Diseño basado en el receptor, cribado virtual y estudios de docking molecular de nuevos inhibidores de acetilcolinesterasa humana con potencial aplicación terapéutica
dc.contributor.advisor | Orozco López, Fabian | spa |
dc.contributor.author | Silva Valero, Diego Alejandro | spa |
dc.contributor.researchgroup | Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach) | spa |
dc.date.accessioned | 2025-04-03T20:09:46Z | |
dc.date.available | 2025-04-03T20:09:46Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La enfermedad de Alzheimer es la causa principal de demencia y preocupa por su acelerado crecimiento, proyectándose a 113 millón de afectados para el año 2050. Este trastorno impacta significativamente las capacidades cognitivas, afectando la vida social y laboral de los individuos. Los tres tratamientos actuales, limitados a tres fármacos: donepezilo, galantamina y rivastigmina; enfrentan eventos adversos y múltiples administraciones diarias, desafiando la adherencia del paciente. Este proyecto se enfocó en desarrollar inhibidores de acetilcolinesterasa mediante un enfoque in silico. Primero se identificaron las características farmacofóricas de estos inhibidores para llevar a cabo una búsqueda de moléculas que cumplieran con éstas en la base de datos ZINC 12. Las moléculas obtenidas se sometieron a un cribado virtual, donde más del 70% mostró una energía de afinidad inferior a la del donepezilo. Luego se evaluaron las propiedades farmacocinéticas de las moléculas mejor puntuadas y se seleccionaron las dos más prometedoras. A partir de estas, se propusieron siete análogos optimizados que tuvieran mayor afinidad por el receptor con características toxicológicas y farmacocinéticas favorables (Texto tomado de la fuente). | spa |
dc.description.abstract | Alzheimer’s disease is the principal cause of dementia rising concern due to its escalating prevalence, with projections indicating 113 million affected individuals by 2050. This disease affects cognitive capacities that damage the social and work life of individuals. Nowadays there are three available pharmacological treatments (donepezil, galantamine, and rivastigmine) that carry various adverse effects and multiple doses a day which represent a challenge to the adherence to this treatment. The aim of this project is to develop acetylcholinesterase inhibitors from a in silico approach. First, the characteristics of the pharmacophore were identified to then perform a research of molecules that satisfied these characteristics in the database ZINC 12. The obtained molecules were put through a virtual screening in which more than 70% showed a smaller affinity energy than donepezil. Pharmacokinetic properties were then evaluated in the molecules with higher scores, from which the two most promising ones were selected. From these, seven optimized analogues were proposed so that they presented greater affinity for the receptor with favorable toxicological and pharmacokinetic characteristics. | eng |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico Farmacéutico | spa |
dc.format.extent | 76 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87838 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Farmacia | spa |
dc.relation.references | D. S. Knopman, H. Amieva, R. C. Petersen, G. Chételat, D. M. Holtzman, B. T. Hyman, R. A. Nixon, D. T. Jones, Alzheimer disease. Nat Rev Dis Primers 7, 33 (2021). | spa |
dc.relation.references | R. Poduri, “Historical Perspective of Drug Discovery and Development” in Drug Discovery and Development: From Targets and Molecules to Medicines, R. Poduri, Ed. (Springer Singapore, Singapore, 2021; https://doi.org/10.1007/978-981-15-5534-3_1), pp. 1–10. | spa |
dc.relation.references | A. Vargas, M. López, C. Lillo, M. J. Vargas, El papiro de Edwin Smith y su trascendencia médica y odontológica. Rev Med Chil 140, 1357–1362 (2012). | spa |
dc.relation.references | K. Danao, D. Nandurkar, V. Rokde, R. Shivhare, U. Mahajan, “Molecular Docking: Metamorphosis in Drug Discovery” in Molecular Docking, E. S. Istifli, Ed. (IntechOpen, Rijeka, 2022; https://doi.org/10.5772/intechopen.105972), p. Ch. 3. | spa |
dc.relation.references | H. Zheng, J. Hou, M. D. Zimmerman, A. Wlodawer, W. Minor, The future of crystallography in drug discovery. Expert Opin Drug Discov 9, 125–137 (2014). | spa |
dc.relation.references | I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, T. E. Ferrin, A geometric approach to macromolecule-ligand interactions. J Mol Biol 161, 269–288 (1982). | spa |
dc.relation.references | F. Stanzione, I. Giangreco, J. C. Cole, “Chapter Four - Use of molecular docking computational tools in drug discovery” in Progress in Medicinal Chemistry, D. R. Witty, B. Cox, Eds. (Elsevier, 2021; https://www.sciencedirect.com/science/article/pii/S0079646821000047)vol. 60, pp. 273–343. | spa |
dc.relation.references | V. Salmaso, S. Moro, Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front Pharmacol 9 (2018). | spa |
dc.relation.references | X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, “Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery” (2011). | spa |
dc.relation.references | R. L. DesJarlais, R. P. Sheridan, J. S. Dixon, I. D. Kuntz, R. Venkataraghavan, Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem 29, 2149–2153 (1986). | spa |
dc.relation.references | C. G. Wermuth, C. R. Ganellin, P. Lindberg, L. A. Mitscher, Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). 70, 1129–1143 (1998). | spa |
dc.relation.references | J. H. Van Drie, History of 3D pharmacophore searching: commercial, academic and open-source tools. Drug Discov Today Technol 7, e255–e262 (2010). | spa |
dc.relation.references | T. Seidel, D. A. Schuetz, A. Garon, T. Langer, “The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design” in Progress in the Chemistry of Organic Natural Products 110: Cheminformatics in Natural Product Research, A. D. Kinghorn, H. Falk, S. Gibbons, J. Kobayashi, Y. Asakawa, J.-K. Liu, Eds. (Springer International Publishing, Cham, 2019; https://doi.org/10.1007/978-3-030-14632-0_4), pp. 99–141. | spa |
dc.relation.references | H. D. Yang, D. H. Kim, S. B. Lee, L. D. Young, History of Alzheimer’s Disease. Dement Neurocogn Disord 15, 115–121 (2016). | spa |
dc.relation.references | Z. Arvanitakis, R. C. Shah, D. A. Bennett, Diagnosis and Management of Dementia: Review. JAMA 322, 1589–1599 (2019). | spa |
dc.relation.references | Z. Breijyeh, R. Karaman, Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 25 (2020). | spa |
dc.relation.references | D. Röhr, B. D. C. Boon, M. Schuler, K. Kremer, J. J. M. Hoozemans, F. H. Bouwman, S. F. El-Mashtoly, A. Nabers, F. Großerueschkamp, A. J. M. Rozemuller, K. Gerwert, Label-free vibrational imaging of different Aβ plaque types in Alzheimer’s disease reveals sequential events in plaque development. Acta Neuropathol Commun 8, 222 (2020). | spa |
dc.relation.references | A. Trang, P. B. Khandhar, “Physiology, Acetylcholinesterase” in StatPearls (StatPearls Publishing, Treasure Island (FL), 2023; https://www.ncbi.nlm.nih.gov/pubmed/30969557). | spa |
dc.relation.references | S. Brimijoin, Molecular forms of acetylcholinesterase in brain, nerve and muscle: Nature, localization and dynamics. Prog Neurobiol 21, 291–322 (1983). | spa |
dc.relation.references | K. V Dileep, K. Ihara, C. Mishima-Tsumagari, M. Kukimoto-Niino, M. Yonemochi, K. Hanada, M. Shirouzu, K. Y. J. Zhang, Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery. Int J Biol Macromol 210, 172–181 (2022). | spa |
dc.relation.references | D. De Boer, N. Nguyen, J. Mao, J. Moore, E. J. Sorin, A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 11 (2021). | spa |
dc.relation.references | O. Jbilo, C. F. Bartels, A. Chatonnet, J.-P. Toutant, O. Lockridge, Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon 32, 1445–1457 (1994). | spa |
dc.relation.references | G. Marucci, M. Buccioni, D. D. Ben, C. Lambertucci, R. Volpini, F. Amenta, Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190, 108352 (2021). | spa |
dc.relation.references | N. Gul, S. Ahmad, H. Ahmad, A. Aziz, M. Almehmadi, A. Amer Alsaiari, M. Allahyani, Zainab, S. Adnan Ali Shah, N. Ur Rahman, M. Ahmad, New acetylcholinesterase inhibitors isolated from Delphinium uncinatum. Arabian Journal of Chemistry 16, 104408 (2023). | spa |
dc.relation.references | A. C. Gade, M. Murahari, P. Pavadai, M. S. Kumar, Virtual Screening of a Marine Natural Product Database for In Silico Identification of a Potential Acetylcholinesterase Inhibitor. Life 13 (2023). | spa |
dc.relation.references | M. Atanasova, I. Dimitrov, S. Ivanov, B. Georgiev, S. Berkov, D. Zheleva-Dimitrova, I. Doytchinova, Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules 27 (2022). | spa |
dc.relation.references | K. El Khatabi, R. El-Mernissi, I. Aanouz, M. A. Ajana, T. Lakhlifi, A. Khan, D.-Q. Wei, M. Bouachrine, Identification of novel acetylcholinesterase inhibitors through 3D-QSAR, molecular docking, and molecular dynamics simulation targeting Alzheimer’s disease. J Mol Model 27, 302 (2021). | spa |
dc.relation.references | K. M. Targowska-Duda, M. Maj, P. Drączkowski, B. Budzyńska, A. Boguszewska-Czubara, T. M. Wróbel, T. Laitinen, P. Kaczmar, A. Poso, A. A. Kaczor, WaterMap-Guided Structure-Based Virtual Screening for Acetylcholinesterase Inhibitors. ChemMedChem 17, e202100721 (2022). | spa |
dc.relation.references | B. David, P. Schneider, P. Schäfer, J. Pietruszka, H. Gohlke, Discovery of new acetylcholinesterase inhibitors for Alzheimer’s disease: virtual screening and in vitro characterisation. J Enzyme Inhib Med Chem 36, 491–496 (2021). | spa |
dc.relation.references | M. I. Khan, P. Taehwan, Y. Cho, M. Scotti, R. Priscila Barros de Menezes, F. M. Husain, S. Y. Alomar, M. H. Baig, J.-J. Dong, Discovery of novel acetylcholinesterase inhibitors through integration of machine learning with genetic algorithm based in silico screening approaches. Front Neurosci 16 (2023). | spa |
dc.relation.references | E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612 (2004). | spa |
dc.relation.references | BIOVIA, Dassault Systèmes, Discovery Studio 2021. Dassault Systèmes 21.1.0.20298 [Preprint] (2020). | spa |
dc.relation.references | N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, Open Babel: An open chemical toolbox. J Cheminform 3, 33 (2011). | spa |
dc.relation.references | M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4, 17 (2012). | spa |
dc.relation.references | G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30, 2785–2791 (2009). | spa |
dc.relation.references | M. F. Sanner, Python: a programming language for software integration and development. Journal of molecular graphics & modelling 17, 57–61 (1999). | spa |
dc.relation.references | J. Eberhardt, D. Santos-Martins, A. F. Tillack, S. Forli, AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model 61, 3891–3898 (2021). | spa |
dc.relation.references | O. Trott, A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461 (2010). | spa |
dc.relation.references | W. J. Allen, B. C. Fochtman, T. E. Balius, R. C. Rizzo, Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets. J Comput Chem 38, 2641–2663 (2017). | spa |
dc.relation.references | W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T. Lang, D. A. Case, I. D. Kuntz, R. C. Rizzo, DOCK 6: Impact of new features and current docking performance. J Comput Chem 36, 1132–1156 (2015). | spa |
dc.relation.references | S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, A. J. Olson, Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11, 905–919 (2016). | spa |
dc.relation.references | D. R. Koes, C. J. Camacho, ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 40, W409–W414 (2012). | spa |
dc.relation.references | Cheeseright T., Mackey M., Rose S., Vinter A., FlareTM. Cresset® 7.2.0 [Preprint]. | spa |
dc.relation.references | T. Cheeseright, M. Mackey, S. Rose, A. Vinter, Molecular Field Extrema as Descriptors of Biological Activity: Definition and Validation. J Chem Inf Model 46, 665–676 (2006). | spa |
dc.relation.references | M. R. Bauer, M. D. Mackey, Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein–Ligand Complexes. J Med Chem 62, 3036–3050 (2019). | spa |
dc.relation.references | M. Kuhn, S. Firth-Clark, P. Tosco, A. S. J. S. Mey, M. Mackey, J. Michel, Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J Chem Inf Model 60, 3120–3130 (2020). | spa |
dc.relation.references | A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717 (2017). | spa |
dc.relation.references | BioSolveIT GmbH, SeeSAR. BioSolveIT GmbH 13.0.4 [Preprint] (2023). | spa |
dc.relation.references | D. E. V Pires, T. L. Blundell, D. B. Ascher, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 58, 4066–4072 (2015). | spa |
dc.relation.references | K. Stierand, M. Rarey, From Modeling to Medicinal Chemistry: Automatic Generation of Two-Dimensional Complex Diagrams. ChemMedChem 2, 853–860 (2007). | spa |
dc.relation.references | K. Stierand, M. Rarey, Drawing the PDB: Protein−Ligand Complexes in Two Dimensions. ACS Med Chem Lett 1, 540–545 (2010). | spa |
dc.relation.references | Advanced Chemistry Development, ChemSketch. Inc. (ACD/Labs) 2021.2.0 [Preprint] (2021). | spa |
dc.relation.references | J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J Med Chem 55, 10282–10286 (2012). | spa |
dc.relation.references | A. Oda, K. Tsuchida, T. Takakura, N. Yamaotsu, S. Hirono, Comparison of Consensus Scoring Strategies for Evaluating Computational Models of Protein−Ligand Complexes. J Chem Inf Model 46, 380–391 (2006). | spa |
dc.relation.references | C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Adv Drug Deliv Rev 46, 3–26 (2001). | spa |
dc.relation.references | A. Daina, V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 11, 1117–1121 (2016). | spa |
dc.relation.references | T. Holyoak, “Molecular Recognition: Lock-and-Key, Induced Fit, and Conformational Selection” in Encyclopedia of Biophysics, G. C. K. Roberts, Ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013; https://doi.org/10.1007/978-3-642-16712-6_468), pp. 1584–1588. | spa |
dc.relation.references | J. Baxter, Local Optima Avoidance in Depot Location. Journal of the Operational Research Society 32, 815–819 (1981). | spa |
dc.relation.references | O. V Stroganov, F. N. Novikov, V. S. Stroylov, V. Kulkov, G. G. Chilov, Lead Finder: An Approach To Improve Accuracy of Protein−Ligand Docking, Binding Energy Estimation, and Virtual Screening. J Chem Inf Model 48, 2371–2385 (2008). | spa |
dc.relation.references | G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19, 1639–1662 (1998). | spa |
dc.relation.references | I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, Y. Matsishita, Simple Method of Calculating Octanol/Water Partition Coefficient. Chem Pharm Bull (Tokyo) 40, 127–130 (1992). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.decs | Enfermedad de Alzheimer | spa |
dc.subject.decs | Alzheimer Disease | eng |
dc.subject.decs | Demencia | spa |
dc.subject.decs | Dementia | eng |
dc.subject.decs | Donepezilo | spa |
dc.subject.decs | Donepezil | eng |
dc.subject.decs | Galantamina | spa |
dc.subject.decs | Galantamine | eng |
dc.subject.decs | Rivastigmina | spa |
dc.subject.decs | Rivastigmine | eng |
dc.subject.decs | Química Farmacéutica | spa |
dc.subject.decs | Chemistry, Pharmaceutical | eng |
dc.subject.decs | Inhibidores de la Colinesterasa | spa |
dc.subject.decs | Cholinesterase Inhibitors | eng |
dc.subject.proposal | Enfermedad de Alzheimer | spa |
dc.subject.proposal | Acetilcolinesterasa | spa |
dc.subject.proposal | Docking molecular | spa |
dc.subject.proposal | Cribado virtual | spa |
dc.subject.proposal | Farmacóforo | spa |
dc.subject.proposal | Alzehimer’s disease | eng |
dc.subject.proposal | Acetylcholinesterase | eng |
dc.subject.proposal | Molecular docking | eng |
dc.subject.proposal | Virtual screening | eng |
dc.subject.proposal | Pharmacophore | eng |
dc.title | Diseño basado en el receptor, cribado virtual y estudios de docking molecular de nuevos inhibidores de acetilcolinesterasa humana con potencial aplicación terapéutica | spa |
dc.title.translated | Receptor-based drug design, virtual screening and molecular docking studies for new human acetylcholinesterase inhibitors with potential therapeutic application | eng |
dc.type | Trabajo de grado - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1001317348.2023.pdf
- Tamaño:
- 3.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Pregrado en Farmacia