Diseño basado en el receptor, cribado virtual y estudios de docking molecular de nuevos inhibidores de acetilcolinesterasa humana con potencial aplicación terapéutica

dc.contributor.advisorOrozco López, Fabianspa
dc.contributor.authorSilva Valero, Diego Alejandrospa
dc.contributor.researchgroupGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)spa
dc.date.accessioned2025-04-03T20:09:46Z
dc.date.available2025-04-03T20:09:46Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa enfermedad de Alzheimer es la causa principal de demencia y preocupa por su acelerado crecimiento, proyectándose a 113 millón de afectados para el año 2050. Este trastorno impacta significativamente las capacidades cognitivas, afectando la vida social y laboral de los individuos. Los tres tratamientos actuales, limitados a tres fármacos: donepezilo, galantamina y rivastigmina; enfrentan eventos adversos y múltiples administraciones diarias, desafiando la adherencia del paciente. Este proyecto se enfocó en desarrollar inhibidores de acetilcolinesterasa mediante un enfoque in silico. Primero se identificaron las características farmacofóricas de estos inhibidores para llevar a cabo una búsqueda de moléculas que cumplieran con éstas en la base de datos ZINC 12. Las moléculas obtenidas se sometieron a un cribado virtual, donde más del 70% mostró una energía de afinidad inferior a la del donepezilo. Luego se evaluaron las propiedades farmacocinéticas de las moléculas mejor puntuadas y se seleccionaron las dos más prometedoras. A partir de estas, se propusieron siete análogos optimizados que tuvieran mayor afinidad por el receptor con características toxicológicas y farmacocinéticas favorables (Texto tomado de la fuente).spa
dc.description.abstractAlzheimer’s disease is the principal cause of dementia rising concern due to its escalating prevalence, with projections indicating 113 million affected individuals by 2050. This disease affects cognitive capacities that damage the social and work life of individuals. Nowadays there are three available pharmacological treatments (donepezil, galantamine, and rivastigmine) that carry various adverse effects and multiple doses a day which represent a challenge to the adherence to this treatment. The aim of this project is to develop acetylcholinesterase inhibitors from a in silico approach. First, the characteristics of the pharmacophore were identified to then perform a research of molecules that satisfied these characteristics in the database ZINC 12. The obtained molecules were put through a virtual screening in which more than 70% showed a smaller affinity energy than donepezil. Pharmacokinetic properties were then evaluated in the molecules with higher scores, from which the two most promising ones were selected. From these, seven optimized analogues were proposed so that they presented greater affinity for the receptor with favorable toxicological and pharmacokinetic characteristics.eng
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Farmacéuticospa
dc.format.extent76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87838
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Farmaciaspa
dc.relation.referencesD. S. Knopman, H. Amieva, R. C. Petersen, G. Chételat, D. M. Holtzman, B. T. Hyman, R. A. Nixon, D. T. Jones, Alzheimer disease. Nat Rev Dis Primers 7, 33 (2021).spa
dc.relation.referencesR. Poduri, “Historical Perspective of Drug Discovery and Development” in Drug Discovery and Development: From Targets and Molecules to Medicines, R. Poduri, Ed. (Springer Singapore, Singapore, 2021; https://doi.org/10.1007/978-981-15-5534-3_1), pp. 1–10.spa
dc.relation.referencesA. Vargas, M. López, C. Lillo, M. J. Vargas, El papiro de Edwin Smith y su trascendencia médica y odontológica. Rev Med Chil 140, 1357–1362 (2012).spa
dc.relation.referencesK. Danao, D. Nandurkar, V. Rokde, R. Shivhare, U. Mahajan, “Molecular Docking: Metamorphosis in Drug Discovery” in Molecular Docking, E. S. Istifli, Ed. (IntechOpen, Rijeka, 2022; https://doi.org/10.5772/intechopen.105972), p. Ch. 3.spa
dc.relation.referencesH. Zheng, J. Hou, M. D. Zimmerman, A. Wlodawer, W. Minor, The future of crystallography in drug discovery. Expert Opin Drug Discov 9, 125–137 (2014).spa
dc.relation.referencesI. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, T. E. Ferrin, A geometric approach to macromolecule-ligand interactions. J Mol Biol 161, 269–288 (1982).spa
dc.relation.referencesF. Stanzione, I. Giangreco, J. C. Cole, “Chapter Four - Use of molecular docking computational tools in drug discovery” in Progress in Medicinal Chemistry, D. R. Witty, B. Cox, Eds. (Elsevier, 2021; https://www.sciencedirect.com/science/article/pii/S0079646821000047)vol. 60, pp. 273–343.spa
dc.relation.referencesV. Salmaso, S. Moro, Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front Pharmacol 9 (2018).spa
dc.relation.referencesX.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, “Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery” (2011).spa
dc.relation.referencesR. L. DesJarlais, R. P. Sheridan, J. S. Dixon, I. D. Kuntz, R. Venkataraghavan, Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem 29, 2149–2153 (1986).spa
dc.relation.referencesC. G. Wermuth, C. R. Ganellin, P. Lindberg, L. A. Mitscher, Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). 70, 1129–1143 (1998).spa
dc.relation.referencesJ. H. Van Drie, History of 3D pharmacophore searching: commercial, academic and open-source tools. Drug Discov Today Technol 7, e255–e262 (2010).spa
dc.relation.referencesT. Seidel, D. A. Schuetz, A. Garon, T. Langer, “The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design” in Progress in the Chemistry of Organic Natural Products 110: Cheminformatics in Natural Product Research, A. D. Kinghorn, H. Falk, S. Gibbons, J. Kobayashi, Y. Asakawa, J.-K. Liu, Eds. (Springer International Publishing, Cham, 2019; https://doi.org/10.1007/978-3-030-14632-0_4), pp. 99–141.spa
dc.relation.referencesH. D. Yang, D. H. Kim, S. B. Lee, L. D. Young, History of Alzheimer’s Disease. Dement Neurocogn Disord 15, 115–121 (2016).spa
dc.relation.referencesZ. Arvanitakis, R. C. Shah, D. A. Bennett, Diagnosis and Management of Dementia: Review. JAMA 322, 1589–1599 (2019).spa
dc.relation.referencesZ. Breijyeh, R. Karaman, Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 25 (2020).spa
dc.relation.referencesD. Röhr, B. D. C. Boon, M. Schuler, K. Kremer, J. J. M. Hoozemans, F. H. Bouwman, S. F. El-Mashtoly, A. Nabers, F. Großerueschkamp, A. J. M. Rozemuller, K. Gerwert, Label-free vibrational imaging of different Aβ plaque types in Alzheimer’s disease reveals sequential events in plaque development. Acta Neuropathol Commun 8, 222 (2020).spa
dc.relation.referencesA. Trang, P. B. Khandhar, “Physiology, Acetylcholinesterase” in StatPearls (StatPearls Publishing, Treasure Island (FL), 2023; https://www.ncbi.nlm.nih.gov/pubmed/30969557).spa
dc.relation.referencesS. Brimijoin, Molecular forms of acetylcholinesterase in brain, nerve and muscle: Nature, localization and dynamics. Prog Neurobiol 21, 291–322 (1983).spa
dc.relation.referencesK. V Dileep, K. Ihara, C. Mishima-Tsumagari, M. Kukimoto-Niino, M. Yonemochi, K. Hanada, M. Shirouzu, K. Y. J. Zhang, Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery. Int J Biol Macromol 210, 172–181 (2022).spa
dc.relation.referencesD. De Boer, N. Nguyen, J. Mao, J. Moore, E. J. Sorin, A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 11 (2021).spa
dc.relation.referencesO. Jbilo, C. F. Bartels, A. Chatonnet, J.-P. Toutant, O. Lockridge, Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon 32, 1445–1457 (1994).spa
dc.relation.referencesG. Marucci, M. Buccioni, D. D. Ben, C. Lambertucci, R. Volpini, F. Amenta, Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190, 108352 (2021).spa
dc.relation.referencesN. Gul, S. Ahmad, H. Ahmad, A. Aziz, M. Almehmadi, A. Amer Alsaiari, M. Allahyani, Zainab, S. Adnan Ali Shah, N. Ur Rahman, M. Ahmad, New acetylcholinesterase inhibitors isolated from Delphinium uncinatum. Arabian Journal of Chemistry 16, 104408 (2023).spa
dc.relation.referencesA. C. Gade, M. Murahari, P. Pavadai, M. S. Kumar, Virtual Screening of a Marine Natural Product Database for In Silico Identification of a Potential Acetylcholinesterase Inhibitor. Life 13 (2023).spa
dc.relation.referencesM. Atanasova, I. Dimitrov, S. Ivanov, B. Georgiev, S. Berkov, D. Zheleva-Dimitrova, I. Doytchinova, Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules 27 (2022).spa
dc.relation.referencesK. El Khatabi, R. El-Mernissi, I. Aanouz, M. A. Ajana, T. Lakhlifi, A. Khan, D.-Q. Wei, M. Bouachrine, Identification of novel acetylcholinesterase inhibitors through 3D-QSAR, molecular docking, and molecular dynamics simulation targeting Alzheimer’s disease. J Mol Model 27, 302 (2021).spa
dc.relation.referencesK. M. Targowska-Duda, M. Maj, P. Drączkowski, B. Budzyńska, A. Boguszewska-Czubara, T. M. Wróbel, T. Laitinen, P. Kaczmar, A. Poso, A. A. Kaczor, WaterMap-Guided Structure-Based Virtual Screening for Acetylcholinesterase Inhibitors. ChemMedChem 17, e202100721 (2022).spa
dc.relation.referencesB. David, P. Schneider, P. Schäfer, J. Pietruszka, H. Gohlke, Discovery of new acetylcholinesterase inhibitors for Alzheimer’s disease: virtual screening and in vitro characterisation. J Enzyme Inhib Med Chem 36, 491–496 (2021).spa
dc.relation.referencesM. I. Khan, P. Taehwan, Y. Cho, M. Scotti, R. Priscila Barros de Menezes, F. M. Husain, S. Y. Alomar, M. H. Baig, J.-J. Dong, Discovery of novel acetylcholinesterase inhibitors through integration of machine learning with genetic algorithm based in silico screening approaches. Front Neurosci 16 (2023).spa
dc.relation.referencesE. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612 (2004).spa
dc.relation.referencesBIOVIA, Dassault Systèmes, Discovery Studio 2021. Dassault Systèmes 21.1.0.20298 [Preprint] (2020).spa
dc.relation.referencesN. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, Open Babel: An open chemical toolbox. J Cheminform 3, 33 (2011).spa
dc.relation.referencesM. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4, 17 (2012).spa
dc.relation.referencesG. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30, 2785–2791 (2009).spa
dc.relation.referencesM. F. Sanner, Python: a programming language for software integration and development. Journal of molecular graphics & modelling 17, 57–61 (1999).spa
dc.relation.referencesJ. Eberhardt, D. Santos-Martins, A. F. Tillack, S. Forli, AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model 61, 3891–3898 (2021).spa
dc.relation.referencesO. Trott, A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461 (2010).spa
dc.relation.referencesW. J. Allen, B. C. Fochtman, T. E. Balius, R. C. Rizzo, Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets. J Comput Chem 38, 2641–2663 (2017).spa
dc.relation.referencesW. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T. Lang, D. A. Case, I. D. Kuntz, R. C. Rizzo, DOCK 6: Impact of new features and current docking performance. J Comput Chem 36, 1132–1156 (2015).spa
dc.relation.referencesS. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, A. J. Olson, Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11, 905–919 (2016).spa
dc.relation.referencesD. R. Koes, C. J. Camacho, ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 40, W409–W414 (2012).spa
dc.relation.referencesCheeseright T., Mackey M., Rose S., Vinter A., FlareTM. Cresset® 7.2.0 [Preprint].spa
dc.relation.referencesT. Cheeseright, M. Mackey, S. Rose, A. Vinter, Molecular Field Extrema as Descriptors of Biological Activity: Definition and Validation. J Chem Inf Model 46, 665–676 (2006).spa
dc.relation.referencesM. R. Bauer, M. D. Mackey, Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein–Ligand Complexes. J Med Chem 62, 3036–3050 (2019).spa
dc.relation.referencesM. Kuhn, S. Firth-Clark, P. Tosco, A. S. J. S. Mey, M. Mackey, J. Michel, Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J Chem Inf Model 60, 3120–3130 (2020).spa
dc.relation.referencesA. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717 (2017).spa
dc.relation.referencesBioSolveIT GmbH, SeeSAR. BioSolveIT GmbH 13.0.4 [Preprint] (2023).spa
dc.relation.referencesD. E. V Pires, T. L. Blundell, D. B. Ascher, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 58, 4066–4072 (2015).spa
dc.relation.referencesK. Stierand, M. Rarey, From Modeling to Medicinal Chemistry: Automatic Generation of Two-Dimensional Complex Diagrams. ChemMedChem 2, 853–860 (2007).spa
dc.relation.referencesK. Stierand, M. Rarey, Drawing the PDB: Protein−Ligand Complexes in Two Dimensions. ACS Med Chem Lett 1, 540–545 (2010).spa
dc.relation.referencesAdvanced Chemistry Development, ChemSketch. Inc. (ACD/Labs) 2021.2.0 [Preprint] (2021).spa
dc.relation.referencesJ. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J Med Chem 55, 10282–10286 (2012).spa
dc.relation.referencesA. Oda, K. Tsuchida, T. Takakura, N. Yamaotsu, S. Hirono, Comparison of Consensus Scoring Strategies for Evaluating Computational Models of Protein−Ligand Complexes. J Chem Inf Model 46, 380–391 (2006).spa
dc.relation.referencesC. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Adv Drug Deliv Rev 46, 3–26 (2001).spa
dc.relation.referencesA. Daina, V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 11, 1117–1121 (2016).spa
dc.relation.referencesT. Holyoak, “Molecular Recognition: Lock-and-Key, Induced Fit, and Conformational Selection” in Encyclopedia of Biophysics, G. C. K. Roberts, Ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013; https://doi.org/10.1007/978-3-642-16712-6_468), pp. 1584–1588.spa
dc.relation.referencesJ. Baxter, Local Optima Avoidance in Depot Location. Journal of the Operational Research Society 32, 815–819 (1981).spa
dc.relation.referencesO. V Stroganov, F. N. Novikov, V. S. Stroylov, V. Kulkov, G. G. Chilov, Lead Finder: An Approach To Improve Accuracy of Protein−Ligand Docking, Binding Energy Estimation, and Virtual Screening. J Chem Inf Model 48, 2371–2385 (2008).spa
dc.relation.referencesG. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19, 1639–1662 (1998).spa
dc.relation.referencesI. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, Y. Matsishita, Simple Method of Calculating Octanol/Water Partition Coefficient. Chem Pharm Bull (Tokyo) 40, 127–130 (1992).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.decsEnfermedad de Alzheimerspa
dc.subject.decsAlzheimer Diseaseeng
dc.subject.decsDemenciaspa
dc.subject.decsDementiaeng
dc.subject.decsDonepezilospa
dc.subject.decsDonepezileng
dc.subject.decsGalantaminaspa
dc.subject.decsGalantamineeng
dc.subject.decsRivastigminaspa
dc.subject.decsRivastigmineeng
dc.subject.decsQuímica Farmacéuticaspa
dc.subject.decsChemistry, Pharmaceuticaleng
dc.subject.decsInhibidores de la Colinesterasaspa
dc.subject.decsCholinesterase Inhibitorseng
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalAcetilcolinesterasaspa
dc.subject.proposalDocking molecularspa
dc.subject.proposalCribado virtualspa
dc.subject.proposalFarmacóforospa
dc.subject.proposalAlzehimer’s diseaseeng
dc.subject.proposalAcetylcholinesteraseeng
dc.subject.proposalMolecular dockingeng
dc.subject.proposalVirtual screeningeng
dc.subject.proposalPharmacophoreeng
dc.titleDiseño basado en el receptor, cribado virtual y estudios de docking molecular de nuevos inhibidores de acetilcolinesterasa humana con potencial aplicación terapéuticaspa
dc.title.translatedReceptor-based drug design, virtual screening and molecular docking studies for new human acetylcholinesterase inhibitors with potential therapeutic applicationeng
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1001317348.2023.pdf
Tamaño:
3.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Pregrado en Farmacia

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Mencion_honorifica.pdf
Tamaño:
421.21 KB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones