEE Sensors, vol. 4, no. 1, pp. 1–4, 2012.spa
dc.relation.references[42] G. Shambat et al., “A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications,” Appl. Phys. Lett., vol. 100, no. 21, 2012.spa
dc.relation.references[43] Ł. Dziuda and F. W. Skibniewski, “A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors,” Biocybern. Biomed. Eng., Feb. 2014.spa
dc.relation.references[44] G. Alvarez-Botero, F. E. Barón, C. C. Cano, O. Sosa, and M. Varón, “Optical sensing using fiber bragg gratings: fundamentals and applications,” IEEE Instrum. Meas. Mag., pp. 33–38, 2017.spa
dc.relation.references[45] M. Jones, “A sensitive issue,” Nat. Photonics, vol. 2, no. March, pp. 153–1554, 2008.spa
dc.relation.references[46] S. Adachi, “Distributed optical fiber sensors and their applications,” SICE Annu. Conf. 2008, pp. 329–333, 2008.spa
dc.relation.references[47] M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics, vol. 4, no. 7, pp. 431–432, Jul. 2010.spa
dc.relation.references[48] A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and applications in telecomunications and sensing. Boston, London: Artech House, 1999.spa
dc.relation.references[49] J. Stone, “Photorefractivity in GeO2-doped silica fiber,” J. Appl. Phys., vol. 62, pp. 4371–4374, 1987.spa
dc.relation.references[50] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett., vol. 14, no. 15, pp. 823–825, 1989.spa
dc.relation.references[51] Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 355–375, Apr. 1997.spa
dc.relation.references[52] F. E. Barón, G. Alvarez-Botero, F. Amortegui, D. Pastor, and M. Varon, “Temperature measurements on overhead lines using Fiber Bragg Grating sensors,” in 2017 IEEE international Instrumentation and Measurement Technology Conference, 2017, pp. 1128–1131.spa
dc.relation.references[53] S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments.,” Sensors (Basel)., vol. 12, no. 2, pp. 1898–918, Jan. 2012.spa
dc.relation.references[54] X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: Principle and sensing applications,” Photonic Sensors, vol. 1, no. 1, pp. 6–30, Dec. 2010.spa
dc.relation.references[55] W. Ecke, M. W. M. W. Schmitt, I. Jena, V. Paper, F. Gmbh, and C. Kg, “Fiber bragg gratings in industrial sensing,” in OSA Technical Conference OFC/NFOEC, 2013, pp. 1–67.spa
dc.relation.references[56] X. Li and Y. Li, “High Voltage Power Line Temperature and Strain Simultaneous Measurement Research Based on FBG,” 2010 Asia-Pacific Power Energy Eng. Conf., no. 2, pp. 1–4, 2010.spa
dc.relation.references[57] T. K. Gangopadhyay, M. C. Paul, and L. Bjerkan, “Fiber-optic sensor for real-time monitoring of temperature on high voltage (400KV) power transmission lines,” Int. Conf. Opt. Fiber Sens., vol. 7503, no. 1, pp. 75034M-75034M–4, Oct. 2009.spa
dc.relation.references[58] Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings.,” Opt. Express, vol. 21, no. 19, pp. 22799–807, Sep. 2013.spa
dc.relation.references[59] L. Li, H. He, and Y. Lin, “Study on the spatial division multiplexing technique of fiber Bragg grating sensors,” 2009 Symp. Photonics Optoelectron. SOPO 2009, pp. 1–3, 2009.spa
dc.relation.references[60] A. Triana, D. Pastor, and M. Varon, “Enhancing the Multiplexing Capabilities of Sensing Networks using Spectrally Encoded Fiber Bragg Grating Sensors,” J. Light. Technol., vol. 34, no. 19, pp. 1–1, 2016.spa
dc.relation.references[61] MicronOptics, “Fiber Bragg Grating Array | os1200,” 2015. [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2015/12/os1200_1512.pdf.spa
dc.relation.references[62] S. Fibres, “SmartTemp FBG Temperature Sensor,” SmartFibres, 2020. [Online]. Available: https://www.smartfibres.com/files/pdf/SmartTemp.pdf. [Accessed: 01-Feb-2020].spa
dc.relation.references[63] Corning, “Anaerobic Connector , LC Anaerobic Connector,” 2016. [Online]. Available: http://csmedia.corning.com/opcomm/Resource_Documents/spec_sheets_rl/fojp/95-201-98-SP_NAFTA_AEN.pdf.spa
dc.relation.references[64] Corning, “Corning ® ClearCurve ® Single-Mode Mid-Temperature Specialty Optical Fibers for Harsh Environments,” 2018. [Online]. Available: https://www.corning.com/media/worldwide/csm/documents/ClearCurve Single Mode Mid Temp.pdf.spa
dc.relation.references[65] MicronOptics, “os1100,” 2020. [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2017/07/os1100-1.pdf.spa
dc.relation.references[66] Micron Optics (USA), “HYPERION Optical Sensing Instrument,” 2016. [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2018/05/LUNA-Data-Sheet-Micron-si155_v2.pdf.spa
dc.relation.references[67] Micron Optics (USA), “TN1114 - UNDERSTANDING x55 DYNAMIC RANGE PERFORMANCE TN1114,” 2016. [Online]. Available: http://www.micronoptics.com/download/tn1114-understanding-x55-dynamic-range-performance/?wpdmdl=2562.spa
dc.relation.references[68] P. Insulators, “Fiber Optic Hole Post Insulator,” Datasheet, 2020. [Online]. Available: https://www.ppcinsulators.com/wp-content/uploads/2018/08/PPC-Fiber-Optic-Hole-Post-Flyer_US-letter_LQ.pdf.spa
dc.relation.references[69] OFS, “Wide Temperature AllWave® FLEX Zero Water Peak (ZWP) Single-Mode Fiber.” OFS, pp. 1–2, 2018.spa
dc.relation.references[70] M. Kovac, “OTLM System Line Management,” 2020. [Online]. Available: https://www.otlm.eu/energy/otlm-device/.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::384 - Comunicacionesspa
dc.subject.proposalOverhead Power Transmission lineseng
dc.subject.proposalSensores FBGspa
dc.subject.proposalOptical fiber sensorseng
dc.subject.proposalLíneas de transmisiónspa
dc.subject.proposalFiber Bragg Gratingseng
dc.subject.proposalSensores de fibra ópticaspa
dc.subject.proposalRedes de difracción de Braggspa
dc.subject.proposalStatic line ratingeng
dc.subject.proposalDynamic Line Ratingeng
dc.subject.proposalDimensionamiento estáticospa
dc.subject.proposalDimensionamiento dinámicospa
dc.subject.proposalTemperature measurementeng
dc.subject.proposalMedición de temperaturaspa
dc.titleDiseño de un sistema de medición de temperatura para líneas de transmisión y distribución de energía utilizando sensores ópticos basados en redes de difracción de Braggspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tésis de maestría 2020-04-29-repositorio.pdf
Tamaño:
3.05 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: