Diseño y evaluación del principio activo de un prototipo de formulación de Bacillus velezensis para el control de Botrytis cinerea en rosas
| dc.contributor.advisor | Uribe Velez, Daniel | |
| dc.contributor.advisor | Serrano Bermúdez, Luis Miguel | |
| dc.contributor.author | Boyacá Olaya, Laura Marcela | |
| dc.contributor.researchgroup | Microbiologia Agricola | |
| dc.date.accessioned | 2025-10-01T20:46:00Z | |
| dc.date.available | 2025-10-01T20:46:00Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | El sistema productivo de rosas de corte para exportación se ve constantemente afectado por factores bióticos donde destacan agentes fitopatógenos como Botrytis cinerea, el cual cobra importancia debido a su persistencia y generación de signos y síntomas durante la postcosecha, representando un gran reto su manejo y control. Su control acarrea el uso intensivo de fungicidas de síntesis química, llevando a problemáticas ambientales, generación de resistencia y efectos sobre la salud de los usuarios. En este contexto, en los últimos años el Grupo de Microbiología Agrícola del IBUN, ha venido desarrollando diferentes alternativas de control biológico basados en diferentes grupos microbianos. El objetivo de este trabajo fue seleccionar una cepa del género Bacillus spp con potencial biocontrolador frente a B. cinerea y establecer sus condiciones de cultivo para ser usado como principio activo para prototipos de formulación. Para esto se seleccionó el aislamiento con mayor potencial biocontrolador, posteriormente se seleccionaron las condiciones nutricionales y fisicoquímicas del cultivo que permitieran alcanzar recuentos superiores de 1010 UFC/mL de esporas y una buena actividad de los metabolitos secundarios, partiendo de un medio nutricionalmente definido. La cepa IBUN 2755 correspondiente a Bacillus velezensis fue la que presentó mejor potencial biocontrolador frente a B. cinerea. La selección de las condiciones de cultivo se determinó con un diseño experimental de superficie de respuesta en el que se consideraron cuatro factores. Se logró recuentos de esporas superiores a 1,75x1010 UFC/mL en matraz agitado, cuando se utilizó un volumen efectivo del 19%, pH de 7,9 y concentraciones óptimas de dos componentes de fuentes complejas de nitrógeno. Los resultados indican, por un lado, el potencial de la cepa IBUN 2755 como principio activo de un prototipo de formulación frente a B. cinerea, esto debido a su capacidad de producir densidades celulares altas y metabolitos secundarios termoestables con adecuada actividad biocontroladora. Por el otro lado, la disminución lograda en los tiempos de producción y en los requerimientos nutricionales, permite sugerir que dicho formulado de biocontrolador podría llegar a ser económicamente rentable gracias a los avances logrados en la reducción en los costos de producción. | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias - Microbiología | |
| dc.description.researcharea | Microbiología agricola | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89000 | |
| dc.language.iso | spa | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
| dc.relation.references | Abarca, C., Martínez JiménezJiménez, A., Quintero RamírezBermúdez, RodolfoA., & Caro Bermúdez, M. A. (1992). Optimización del proceso de fermentación para producir Bacillus thuringiensis Var. Aisawai. Universidad : Ciencia y Tecnología, 2(3), Article 3. https://biblat.unam.mx/es/revista/universidad-ciencia-y-tecnologia/articulo/optimizacion-del-proceso-de-fermentacion-para-producir-bacillus-thuringiensis-var-aisawai | |
| dc.relation.references | Abbey, J. A., Percival, D., Abbey, Lord, Asiedu, S. K., Prithiviraj, B., & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges. Biocontrol Science and Technology, 29(3), 207-228. https://doi.org/10.1080/09583157.2018.1548574 | |
| dc.relation.references | Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A.-H. (2008). Optimization of Surfactin Production by Bacillus subtilis Isolate BS5. Applied Biochemistry and Biotechnology, 150(3), 305-325. https://doi.org/10.1007/s12010-008-8155-x | |
| dc.relation.references | About FRAC. (s. f.). FRAC. Recuperado 10 de abril de 2025, de https://www.frac.info/about-frac/ | |
| dc.relation.references | AbuQamar, S., Moustafa, K., & Tran, L. S. (2017). Mechanisms and strategies of plant defense against Botrytis cinerea. Critical Reviews in Biotechnology, 37(2), 262-274. https://doi.org/10.1080/07388551.2016.1271767 | |
| dc.relation.references | Ahimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27(10), 749-754. https://doi.org/10.1016/S0141-0229(00)00295-7 | |
| dc.relation.references | Arias Zabala, M., Vanegas C., I. A., & Vanegas P., F. (2001). Determinación de coeficientes de transferencia de calor y masa en un agitador rotatorio para utilizarlo en procesos fermentativos. | |
| dc.relation.references | Balderas-Ruíz, K. A., Bustos, P., Santamaria, R. I., González, V., Cristiano-Fajardo, S. A., Barrera-Ortíz, S., Mezo-Villalobos, M., Aranda-Ocampo, S., Guevara-García, Á. A., Galindo, E., & Serrano-Carreón, L. (2020). Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express, 10(1), 163. https://doi.org/10.1186/s13568-020-01101-8 | |
| dc.relation.references | Biermann, R., & Beutel, S. (2023). Endospore production of Bacillus spp. For industrial use. Engineering in Life Sciences, 23(11), e2300013. https://doi.org/10.1002/elsc.202300013 | |
| dc.relation.references | Biermann, R., Rösner, L., Beyer, L.-M., Niemeyer, L., & Beutel, S. (2023). Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium. Engineering in Life Sciences, 23(10), e2300210. https://doi.org/10.1002/elsc.202300210 | |
| dc.relation.references | Boletin Tecnico Exportaciones-dic2024. (s. f.). Recuperado 27 de febrero de 2025, de https://www.dane.gov.co/files/operaciones/EXPORTACIONES/bol-EXPORTACIONES-dic2024.pdf | |
| dc.relation.references | Bolivar-Anillo, H. J., González-Rodríguez, V. E., Cantoral, J. M., García-Sánchez, D., Collado, I. G., & Garrido, C. (2021). Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. Biology, 10(6), Article 6. https://doi.org/10.3390/biology10060492 | |
| dc.relation.references | Botrybel. (s. f.). Probelte España. Recuperado 27 de diciembre de 2024, de https://probelte.com/es/producto/botrybel/ | |
| dc.relation.references | Buitrago, C. (2021, julio 12). Manejo de Botrytis cinerea en rosas. Serie Innovaciones en floricultura Vol. 5. Centro Documental. https://academia.ceniflores.org/CentroDocumental/manejo-de-botrytis-cinerea-en-rosas-serie-innovaciones-en-floricultura-vol-5/ | |
| dc.relation.references | By FRAC Mode of Action Group. (s. f.). FRAC. Recuperado 10 de abril de 2025, de https://www.frac.info/fungicide-resistance-management/by-frac-mode-of-action-group/ | |
| dc.relation.references | Cadena de Flores, Follaje y Ornamentales. (s. f.). Recuperado 27 de diciembre de 2024, de https://sioc.minagricultura.gov.co/Flores/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf | |
| dc.relation.references | Calvo, H., Roudet, J., Gracia, A. P., Venturini, M. E., & Fermaud, M. (2021). Comparison of efficacy and modes of action of two high-potential biocontrol Bacillus strains and commercial biocontrol products against Botrytis cinerea in table grapes. OENO One, 55(3), Article 3. https://doi.org/10.20870/oeno-one.2021.55.3.4688 | |
| dc.relation.references | Cao, H., Chen, Z., Li, X., Song, G., Wu, Y., Jin, J., Cui, F., Yuan, J., Qi, H., Wang, J., & Chen, J. (2024). Optimization of fermentation conditions for Bacillus velezensis TCS001 and evaluation of its growth promotion and disease prevention effects on strawberries. Biological Control, 198, 105632. https://doi.org/10.1016/j.biocontrol.2024.105632 | |
| dc.relation.references | Carisse, O. (2016). Epidemiology and Aerobiology of Botrytis spp. En S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 127-148). Springer International Publishing. https://doi.org/10.1007/978-3-319-23371-0_7 | |
| dc.relation.references | Cawoy, H., Bettiol, W., Fickers, P., Ongena, M., Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-Based Biological Control of Plant Diseases. En Pesticides in the Modern World—Pesticides Use and Management. IntechOpen. https://doi.org/10.5772/17184 | |
| dc.relation.references | Chen, Z.-M., Li, Q., Liu, H.-M., Yu, N., Xie, T.-J., Yang, M.-Y., Shen, P., & Chen, X.-D. (2010). Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Applied Microbiology and Biotechnology, 85(5), 1353-1360. https://doi.org/10.1007/s00253-009-2162-x | |
| dc.relation.references | Chu, E.-H., Shin, E.-J., Park, H.-J., & Jeong, R.-D. (2015). Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses. Radiation Physics and Chemistry, 115, 22-29. https://doi.org/10.1016/j.radphyschem.2015.05.042 | |
| dc.relation.references | Debener, T., & Byrne, D. H. (2014). Disease resistance breeding in rose: Current status and potential of biotechnological tools. Plant Science: An International Journal of Experimental Plant Biology, 228, 107-117. https://doi.org/10.1016/j.plantsci.2014.04.005 | |
| dc.relation.references | Díaz-García, A., García-Riaño, J., & Zapata-Narvaez, J. (2015). Improvement of Sporulation Conditions of a New Strain of Bacillus amyloliquefaciens in Liquid Fermentation. Advances in Bioscience and Biotechnology, 6(4), Article 4. https://doi.org/10.4236/abb.2015.64029 | |
| dc.relation.references | Digital, A. (s. f.). CEASE. BioWorks. Recuperado 27 de diciembre de 2024, de https://bioworksinc.com/products/cease/ | |
| dc.relation.references | Dik, A. J., & Wubben, J. P. (2007). Epidemiology of Botrytis cinerea Diseases in Greenhouses. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 319-333). Springer Netherlands. https://doi.org/10.1007/978-1-4020-2626-3_17 | |
| dc.relation.references | Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology, 1(2), 117-126. https://doi.org/10.1038/nrmicro750 | |
| dc.relation.references | Farace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P., Clément, C., Barka, E. A., Jacquard, C., & Dorey, S. (2015). Cyclic lipopeptides from acillus subtilis activate distinct patterns of defence responses in grapevine. Molecular Plant Pathology, 16(2), 177-187. https://doi.org/10.1111/mpp.12170 | |
| dc.relation.references | Fillinger, S., & Walker, A.-S. (2016). Chemical Control and Resistance Management of Botrytis Diseases. En S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 189-216). Springer International Publishing. https://doi.org/10.1007/978-3-319-23371-0_10 | |
| dc.relation.references | FRAC Classification of Fungicides. (s. f.). Recuperado 9 de enero de 2025, de https://www.frac.info/docs/default-source/publications/frac-mode-of-action- poster/frac-moa-poster-2024.pdf | |
| dc.relation.references | Garcia, R. (2008). Selección de levaduras habitantes de la filosfera de mora con potencial biocontrolador de Botrytis cinerea y caracterización ecofisiológica de las mismas [Maestria]. Universidad Nacional de Colombia. | |
| dc.relation.references | Giraldo, D., Saldarriaga, C., García, H., López, M., & González, A. (2024). Genotypic and phenotypic characterization of resistance to fenhexamid, carboxin, and, prochloraz, in Botrytis cinerea isolates collected from cut roses in Colombia. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1378597 | |
| dc.relation.references | Gómez Rodríguez, T. (2013). Caracterización de aislamientos de Botrytis cinerea de rosa en la Sabana de Bogotá [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/50427 | |
| dc.relation.references | Görke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology, 6(8), 613-624. https://doi.org/10.1038/nrmicro1932 | |
| dc.relation.references | Ha, S. T. T., Kim, Y.-T., Yeam, I., Choi, H. W., & In, B.-C. (2022). Molecular dissection of rose and Botrytis cinerea pathosystems affected by ethylene. Postharvest Biology and Technology, 194, 112104. https://doi.org/10.1016/j.postharvbio.2022.112104 | |
| dc.relation.references | Hao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A., Hou, T., Xiang, Z., Zhuang, J., Wu, S., Xing, B., Zhang, Z., & Rui, Y. (2017). Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01332 | |
| dc.relation.references | Herrera-Romero, I., Ruales, C., Caviedes, M., & Leon-Reyes, A. (2017). Postharvest evaluation of natural coatings and antifungal agents to control Botrytis cinerea in Rosa sp. Phytoparasitica, 45(1), 9-20. https://doi.org/10.1007/s12600-017-0565-2 | |
| dc.relation.references | Hu, J., Wang, Z., & Xu, W. (2024). Production-optimized fermentation of antifungal compounds by Bacillus velezensis LZN01 and transcriptome analysis. Microbial Biotechnology, 17(10), e70026. https://doi.org/10.1111/1751-7915.70026 | |
| dc.relation.references | Jiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J., & Guo, J.-H. (2018). Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control, 126, 147-157. https://doi.org/10.1016/j.biocontrol.2018.07.017 | |
| dc.relation.references | Kamoun, F., Weekers, F., Ayed, R. B., Mechri, S., Jabeur, F., Thonart, P., & Jaouadi, B. (2022). Multiple linear regression models to simulate spore yields of Bacillus amyloliquefaciens BS13 through optimization of medium composition. Biotechnology and Applied Biochemistry, 69(6), 2686-2697. https://doi.org/10.1002/bab.2315 | |
| dc.relation.references | Khan, A. R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z. F., Gondal, A. S., Yousuf, Z., Iqbal, R., & Daraz, U. (2022). Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. Biology, 11(12), Article 12. https://doi.org/10.3390/biology11121763 | |
| dc.relation.references | Khardziani, T., Sokhadze, K., Kachlishvili, E., Chistyakov, V., & Elisashvili, V. (2017). Optimization of Enhanced Probiotic Spores Production in Submerged Cultivation of Bacillus Amyloliquefaciens B-1895. Journal of Microbiology, Biotechnology and Food Sciences. https://www.academia.edu/63938383/Optimization_of_Enhanced_Probiotic_Spore s_Production_in_Submerged_Cultivation_of_Bacillus_Amyloliquefaciens_B_1895 | |
| dc.relation.references | Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, , H. G., & Moon, B. J. (2007). Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Journal of Microbiology and Biotechnology. https://www.researchgate.net/publication/5797054_Biological_control_of_strawber ry_gray_mold_caused_by_Botrytis_cinerea_using_Bacillus_licheniformis_N1_for mulation | |
| dc.relation.references | Kjeldgaard, B., Neves, A. R., Fonseca, C., Kovács, Á. T., & Domínguez-Cuevas, P. (2022). Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties.Microbiology Spectrum, 10(2), e01433-21. https://doi.org/10.1128/spectrum.01433-21 | |
| dc.relation.references | Kolodziej, B. J., & Slepecky, R. A. (1964). TRACE METAL REQUIREMENTS FOR SPORULATION OF BACILLUS MEGATERIUM1. Journal of Bacteriology, 88(4), 821-830. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314820/ | |
| dc.relation.references | Lee, Y.-B., & Kim, W.-S. (2020). ClO2 Dipping Treatment Inhibits Gray Mold on Cut Rose Flowers During Storage. The Horticulture Journal, 89(4), 496-501. https://doi.org/10.2503/hortj.UTD-138 | |
| dc.relation.references | Legein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01619 | |
| dc.relation.references | Li, T., Tang, J., Karuppiah, V., Li, Y., Xu, N., & Chen, J. (2020a). Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biological Control, 140, 104122. https://doi.org/10.1016/j.biocontrol.2019.104122 | |
| dc.relation.references | Li, T., Tang, J., Karuppiah, V., Li, Y., Xu, N., & Chen, J. (2020b). El cocultivo de Trichoderma atroviride SG3403 y Bacillus subtilis 22 mejora la producción de metabolitos secundarios antimicóticos. Biological Control, 140, 104122. https://doi.org/10.1016/j.biocontrol.2019.104122 | |
| dc.relation.references | Li, Y., Li, S., Du, R., Wang, J., Li, H., Xie, D., & Yan, J. (2021). Isoleucine Enhances Plant Resistance Against Botrytis cinerea via Jasmonate Signaling Pathway. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.628328 | |
| dc.relation.references | Liu, J.-F., Yang, J., Yang, S.-Z., Ye, R.-Q., & Mu, B.-Z. (2012). Effects of Different Amino Acids in Culture Media on Surfactin Variants Produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 166(8), 2091-2100. https://doi.org/10.1007/s12010-012-9636-5 | |
| dc.relation.references | Loyola, C. E., Dole, J. M., & Dunning, R. (2019). South and Central America Cut Flower Production and Postharvest Survey. https://doi.org/10.21273/HORTTECH04484- 19 | |
| dc.relation.references | Maier, U., & Büchs, J. (2001). Characterisation of the gas–liquid mass transfer in shaking bioreactors. Biochemical Engineering Journal, 7(2), 99-106. https://doi.org/10.1016/S1369-703X(00)00107-8 | |
| dc.relation.references | Meena, K. R., Tandon, T., Sharma, A., & Kanwar, S. S. (2018). Lipopeptide antibiotic production by Bacillus velezensis KLP2016. Journal of Applied Pharmaceutical Science, 8,(3), 091-098. https://doi.org/10.7324/JAPS.2018.8313 | |
| dc.relation.references | Mekapogu, M., Jung, J.-A., Kwon, O.-K., Ahn, M.-S., Song, H.-Y., & Jang, S. (2021). Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. International Journal of Molecular Sciences, 22(15), 7956. https://doi.org/10.3390/ijms22157956 | |
| dc.relation.references | Mezghanni, H., Khedher, S. B., Tounsi, S., & Zouari, N. (2012). MEDIUM OPTIMIZATION OF ANTIFUNGAL ACTIVITY PRODUCTION BY Bacillus amyloliquefaciens USING STATISTICAL EXPERIMENTAL DESIGN. Preparative Biochemistry and Biotechnology. https://www.tandfonline.com/doi/abs/10.1080/10826068.2011.614989 | |
| dc.relation.references | Miranda Martínez. (2022). Caracterización de los metabolitos secundarios producidos por la cepa IBUN-2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz [Maestria]. Universidad Nacional de Colombia. | |
| dc.relation.references | Mizumoto, S., & Shoda, M. (2007). Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Applied Microbiology and Biotechnology, 76(1), 101-108. https://doi.org/10.1007/s00253-007-0994-9 | |
| dc.relation.references | Mnif, I., Ellouze-Chaabouni, S., & Ghribi, D. (2013). Optimization of Inocula Conditions for Enhanced Biosurfactant Production by Bacillus subtilis SPB1, in Submerged Culture, Using Box–Behnken Design. Probiotics and Antimicrobial Proteins, 5(2), 92-98. https://doi.org/10.1007/s12602-012-9113-z | |
| dc.relation.references | Moghannem, S. A. M., Farag, M. M. S., Shehab, A. M., & Azab, M. S. (2018). Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 49(3), 452-462. https://doi.org/10.1016/j.bjm.2017.05.012 | |
| dc.relation.references | Moita, C., Feio, S. S., Nunes, L., João Marcelo Curto, M., & Carlos Roseiro, J. (2005). Optimización de factores físicos en la producción de metabolitos activos por Bacillus subtilis 355 frente a hongos contaminantes de la superficie de la madera. International Biodeterioration & Biodegradation, 55(4), 261-269. https://doi.org/10.1016/j.ibiod.2005.02.003 | |
| dc.relation.references | Molina-Acosta, M. D., Calvo, S. J., Palacio, M. M., & Giraldo, C. E. (2021). Incidencia de plagas en material poscosecha de nueve cultivares de hortensia tipo exportación en Antioquia (Colombia). Revista Colombiana de Entomología, 47(1), e7530. https://doi.org/10.25100/socolen.v47i1.7530 | |
| dc.relation.references | Muñoz, M., Faust, J. E., Bridges, W. C., & Schnabel, G. (2020). Relationship of Pink Pigmentation in Rose Petals and Botrytis cinerea. Plant H | |
| dc.relation.references | Muñoz, M., Faust, J. E., & Schnabel, G. (2019). Characterization of Botrytis cinerea From Commercial Cut Flower Roses. Plant Disease, 103(7), 1577-1583. https://doi.org/10.1094/PDIS-09-18-1623-RE | |
| dc.relation.references | Muñoz, M., Logan E. Behnke, William C. Bridges, Guido Schnabel, & James E. Faust. (2025). Postharvest calcium chloride dips. An effective strategy to reduce Botrytis blight severity and increase petal strength in cut roses. Postharvest Biology and Technology, 219, 113292. https://doi.org/10.1016/j.postharvbio.2024.113292 | |
| dc.relation.references | Naeemi, M. H., Kalateh Jari, S., Zarinnia, V., & Fatehi, F. (2022). Changes in physio- biochemical status of cut of rose (Rosa Hybrida L. cv. Samurai) flowers under methyl Jasmonate, brassinosteroid, and fungal elicitor to control gray mold. Scientia Horticulturae, 306, 111402. https://doi.org/10.1016/j.scienta.2022.111402 | |
| dc.relation.references | Ngalimat, M. S., Yahaya, R. S. R., Baharudin, M. M. A., Yaminudin, S. M., Karim, M., Ahmad, S. A., & Sabri, S. (2021). A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms, 9(3), Article 3. https://doi.org/10.3390/microorganisms9030614 | |
| dc.relation.references | Nicot, P. C., Stewart, A., Bardin, M., & Elad, Y. (2016). Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases. En S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 165-187). Springer International Publishing. https://doi.org/10.1007/978-3-319-23371- 0_9 | |
| dc.relation.references | Pedraza-Herrera, L. A. (2015). Evaluación de Bacterias Aerobias Formadoras de Endospora (BAFEs) de suelos rizosféricos, como agentes de control biológico de [Maestria]. Universidad Nacional de Colombia. | |
| dc.relation.references | Piraquive Riveros, K. P. (2019). Diseño y evaluación de un prototipo de formulación a partir de Bacilos Aerobios Formadores de Endosporas (BAFEs) para el control de Botrytis cinerea en rosas. https://repositorio.unal.edu.co/handle/unal/76899 | |
| dc.relation.references | Posada-Uribe, L. F., Romero-Tabarez, M., & Villegas-Escobar, V. (2015). Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess and Biosystems Engineering, 38(10), 1879-1888. https://doi.org/10.1007/s00449-015-1428-1 | |
| dc.relation.references | Poveda, J., Barquero, M., & González-Andrés, F. (2020). Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation. Agronomy, 10(11), Article 11. https://doi.org/10.3390/agronomy10111822 | |
| dc.relation.references | Prabakaran, G., & Balaraman, K. (2006). Development of a cost-effective medium for the large scale production of Bacillus thuringiensis var israelensis. Biological Control, 36(3), 288-292. https://doi.org/10.1016/j.biocontrol.2005.09.018 | |
| dc.relation.references | Pretorius, D., van Rooyen, J., & Clarke, K. G. (2015). Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnology, 32(2), 243-252. https://doi.org/10.1016/j.nbt.2014.12.003 | |
| dc.relation.references | Ramkrishna, S., & Swaminathan, T. (2004). Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal, 21(2), 141-148. https://doi.org/10.1016/j.bej.2004.06.006 | |
| dc.relation.references | REGISTROS DE PRODUCTOS DE BIOINSUMOS DE USO AGRÍCOLA. (s. f.). Recuperado 13 de abril de 2025, de https://www.ica.gov.co/getdoc/957b5a45- a11c-4934-a0fc-86fa608aba2d/6-bd_productos-bioinsumos_30-de-abril-de- 2024.aspx | |
| dc.relation.references | Ren, H., Su, Y., & Guo, X. (2018). Rapid optimization of spore production from Bacillus amyloliquefaciens in submerged cultures based on dipicolinic acid fluorimetry assay. AMB Express, 8(1), 21. https://doi.org/10.1186/s13568-018-0555-x | |
| dc.relation.references | Sansinenea, E. (2019). Bacillus spp.: As Plant Growth-Promoting Bacteria. En H. B. Singh, C. Keswani, M. S. Reddy, E. Sansinenea, & C. García-Estrada (Eds.), Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications (pp. 225-237). Springer. https://doi.org/10.1007/978- 981-13-5862-3_11 | |
| dc.relation.references | SERENADE® | Proteccion de Cultivos | AgroBayer. (s. f.). Recuperado 27 de diciembre de 2024, de https://www.agro.bayer.ec/content/cropscience/latin-america/ec/es- ec/productos/product-details.html/fungicide/serenade.html | |
| dc.relation.references | Sharma, S., Tiwari, P., & Pandey, L. (2022). Optimization of Culture Conditions for the Production of Biosurfactants. En Microbial Enhanced Oil Recovery (pp. 149-178). Springer, Singapore. https://doi.org/10.1007/978-981-16-5465-7_7 | |
| dc.relation.references | Shi, Y., Niu, X., Yang, H., Chu, M., Wang, N., Bao, H., Zhan, F., Yang, R., & Lou, K. (2024). Optimization of the fermentation media and growth conditions of Bacillus velezensis BHZ-29 using a Plackett–Burman design experiment combined with response surface methodology. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1355369 | |
| dc.relation.references | Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. K. M. (2017). Strategies for Fermentation Medium Optimization: An In-Depth Review. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02087 | |
| dc.relation.references | SISFITO, Consulta de reportes. (s. f.). Recuperado 27 de diciembre de 2024, de https://sisfito.ica.gov.co/reportes/reporte_inicio_I.php | |
| dc.relation.references | Suwanmanon, K., & Hsieh, P.-C. (2014). Isolating Bacillus subtilis and optimizing its fermentative medium for GABA and nattokinase production. CyTA - Journal of Food, 12(3), 282-290. https://doi.org/10.1080/19476337.2013.848472 | |
| dc.relation.references | Teixeira, G. M., Mosela, M., Nicoletto, M. L. A., Ribeiro, R. A., Hungria, M., Youssef, K., Higashi, A. Y., Mian, S., Ferreira, A. S., Gonçalves, L. S. A., Pereira, U. de P., & de Oliveira, A. G. (2021). Genomic Insights Into the Antifungal Activity and Plant Growth-Promoting Ability in Bacillus velezensis CMRP 4490. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.618415 | |
| dc.relation.references | Thangamani, A., Thangamani, R., Nagarajan, K., & Paramasamy. (2009). Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresource Technology, 100(2), 872-877. https://doi.org/10.1016/j.biortech.2008.07.027 | |
| dc.relation.references | Toral, L., Rodríguez, M., Béjar, V., & Sampedro, I. (2018). Antifungal Activity of Lipopeptides From Bacillus XT1 CECT 8661 Against Botrytis cinerea. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01315 | |
| dc.relation.references | Toral, L., Rodríguez, M., Martínez-Checa, F., Montaño, A., Cortés-Delgado, A., Smolinska, A., Llamas, I., & Sampedro, I. (2021). Identification of Volatile Organic Compounds in Extremophilic Bacteria and Their Effective Use in Biocontrol of Postharvest Fungal Phytopathogens. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.773092 | |
| dc.relation.references | Trade Map—Trade statistics for international business development. (2025). https://www.trademap.org/Index.aspx | |
| dc.relation.references | Tzeng, Y.-M., Rao, Y. K., Tsay, K.-J., & Wu, W.-S. (2008). Effect of cultivation conditions on spore production from Bacillus amyloliquefaciens B128 and its antagonism to Botrytis elliptica. Journal of Applied Microbiology, 104(5), 1275-1282. https://doi.org/10.1111/j.1365-2672.2007.03683.x | |
| dc.relation.references | Ullah, I., Yuan, W., Khalil, H. B., Khan, M. R., Lak, F., Uzair, M., Abbas, A., Mirzadi Gohari, A., & Wu, H. (2024). Understanding Botrytis cinerea infection and gray mold management: A review paper on deciphering the rose’s thorn. Phytopathology Research, 6(1), 42. https://doi.org/10.1186/s42483-024-00262-9 | |
| dc.relation.references | Valenzuela Ruiz, V., Gándara-Ledezma, A., Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Parra-Cota, F. I., Santoyo, G., Gómez-Godínez, L. J., Cira Chávez, L. A., & de los Santos-Villalobos, S. (2024). Regulation, Biosynthesis, and Extraction of Bacillus-Derived Lipopeptides and Its Implications in Biological Control of Phytopathogens. Stresses, 4(1), Article 1. https://doi.org/10.3390/stresses4010007 | |
| dc.relation.references | Vehapi, M., İnan, B., Kayacan-Cakmakoglu, S., Sagdic, O., & Özçimen, D. (2023). Optimization of Growth Conditions for the Production of Bacillus subtilis Using Central Composite Design and Its Antagonism Against Pathogenic Fungi. Probiotics and Antimicrobial Proteins, 15(3), 682-693. https://doi.org/10.1007/s12602-021-09904-2 | |
| dc.relation.references | Xu, Y., Wang, L., Liang, W., & Liu, M. (2021). Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biological Control, 161, 104711. https://doi.org/10.1016/j.biocontrol.2021.104711 | |
| dc.relation.references | Xu, Z., Lu, H., Shi, W., Zhou, X., Ren, J., Zhang, Y., & Ma, R. (2024). Optimization of Fermentation and Biocontrol Efficacy of Bacillus atrophaeus XHG-1-3m2. Microorganisms, 12(11), Article 11. https://doi.org/10.3390/microorganisms12112134 | |
| dc.relation.references | Y. Zapata, A. Díaz, E. Grijalba, F. Rodríguez, Y. Elad, & A.M. Cotes. (2015). Phyllosphere yeasts with potential for biological control of Botrytis cinerea in rose | International Society for Horticultural Science. Phyllosphere Yeasts with Potential for Biological Control of Botrytis Cinerea in Rose. http://www.actahort.org/books/1144/1144_11.htm | |
| dc.relation.references | Yang, X., Yuan, L., Zeeshan, M., Yang, C., Gao, W., Zhang, G., & Wang, C. (2025). Optimization of fermentation conditions to increase the production of antifungal metabolites from Streptomyces sp. KN37. Microbial Cell Factories, 24(1), 26. https://doi.org/10.1186/s12934-025-02652-w | |
| dc.relation.references | Yuniarti, A., Arifin, N. B., Fakhri, M., & Hariati, A. M. (2019). Effect of C:N ratio on the spore production of Bacillus sp. Indigenous shrimp pond. IOP Conference Series: Earth and Environmental Science, 236(1), 012029. https://doi.org/10.1088/1755- 1315/236/1/012029 | |
| dc.relation.references | Zhang, H., Yang, Q., Zhao, J., Chen, J., Wang, S., Ma, M., Liu, H., Zhang, Q., Zhao, H., Zhou, D., Wang, X., Gao, J., & Zhao, H. (2022). Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. Plants, 11(23), Article 23. https://doi.org/10.3390/plants11233205 | |
| dc.relation.references | Zuluaga, K. (2019). Efecto de las condiciones de cultivo sobre la producción del principio activo de Bacillus velezensis ( IBUN 2755 ) y su actividad antimicrobiana contra patógenos de arroz (Issue IBUN 2755). [Tesis Pregrado]. Universidad del bosque. | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.subject.ddc | 570 - Biología::579 - Historia natural microorganismos, hongos, algas | |
| dc.subject.proposal | Medio de cultivo | spa |
| dc.subject.proposal | Botrytis cinerea | spa |
| dc.subject.proposal | Bacillus velezensis | spa |
| dc.subject.proposal | Optimizacion | spa |
| dc.title | Diseño y evaluación del principio activo de un prototipo de formulación de Bacillus velezensis para el control de Botrytis cinerea en rosas | spa |
| dc.title.translated | Design and evaluation of the active ingredient of a prototype formulation of Bacillus velezensis for the control of Botrytis cinerea in roses | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores |

