Diseño y evaluación del principio activo de un prototipo de formulación de Bacillus velezensis para el control de Botrytis cinerea en rosas

dc.contributor.advisorUribe Velez, Daniel
dc.contributor.advisorSerrano Bermúdez, Luis Miguel
dc.contributor.authorBoyacá Olaya, Laura Marcela
dc.contributor.researchgroupMicrobiologia Agricola
dc.date.accessioned2025-10-01T20:46:00Z
dc.date.available2025-10-01T20:46:00Z
dc.date.issued2025
dc.description.abstractEl sistema productivo de rosas de corte para exportación se ve constantemente afectado por factores bióticos donde destacan agentes fitopatógenos como Botrytis cinerea, el cual cobra importancia debido a su persistencia y generación de signos y síntomas durante la postcosecha, representando un gran reto su manejo y control. Su control acarrea el uso intensivo de fungicidas de síntesis química, llevando a problemáticas ambientales, generación de resistencia y efectos sobre la salud de los usuarios. En este contexto, en los últimos años el Grupo de Microbiología Agrícola del IBUN, ha venido desarrollando diferentes alternativas de control biológico basados en diferentes grupos microbianos. El objetivo de este trabajo fue seleccionar una cepa del género Bacillus spp con potencial biocontrolador frente a B. cinerea y establecer sus condiciones de cultivo para ser usado como principio activo para prototipos de formulación. Para esto se seleccionó el aislamiento con mayor potencial biocontrolador, posteriormente se seleccionaron las condiciones nutricionales y fisicoquímicas del cultivo que permitieran alcanzar recuentos superiores de 1010 UFC/mL de esporas y una buena actividad de los metabolitos secundarios, partiendo de un medio nutricionalmente definido. La cepa IBUN 2755 correspondiente a Bacillus velezensis fue la que presentó mejor potencial biocontrolador frente a B. cinerea. La selección de las condiciones de cultivo se determinó con un diseño experimental de superficie de respuesta en el que se consideraron cuatro factores. Se logró recuentos de esporas superiores a 1,75x1010 UFC/mL en matraz agitado, cuando se utilizó un volumen efectivo del 19%, pH de 7,9 y concentraciones óptimas de dos componentes de fuentes complejas de nitrógeno. Los resultados indican, por un lado, el potencial de la cepa IBUN 2755 como principio activo de un prototipo de formulación frente a B. cinerea, esto debido a su capacidad de producir densidades celulares altas y metabolitos secundarios termoestables con adecuada actividad biocontroladora. Por el otro lado, la disminución lograda en los tiempos de producción y en los requerimientos nutricionales, permite sugerir que dicho formulado de biocontrolador podría llegar a ser económicamente rentable gracias a los avances logrados en la reducción en los costos de producción.
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.researchareaMicrobiología agricola
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89000
dc.language.isospa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.relation.referencesAbarca, C., Martínez JiménezJiménez, A., Quintero RamírezBermúdez, RodolfoA., & Caro Bermúdez, M. A. (1992). Optimización del proceso de fermentación para producir Bacillus thuringiensis Var. Aisawai. Universidad : Ciencia y Tecnología, 2(3), Article 3. https://biblat.unam.mx/es/revista/universidad-ciencia-y-tecnologia/articulo/optimizacion-del-proceso-de-fermentacion-para-producir-bacillus-thuringiensis-var-aisawai
dc.relation.referencesAbbey, J. A., Percival, D., Abbey, Lord, Asiedu, S. K., Prithiviraj, B., & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges. Biocontrol Science and Technology, 29(3), 207-228. https://doi.org/10.1080/09583157.2018.1548574
dc.relation.referencesAbdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A.-H. (2008). Optimization of Surfactin Production by Bacillus subtilis Isolate BS5. Applied Biochemistry and Biotechnology, 150(3), 305-325. https://doi.org/10.1007/s12010-008-8155-x
dc.relation.referencesAbout FRAC. (s. f.). FRAC. Recuperado 10 de abril de 2025, de https://www.frac.info/about-frac/
dc.relation.referencesAbuQamar, S., Moustafa, K., & Tran, L. S. (2017). Mechanisms and strategies of plant defense against Botrytis cinerea. Critical Reviews in Biotechnology, 37(2), 262-274. https://doi.org/10.1080/07388551.2016.1271767
dc.relation.referencesAhimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27(10), 749-754. https://doi.org/10.1016/S0141-0229(00)00295-7
dc.relation.referencesArias Zabala, M., Vanegas C., I. A., & Vanegas P., F. (2001). Determinación de coeficientes de transferencia de calor y masa en un agitador rotatorio para utilizarlo en procesos fermentativos.
dc.relation.referencesBalderas-Ruíz, K. A., Bustos, P., Santamaria, R. I., González, V., Cristiano-Fajardo, S. A., Barrera-Ortíz, S., Mezo-Villalobos, M., Aranda-Ocampo, S., Guevara-García, Á. A., Galindo, E., & Serrano-Carreón, L. (2020). Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express, 10(1), 163. https://doi.org/10.1186/s13568-020-01101-8
dc.relation.referencesBiermann, R., & Beutel, S. (2023). Endospore production of Bacillus spp. For industrial use. Engineering in Life Sciences, 23(11), e2300013. https://doi.org/10.1002/elsc.202300013
dc.relation.referencesBiermann, R., Rösner, L., Beyer, L.-M., Niemeyer, L., & Beutel, S. (2023). Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium. Engineering in Life Sciences, 23(10), e2300210. https://doi.org/10.1002/elsc.202300210
dc.relation.referencesBoletin Tecnico Exportaciones-dic2024. (s. f.). Recuperado 27 de febrero de 2025, de https://www.dane.gov.co/files/operaciones/EXPORTACIONES/bol-EXPORTACIONES-dic2024.pdf
dc.relation.referencesBolivar-Anillo, H. J., González-Rodríguez, V. E., Cantoral, J. M., García-Sánchez, D., Collado, I. G., & Garrido, C. (2021). Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. Biology, 10(6), Article 6. https://doi.org/10.3390/biology10060492
dc.relation.referencesBotrybel. (s. f.). Probelte España. Recuperado 27 de diciembre de 2024, de https://probelte.com/es/producto/botrybel/
dc.relation.referencesBuitrago, C. (2021, julio 12). Manejo de Botrytis cinerea en rosas. Serie Innovaciones en floricultura Vol. 5. Centro Documental. https://academia.ceniflores.org/CentroDocumental/manejo-de-botrytis-cinerea-en-rosas-serie-innovaciones-en-floricultura-vol-5/
dc.relation.referencesBy FRAC Mode of Action Group. (s. f.). FRAC. Recuperado 10 de abril de 2025, de https://www.frac.info/fungicide-resistance-management/by-frac-mode-of-action-group/
dc.relation.referencesCadena de Flores, Follaje y Ornamentales. (s. f.). Recuperado 27 de diciembre de 2024, de https://sioc.minagricultura.gov.co/Flores/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf
dc.relation.referencesCalvo, H., Roudet, J., Gracia, A. P., Venturini, M. E., & Fermaud, M. (2021). Comparison of efficacy and modes of action of two high-potential biocontrol Bacillus strains and commercial biocontrol products against Botrytis cinerea in table grapes. OENO One, 55(3), Article 3. https://doi.org/10.20870/oeno-one.2021.55.3.4688
dc.relation.referencesCao, H., Chen, Z., Li, X., Song, G., Wu, Y., Jin, J., Cui, F., Yuan, J., Qi, H., Wang, J., & Chen, J. (2024). Optimization of fermentation conditions for Bacillus velezensis TCS001 and evaluation of its growth promotion and disease prevention effects on strawberries. Biological Control, 198, 105632. https://doi.org/10.1016/j.biocontrol.2024.105632
dc.relation.referencesCarisse, O. (2016). Epidemiology and Aerobiology of Botrytis spp. En S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 127-148). Springer International Publishing. https://doi.org/10.1007/978-3-319-23371-0_7
dc.relation.referencesCawoy, H., Bettiol, W., Fickers, P., Ongena, M., Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-Based Biological Control of Plant Diseases. En Pesticides in the Modern World—Pesticides Use and Management. IntechOpen. https://doi.org/10.5772/17184
dc.relation.referencesChen, Z.-M., Li, Q., Liu, H.-M., Yu, N., Xie, T.-J., Yang, M.-Y., Shen, P., & Chen, X.-D. (2010). Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Applied Microbiology and Biotechnology, 85(5), 1353-1360. https://doi.org/10.1007/s00253-009-2162-x
dc.relation.referencesChu, E.-H., Shin, E.-J., Park, H.-J., & Jeong, R.-D. (2015). Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses. Radiation Physics and Chemistry, 115, 22-29. https://doi.org/10.1016/j.radphyschem.2015.05.042
dc.relation.referencesDebener, T., & Byrne, D. H. (2014). Disease resistance breeding in rose: Current status and potential of biotechnological tools. Plant Science: An International Journal of Experimental Plant Biology, 228, 107-117. https://doi.org/10.1016/j.plantsci.2014.04.005
dc.relation.referencesDíaz-García, A., García-Riaño, J., & Zapata-Narvaez, J. (2015). Improvement of Sporulation Conditions of a New Strain of Bacillus amyloliquefaciens in Liquid Fermentation. Advances in Bioscience and Biotechnology, 6(4), Article 4. https://doi.org/10.4236/abb.2015.64029
dc.relation.referencesDigital, A. (s. f.). CEASE. BioWorks. Recuperado 27 de diciembre de 2024, de https://bioworksinc.com/products/cease/
dc.relation.referencesDik, A. J., & Wubben, J. P. (2007). Epidemiology of Botrytis cinerea Diseases in Greenhouses. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 319-333). Springer Netherlands. https://doi.org/10.1007/978-1-4020-2626-3_17
dc.relation.referencesErrington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology, 1(2), 117-126. https://doi.org/10.1038/nrmicro750
dc.relation.referencesFarace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P., Clément, C., Barka, E. A., Jacquard, C., & Dorey, S. (2015). Cyclic lipopeptides from acillus subtilis activate distinct patterns of defence responses in grapevine. Molecular Plant Pathology, 16(2), 177-187. https://doi.org/10.1111/mpp.12170
dc.relation.referencesFillinger, S., & Walker, A.-S. (2016). Chemical Control and Resistance Management of Botrytis Diseases. En S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 189-216). Springer International Publishing. https://doi.org/10.1007/978-3-319-23371-0_10
dc.relation.referencesFRAC Classification of Fungicides. (s. f.). Recuperado 9 de enero de 2025, de https://www.frac.info/docs/default-source/publications/frac-mode-of-action- poster/frac-moa-poster-2024.pdf
dc.relation.referencesGarcia, R. (2008). Selección de levaduras habitantes de la filosfera de mora con potencial biocontrolador de Botrytis cinerea y caracterización ecofisiológica de las mismas [Maestria]. Universidad Nacional de Colombia.
dc.relation.referencesGiraldo, D., Saldarriaga, C., García, H., López, M., & González, A. (2024). Genotypic and phenotypic characterization of resistance to fenhexamid, carboxin, and, prochloraz, in Botrytis cinerea isolates collected from cut roses in Colombia. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1378597
dc.relation.referencesGómez Rodríguez, T. (2013). Caracterización de aislamientos de Botrytis cinerea de rosa en la Sabana de Bogotá [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/50427
dc.relation.referencesGörke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nature Reviews Microbiology, 6(8), 613-624. https://doi.org/10.1038/nrmicro1932
dc.relation.referencesHa, S. T. T., Kim, Y.-T., Yeam, I., Choi, H. W., & In, B.-C. (2022). Molecular dissection of rose and Botrytis cinerea pathosystems affected by ethylene. Postharvest Biology and Technology, 194, 112104. https://doi.org/10.1016/j.postharvbio.2022.112104
dc.relation.referencesHao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A., Hou, T., Xiang, Z., Zhuang, J., Wu, S., Xing, B., Zhang, Z., & Rui, Y. (2017). Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01332
dc.relation.referencesHerrera-Romero, I., Ruales, C., Caviedes, M., & Leon-Reyes, A. (2017). Postharvest evaluation of natural coatings and antifungal agents to control Botrytis cinerea in Rosa sp. Phytoparasitica, 45(1), 9-20. https://doi.org/10.1007/s12600-017-0565-2
dc.relation.referencesHu, J., Wang, Z., & Xu, W. (2024). Production-optimized fermentation of antifungal compounds by Bacillus velezensis LZN01 and transcriptome analysis. Microbial Biotechnology, 17(10), e70026. https://doi.org/10.1111/1751-7915.70026
dc.relation.referencesJiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J., & Guo, J.-H. (2018). Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control, 126, 147-157. https://doi.org/10.1016/j.biocontrol.2018.07.017
dc.relation.referencesKamoun, F., Weekers, F., Ayed, R. B., Mechri, S., Jabeur, F., Thonart, P., & Jaouadi, B. (2022). Multiple linear regression models to simulate spore yields of Bacillus amyloliquefaciens BS13 through optimization of medium composition. Biotechnology and Applied Biochemistry, 69(6), 2686-2697. https://doi.org/10.1002/bab.2315
dc.relation.referencesKhan, A. R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z. F., Gondal, A. S., Yousuf, Z., Iqbal, R., & Daraz, U. (2022). Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. Biology, 11(12), Article 12. https://doi.org/10.3390/biology11121763
dc.relation.referencesKhardziani, T., Sokhadze, K., Kachlishvili, E., Chistyakov, V., & Elisashvili, V. (2017). Optimization of Enhanced Probiotic Spores Production in Submerged Cultivation of Bacillus Amyloliquefaciens B-1895. Journal of Microbiology, Biotechnology and Food Sciences. https://www.academia.edu/63938383/Optimization_of_Enhanced_Probiotic_Spore s_Production_in_Submerged_Cultivation_of_Bacillus_Amyloliquefaciens_B_1895
dc.relation.referencesKim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, , H. G., & Moon, B. J. (2007). Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Journal of Microbiology and Biotechnology. https://www.researchgate.net/publication/5797054_Biological_control_of_strawber ry_gray_mold_caused_by_Botrytis_cinerea_using_Bacillus_licheniformis_N1_for mulation
dc.relation.referencesKjeldgaard, B., Neves, A. R., Fonseca, C., Kovács, Á. T., & Domínguez-Cuevas, P. (2022). Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties.Microbiology Spectrum, 10(2), e01433-21. https://doi.org/10.1128/spectrum.01433-21
dc.relation.referencesKolodziej, B. J., & Slepecky, R. A. (1964). TRACE METAL REQUIREMENTS FOR SPORULATION OF BACILLUS MEGATERIUM1. Journal of Bacteriology, 88(4), 821-830. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314820/
dc.relation.referencesLee, Y.-B., & Kim, W.-S. (2020). ClO2 Dipping Treatment Inhibits Gray Mold on Cut Rose Flowers During Storage. The Horticulture Journal, 89(4), 496-501. https://doi.org/10.2503/hortj.UTD-138
dc.relation.referencesLegein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01619
dc.relation.referencesLi, T., Tang, J., Karuppiah, V., Li, Y., Xu, N., & Chen, J. (2020a). Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biological Control, 140, 104122. https://doi.org/10.1016/j.biocontrol.2019.104122
dc.relation.referencesLi, T., Tang, J., Karuppiah, V., Li, Y., Xu, N., & Chen, J. (2020b). El cocultivo de Trichoderma atroviride SG3403 y Bacillus subtilis 22 mejora la producción de metabolitos secundarios antimicóticos. Biological Control, 140, 104122. https://doi.org/10.1016/j.biocontrol.2019.104122
dc.relation.referencesLi, Y., Li, S., Du, R., Wang, J., Li, H., Xie, D., & Yan, J. (2021). Isoleucine Enhances Plant Resistance Against Botrytis cinerea via Jasmonate Signaling Pathway. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.628328
dc.relation.referencesLiu, J.-F., Yang, J., Yang, S.-Z., Ye, R.-Q., & Mu, B.-Z. (2012). Effects of Different Amino Acids in Culture Media on Surfactin Variants Produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 166(8), 2091-2100. https://doi.org/10.1007/s12010-012-9636-5
dc.relation.referencesLoyola, C. E., Dole, J. M., & Dunning, R. (2019). South and Central America Cut Flower Production and Postharvest Survey. https://doi.org/10.21273/HORTTECH04484- 19
dc.relation.referencesMaier, U., & Büchs, J. (2001). Characterisation of the gas–liquid mass transfer in shaking bioreactors. Biochemical Engineering Journal, 7(2), 99-106. https://doi.org/10.1016/S1369-703X(00)00107-8
dc.relation.referencesMeena, K. R., Tandon, T., Sharma, A., & Kanwar, S. S. (2018). Lipopeptide antibiotic production by Bacillus velezensis KLP2016. Journal of Applied Pharmaceutical Science, 8,(3), 091-098. https://doi.org/10.7324/JAPS.2018.8313
dc.relation.referencesMekapogu, M., Jung, J.-A., Kwon, O.-K., Ahn, M.-S., Song, H.-Y., & Jang, S. (2021). Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. International Journal of Molecular Sciences, 22(15), 7956. https://doi.org/10.3390/ijms22157956
dc.relation.referencesMezghanni, H., Khedher, S. B., Tounsi, S., & Zouari, N. (2012). MEDIUM OPTIMIZATION OF ANTIFUNGAL ACTIVITY PRODUCTION BY Bacillus amyloliquefaciens USING STATISTICAL EXPERIMENTAL DESIGN. Preparative Biochemistry and Biotechnology. https://www.tandfonline.com/doi/abs/10.1080/10826068.2011.614989
dc.relation.referencesMiranda Martínez. (2022). Caracterización de los metabolitos secundarios producidos por la cepa IBUN-2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz [Maestria]. Universidad Nacional de Colombia.
dc.relation.referencesMizumoto, S., & Shoda, M. (2007). Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Applied Microbiology and Biotechnology, 76(1), 101-108. https://doi.org/10.1007/s00253-007-0994-9
dc.relation.referencesMnif, I., Ellouze-Chaabouni, S., & Ghribi, D. (2013). Optimization of Inocula Conditions for Enhanced Biosurfactant Production by Bacillus subtilis SPB1, in Submerged Culture, Using Box–Behnken Design. Probiotics and Antimicrobial Proteins, 5(2), 92-98. https://doi.org/10.1007/s12602-012-9113-z
dc.relation.referencesMoghannem, S. A. M., Farag, M. M. S., Shehab, A. M., & Azab, M. S. (2018). Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 49(3), 452-462. https://doi.org/10.1016/j.bjm.2017.05.012
dc.relation.referencesMoita, C., Feio, S. S., Nunes, L., João Marcelo Curto, M., & Carlos Roseiro, J. (2005). Optimización de factores físicos en la producción de metabolitos activos por Bacillus subtilis 355 frente a hongos contaminantes de la superficie de la madera. International Biodeterioration & Biodegradation, 55(4), 261-269. https://doi.org/10.1016/j.ibiod.2005.02.003
dc.relation.referencesMolina-Acosta, M. D., Calvo, S. J., Palacio, M. M., & Giraldo, C. E. (2021). Incidencia de plagas en material poscosecha de nueve cultivares de hortensia tipo exportación en Antioquia (Colombia). Revista Colombiana de Entomología, 47(1), e7530. https://doi.org/10.25100/socolen.v47i1.7530
dc.relation.referencesMuñoz, M., Faust, J. E., Bridges, W. C., & Schnabel, G. (2020). Relationship of Pink Pigmentation in Rose Petals and Botrytis cinerea. Plant H
dc.relation.referencesMuñoz, M., Faust, J. E., & Schnabel, G. (2019). Characterization of Botrytis cinerea From Commercial Cut Flower Roses. Plant Disease, 103(7), 1577-1583. https://doi.org/10.1094/PDIS-09-18-1623-RE
dc.relation.referencesMuñoz, M., Logan E. Behnke, William C. Bridges, Guido Schnabel, & James E. Faust. (2025). Postharvest calcium chloride dips. An effective strategy to reduce Botrytis blight severity and increase petal strength in cut roses. Postharvest Biology and Technology, 219, 113292. https://doi.org/10.1016/j.postharvbio.2024.113292
dc.relation.referencesNaeemi, M. H., Kalateh Jari, S., Zarinnia, V., & Fatehi, F. (2022). Changes in physio- biochemical status of cut of rose (Rosa Hybrida L. cv. Samurai) flowers under methyl Jasmonate, brassinosteroid, and fungal elicitor to control gray mold. Scientia Horticulturae, 306, 111402. https://doi.org/10.1016/j.scienta.2022.111402
dc.relation.referencesNgalimat, M. S., Yahaya, R. S. R., Baharudin, M. M. A., Yaminudin, S. M., Karim, M., Ahmad, S. A., & Sabri, S. (2021). A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms, 9(3), Article 3. https://doi.org/10.3390/microorganisms9030614
dc.relation.referencesNicot, P. C., Stewart, A., Bardin, M., & Elad, Y. (2016). Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases. En S. Fillinger & Y. Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 165-187). Springer International Publishing. https://doi.org/10.1007/978-3-319-23371- 0_9
dc.relation.referencesPedraza-Herrera, L. A. (2015). Evaluación de Bacterias Aerobias Formadoras de Endospora (BAFEs) de suelos rizosféricos, como agentes de control biológico de [Maestria]. Universidad Nacional de Colombia.
dc.relation.referencesPiraquive Riveros, K. P. (2019). Diseño y evaluación de un prototipo de formulación a partir de Bacilos Aerobios Formadores de Endosporas (BAFEs) para el control de Botrytis cinerea en rosas. https://repositorio.unal.edu.co/handle/unal/76899
dc.relation.referencesPosada-Uribe, L. F., Romero-Tabarez, M., & Villegas-Escobar, V. (2015). Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess and Biosystems Engineering, 38(10), 1879-1888. https://doi.org/10.1007/s00449-015-1428-1
dc.relation.referencesPoveda, J., Barquero, M., & González-Andrés, F. (2020). Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation. Agronomy, 10(11), Article 11. https://doi.org/10.3390/agronomy10111822
dc.relation.referencesPrabakaran, G., & Balaraman, K. (2006). Development of a cost-effective medium for the large scale production of Bacillus thuringiensis var israelensis. Biological Control, 36(3), 288-292. https://doi.org/10.1016/j.biocontrol.2005.09.018
dc.relation.referencesPretorius, D., van Rooyen, J., & Clarke, K. G. (2015). Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnology, 32(2), 243-252. https://doi.org/10.1016/j.nbt.2014.12.003
dc.relation.referencesRamkrishna, S., & Swaminathan, T. (2004). Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal, 21(2), 141-148. https://doi.org/10.1016/j.bej.2004.06.006
dc.relation.referencesREGISTROS DE PRODUCTOS DE BIOINSUMOS DE USO AGRÍCOLA. (s. f.). Recuperado 13 de abril de 2025, de https://www.ica.gov.co/getdoc/957b5a45- a11c-4934-a0fc-86fa608aba2d/6-bd_productos-bioinsumos_30-de-abril-de- 2024.aspx
dc.relation.referencesRen, H., Su, Y., & Guo, X. (2018). Rapid optimization of spore production from Bacillus amyloliquefaciens in submerged cultures based on dipicolinic acid fluorimetry assay. AMB Express, 8(1), 21. https://doi.org/10.1186/s13568-018-0555-x
dc.relation.referencesSansinenea, E. (2019). Bacillus spp.: As Plant Growth-Promoting Bacteria. En H. B. Singh, C. Keswani, M. S. Reddy, E. Sansinenea, & C. García-Estrada (Eds.), Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications (pp. 225-237). Springer. https://doi.org/10.1007/978- 981-13-5862-3_11
dc.relation.referencesSERENADE® | Proteccion de Cultivos | AgroBayer. (s. f.). Recuperado 27 de diciembre de 2024, de https://www.agro.bayer.ec/content/cropscience/latin-america/ec/es- ec/productos/product-details.html/fungicide/serenade.html
dc.relation.referencesSharma, S., Tiwari, P., & Pandey, L. (2022). Optimization of Culture Conditions for the Production of Biosurfactants. En Microbial Enhanced Oil Recovery (pp. 149-178). Springer, Singapore. https://doi.org/10.1007/978-981-16-5465-7_7
dc.relation.referencesShi, Y., Niu, X., Yang, H., Chu, M., Wang, N., Bao, H., Zhan, F., Yang, R., & Lou, K. (2024). Optimization of the fermentation media and growth conditions of Bacillus velezensis BHZ-29 using a Plackett–Burman design experiment combined with response surface methodology. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1355369
dc.relation.referencesSingh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. K. M. (2017). Strategies for Fermentation Medium Optimization: An In-Depth Review. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02087
dc.relation.referencesSISFITO, Consulta de reportes. (s. f.). Recuperado 27 de diciembre de 2024, de https://sisfito.ica.gov.co/reportes/reporte_inicio_I.php
dc.relation.referencesSuwanmanon, K., & Hsieh, P.-C. (2014). Isolating Bacillus subtilis and optimizing its fermentative medium for GABA and nattokinase production. CyTA - Journal of Food, 12(3), 282-290. https://doi.org/10.1080/19476337.2013.848472
dc.relation.referencesTeixeira, G. M., Mosela, M., Nicoletto, M. L. A., Ribeiro, R. A., Hungria, M., Youssef, K., Higashi, A. Y., Mian, S., Ferreira, A. S., Gonçalves, L. S. A., Pereira, U. de P., & de Oliveira, A. G. (2021). Genomic Insights Into the Antifungal Activity and Plant Growth-Promoting Ability in Bacillus velezensis CMRP 4490. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.618415
dc.relation.referencesThangamani, A., Thangamani, R., Nagarajan, K., & Paramasamy. (2009). Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresource Technology, 100(2), 872-877. https://doi.org/10.1016/j.biortech.2008.07.027
dc.relation.referencesToral, L., Rodríguez, M., Béjar, V., & Sampedro, I. (2018). Antifungal Activity of Lipopeptides From Bacillus XT1 CECT 8661 Against Botrytis cinerea. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01315
dc.relation.referencesToral, L., Rodríguez, M., Martínez-Checa, F., Montaño, A., Cortés-Delgado, A., Smolinska, A., Llamas, I., & Sampedro, I. (2021). Identification of Volatile Organic Compounds in Extremophilic Bacteria and Their Effective Use in Biocontrol of Postharvest Fungal Phytopathogens. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.773092
dc.relation.referencesTrade Map—Trade statistics for international business development. (2025). https://www.trademap.org/Index.aspx
dc.relation.referencesTzeng, Y.-M., Rao, Y. K., Tsay, K.-J., & Wu, W.-S. (2008). Effect of cultivation conditions on spore production from Bacillus amyloliquefaciens B128 and its antagonism to Botrytis elliptica. Journal of Applied Microbiology, 104(5), 1275-1282. https://doi.org/10.1111/j.1365-2672.2007.03683.x
dc.relation.referencesUllah, I., Yuan, W., Khalil, H. B., Khan, M. R., Lak, F., Uzair, M., Abbas, A., Mirzadi Gohari, A., & Wu, H. (2024). Understanding Botrytis cinerea infection and gray mold management: A review paper on deciphering the rose’s thorn. Phytopathology Research, 6(1), 42. https://doi.org/10.1186/s42483-024-00262-9
dc.relation.referencesValenzuela Ruiz, V., Gándara-Ledezma, A., Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Parra-Cota, F. I., Santoyo, G., Gómez-Godínez, L. J., Cira Chávez, L. A., & de los Santos-Villalobos, S. (2024). Regulation, Biosynthesis, and Extraction of Bacillus-Derived Lipopeptides and Its Implications in Biological Control of Phytopathogens. Stresses, 4(1), Article 1. https://doi.org/10.3390/stresses4010007
dc.relation.referencesVehapi, M., İnan, B., Kayacan-Cakmakoglu, S., Sagdic, O., & Özçimen, D. (2023). Optimization of Growth Conditions for the Production of Bacillus subtilis Using Central Composite Design and Its Antagonism Against Pathogenic Fungi. Probiotics and Antimicrobial Proteins, 15(3), 682-693. https://doi.org/10.1007/s12602-021-09904-2
dc.relation.referencesXu, Y., Wang, L., Liang, W., & Liu, M. (2021). Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biological Control, 161, 104711. https://doi.org/10.1016/j.biocontrol.2021.104711
dc.relation.referencesXu, Z., Lu, H., Shi, W., Zhou, X., Ren, J., Zhang, Y., & Ma, R. (2024). Optimization of Fermentation and Biocontrol Efficacy of Bacillus atrophaeus XHG-1-3m2. Microorganisms, 12(11), Article 11. https://doi.org/10.3390/microorganisms12112134
dc.relation.referencesY. Zapata, A. Díaz, E. Grijalba, F. Rodríguez, Y. Elad, & A.M. Cotes. (2015). Phyllosphere yeasts with potential for biological control of Botrytis cinerea in rose | International Society for Horticultural Science. Phyllosphere Yeasts with Potential for Biological Control of Botrytis Cinerea in Rose. http://www.actahort.org/books/1144/1144_11.htm
dc.relation.referencesYang, X., Yuan, L., Zeeshan, M., Yang, C., Gao, W., Zhang, G., & Wang, C. (2025). Optimization of fermentation conditions to increase the production of antifungal metabolites from Streptomyces sp. KN37. Microbial Cell Factories, 24(1), 26. https://doi.org/10.1186/s12934-025-02652-w
dc.relation.referencesYuniarti, A., Arifin, N. B., Fakhri, M., & Hariati, A. M. (2019). Effect of C:N ratio on the spore production of Bacillus sp. Indigenous shrimp pond. IOP Conference Series: Earth and Environmental Science, 236(1), 012029. https://doi.org/10.1088/1755- 1315/236/1/012029
dc.relation.referencesZhang, H., Yang, Q., Zhao, J., Chen, J., Wang, S., Ma, M., Liu, H., Zhang, Q., Zhao, H., Zhou, D., Wang, X., Gao, J., & Zhao, H. (2022). Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. Plants, 11(23), Article 23. https://doi.org/10.3390/plants11233205
dc.relation.referencesZuluaga, K. (2019). Efecto de las condiciones de cultivo sobre la producción del principio activo de Bacillus velezensis ( IBUN 2755 ) y su actividad antimicrobiana contra patógenos de arroz (Issue IBUN 2755). [Tesis Pregrado]. Universidad del bosque.
dc.rights.licenseReconocimiento 4.0 Internacional
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algas
dc.subject.proposalMedio de cultivospa
dc.subject.proposalBotrytis cinereaspa
dc.subject.proposalBacillus velezensisspa
dc.subject.proposalOptimizacionspa
dc.titleDiseño y evaluación del principio activo de un prototipo de formulación de Bacillus velezensis para el control de Botrytis cinerea en rosasspa
dc.title.translatedDesign and evaluation of the active ingredient of a prototype formulation of Bacillus velezensis for the control of Botrytis cinerea in roseseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032489601.pdf
Tamaño:
2.94 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: