Ni-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane

dc.contributor.advisorDaza Velásquez, Carlos Enrique
dc.contributor.authorOsorio Zabala, María Alejandra
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2023-12-07T15:46:43Z
dc.date.available2023-12-07T15:46:43Z
dc.date.issued2023-12-05
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractEn esta tesis de maestría, catalizadores tipo óxido mixto de Ni-Mg-Al promovidos con Ce (1-6%) inmovilizados y en polvo de se obtuvieron mediante el método de coprecipitación y recubrimiento en suspensión de precursores tipo hidrotalcita. Se estudió el comportamiento de los materiales en el reformado en seco de metano, teniendo en cuenta el papel promotor del Ce y el efecto de la inmovilizar de los óxidos mixtos en monolitos de cordierita sobre las propiedades fisicoquímicas del catalizador. Los catalizadores se caracterizaron por diversas técnicas analíticas para evaluar su composición química, propiedades térmicas, estructurales, reductivas, básicas y morfológicas. La evaluación catalítica se estudió mediante varias pruebas de estabilidad durante 8h a 700 °C (para catalizadores no reducidos) y a 600 °C (para catalizadores prereducidos) con valores WHSV de 94,680 y de 23.670 mL·gCat-1·h-1. (Texto tomado de la fuente)
dc.description.abstractIn this master’s thesis, Ni-Mg-Al powdered and immobilized mixed oxide-type catalysts promoted with Ce (1-6%) were obtained by the method of coprecipitation and slurry coating of hydrotalcite precursors. The promoter role of the Ce and the effect of immobilizing the mixed oxides in cordierite monoliths on the physicochemical properties and the catalytic performance of the materials in the dry reforming of methane were studied. The catalysts were characterized by diverse analytical techniques to evaluate their chemical composition, thermal and structural properties, and reductive, basic, and morphological properties. The catalytic evaluation was studied through several stability tests for 8h at 700 ° C (for non-reduced catalysts) and at 600 °C (for pre-reduced catalysts) with WHSV of 94,680 and 23,670 mL·gCat -1·h-1.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaCatalizadores para el reformado seco de metanospa
dc.format.extent90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85052
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesH. H. Cho, V. Strezov, and T. J. Evans, “A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies,” Sustainable Materials and Technologies, vol. 35, Apr. 2023, doi: 10.1016/j.susmat.2023.e00567.spa
dc.relation.referencesM. Tsangas, I. Papamichael, and A. A. Zorpas, “Sustainable Energy Planning in a New Situation,” Energies (Basel), vol. 16, no. 4, Feb. 2023, doi: 10.3390/en16041626.spa
dc.relation.referencesJ. C. J. Bart, N. Palmeri, and S. Cavallaro, “Evolution of biodiesel and alternative diesel fuels,” in Biodiesel Science and Technology, Elsevier, 2010, pp. 713–782. doi: 10.1533/9781845697761.713.spa
dc.relation.referencesT. J. Mazanec, R. Prasad, R. Odegard, C. Steyn, and E. T. Robinson, “Oxygen transport membranes for syngas production,” in Studies in Surface Science and Catalysis, Elsevier Inc., 2001, pp. 147–152. doi: 10.1016/s0167-2991(01)80295-0.spa
dc.relation.referencesP. Gupta, L. G. Velazquez-Vargas, and L. S. Fan, “Syngas redox (SGR) process to produce hydrogen from coal derived syngas,” Energy and Fuels, vol. 21, no. 5, pp. 2900–2908, Sep. 2007, doi: 10.1021/ef060512k.spa
dc.relation.referencesP. C. Munasinghe and S. K. Khanal, “Biomass-derived syngas fermentation into biofuels: Opportunities and challenges,” Bioresource Technology, vol. 101, no. 13. pp. 5013–5022, Jul. 2010. doi: 10.1016/j.biortech.2009.12.098.spa
dc.relation.referencesD. J. Roddy, “A syngas network for reducing industrial carbon footprint and energy use,” Appl Therm Eng, vol. 53, no. 2, pp. 299–304, 2013, doi: 10.1016/j.applthermaleng.2012.02.032.spa
dc.relation.referencesK. Wittich, M. Krämer, N. Bottke, and S. A. Schunk, “Catalytic Dry Reforming of Methane: Insights from Model Systems,” ChemCatChem, vol. 12, no. 8. Wiley Blackwell, pp. 2130– 2147, Apr. 20, 2020. doi: 10.1002/cctc.201902142.spa
dc.relation.referencesJ. Gao, Z. Hou, H. Lou, and X. Zheng, Dry (CO2) Reforming, First Edit. Elsevier, 2011. doi: 10.1016/B978-0-444-53563-4.10007-0.spa
dc.relation.referencesS. Aouad et al., “A Review on the Dry Reforming Processes for Hydrogen Production: Catalytic Materials and Technologies,” in Frontiers in Ceramic Science Catalytic Materials for Hydrogen Production and Electro-oxidation Reactions, 2018, pp. 60–128. doi: 10.2174/9781681087580118020007.spa
dc.relation.referencesM. Usman, W. M. A. Wan Daud, and H. F. Abbas, “Dry reforming of methane: Influence of process parameters - A review,” Renewable and Sustainable Energy Reviews, vol. 45. Elsevier Ltd, pp. 710–744, 2015. doi: 10.1016/j.rser.2015.02.026.spa
dc.relation.referencesA. Abdulrasheed, A. A. Jalil, Y. Gambo, M. Ibrahim, H. U. Hambali, and M. Y. Shahul Hamid, “A review on catalyst development for dry reforming of methane to syngas: Recent advances,” Renewable and Sustainable Energy Reviews, vol. 108. Elsevier Ltd, pp. 175– 193, Jul. 01, 2019. doi: 10.1016/j.rser.2019.03.054.spa
dc.relation.referencesL. S. Neiva, “A Study On The Characteristics Of The Reforming Of Methane: A Review,” Brazilian Journal of Petroleum and Gas, pp. 119–127, Sep. 2010, doi: 10.5419/bjpg2010- 0013.spa
dc.relation.referencesY. H. Hu, “Advances in catalysts for CO2 reforming of methane,” ACS Symposium Series, vol. 1056, pp. 155–174, 2010, doi: 10.1021/bk-2010-1056.ch010.spa
dc.relation.referencesO. Muraza and A. Galadima, “A review on coke management during dry reforming of methane,” Archives of Thermodynamics, vol. 33, no. 4, pp. 23–40, 2014, doi: 10.1002/er.spa
dc.relation.referencesR. J. Zhang, G. F. Xia, M. F. Li, Y. Wu, H. Nie, and D. D. Li, “Effect of support on catalytic performance of Ni-based catayst in methane dry reforming,” Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, vol. 43, no. 11, pp. 1359–1365, 2015, doi: 10.1016/S1872-5813(15)30040-2.spa
dc.relation.referencesM. Chaghouri, C. Ciotonea, F. Cazier, L. H. Tidahy, C. Gennequin, and E. Abi-Aad, “Hydrogen production through dry reforming of biogas on hydrotalcite derived materials,” in 2022 13th International Renewable Energy Congress, IREC 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/IREC56325.2022.10002063.spa
dc.relation.referencesC. E. Daza, A. Kiennemann, S. Moreno, and R. Molina, “Dry reforming of methane using Ni-Ce catalysts supported on a modified mineral clay,” Appl Catal A Gen, vol. 364, no. 1–2, pp. 65–74, 2009, doi: 10.1016/j.apcata.2009.05.029.spa
dc.relation.referencesR. Guil-López, V. La Parola, M. A. Peña, and J. L. G. Fierro, “Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the CO x-free hydrogen production by methane decomposition,” in International Journal of Hydrogen Energy, Apr. 2012, pp. 7042–7055. doi: 10.1016/j.ijhydene.2011.11.083.spa
dc.relation.referencesA. Chatla, F. Abu-Rub, A. V. Prakash, G. Ibrahim, and N. O. Elbashir, “Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn,” Fuel, vol. 308, Jan. 2022, doi: 10.1016/j.fuel.2021.122042.spa
dc.relation.referencesW. Y. Kim, J. S. Jang, E. C. Ra, K. Y. Kim, E. H. Kim, and J. S. Lee, “Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane,” Appl Catal A Gen, vol. 575, no. November 2018, pp. 198–203, 2019, doi: 10.1016/j.apcata.2019.02.029.spa
dc.relation.referencesX. Cai and Y. H. Hu, “Advances in catalytic conversion of methane and carbon dioxide to highly valuable products,” Energy Science and Engineering, vol. 7, no. 1. John Wiley and Sons Ltd, pp. 4–29, Feb. 01, 2019. doi: 10.1002/ese3.278.spa
dc.relation.referencesA. V. P. Lino, E. M. Assaf, and J. M. Assaf, “Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load,” Catal Today, vol. 289, pp. 78–88, 2017, doi: 10.1016/j.cattod.2016.08.022.spa
dc.relation.referencesO. H. Ojeda-Niño, F. Gracia, and C. Daza, “Role of Pr on Ni-Mg-Al Mixed Oxides Synthesized by Microwave-Assisted Self-Combustion for Dry Reforming of Methane,” Ind Eng Chem Res, vol. 58, no. 19, pp. 7909–7921, May 2019, doi: 10.1021/acs.iecr.9b00557.spa
dc.relation.referencesS. Govender and H. B. Friedrich, “Monoliths: A review of the basics, preparation methods and their relevance to oxidation,” Catalysts, vol. 7, no. 2. MDPI, Feb. 16, 2017. doi: 10.3390/catal7020062.spa
dc.relation.referencesJ. L. Williams, “Monolith structures, materials, properties and uses,” 2001.spa
dc.relation.referencesS. Govender and H. B. Friedrich, “Monoliths: A review of the basics, preparation methods and their relevance to oxidation,” Catalysts, vol. 7, no. 2, 2017, doi: 10.3390/catal7020062.spa
dc.relation.referencesC. E. Daza, S. Moreno, and R. Molina, “Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane,” Int J Hydrogen Energy, vol. 36, no. 6, pp. 3886–3894, Mar. 2011, doi: 10.1016/j.ijhydene.2010.12.082.spa
dc.relation.referencesJ. Jiang, B. Ye, and J. Liu, “Research on the peak of CO2 emissions in the developing world: Current progress and future prospect,” Applied Energy, vol. 235. Elsevier Ltd, pp. 186–203, Feb. 01, 2019. doi: 10.1016/j.apenergy.2018.10.089.spa
dc.relation.referencesW. F. Lamb et al., “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018,” Environmental Research Letters, vol. 16, no. 7. IOP Publishing Ltd, Jul. 01, 2021. doi: 10.1088/1748-9326/abee4e.spa
dc.relation.referencesG. Grassi et al., “Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks,” Nat Clim Chang, vol. 8, no. 10, pp. 914–920, Oct. 2018, doi: 10.1038/s41558-018-0283-x.spa
dc.relation.referencesP. Friedlingstein et al., “Global carbon budget 2019,” Earth Syst Sci Data, vol. 11, no. 4, pp. 1783–1838, Dec. 2019, doi: 10.5194/essd-11-1783-2019.spa
dc.relation.referencesS. Kirschke et al., “Three decades of global methane sources and sinks,” Nature Geoscience, vol. 6, no. 10. pp. 813–823, Oct. 2013. doi: 10.1038/ngeo1955.spa
dc.relation.referencesM. Saunois et al., “The global methane budget 2000-2017,” Earth Syst Sci Data, vol. 12, no. 3, pp. 1561–1623, Jul. 2020, doi: 10.5194/essd-12-1561-2020.spa
dc.relation.referencesG. Janssens-Maenhout et al., “EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012”, doi: 10.5194/essd-2017-79.spa
dc.relation.referencesH. Tian et al., “A comprehensive quantification of global nitrous oxide sources and sinks,” Nature, vol. 586, no. 7828, pp. 248–256, Oct. 2020, doi: 10.1038/s41586-020-2780-0.spa
dc.relation.referencesA. Kumar, P. Singh, P. Raizada, and C. M. Hussain, “Impact of COVID-19 on greenhouse gases emissions: A critical review,” Science of the Total Environment, vol. 806. Elsevier B.V., Feb. 01, 2022. doi: 10.1016/j.scitotenv.2021.150349.spa
dc.relation.referencesH. Ritchie, M. Roser, and P. Rosado, “CO₂ and Greenhouse Gas EmissionsRetrieved,” Our World in Data, 2022, Accessed: Jan. 30, 2023. [Online]. Available: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsspa
dc.relation.referencesJ. G. J. Olivier and J. A. H. W. Peters, “TRENDS IN GLOBAL CO 2 AND TOTAL GREENHOUSE GAS EMISSIONS 2020 Report Trends in global CO2 and total greenhouse gas emissions: 2020 Report,” 2020. [Online]. Available: www.pbl.nl/en.spa
dc.relation.referencesM. Roelfsema et al., “Taking stock of national climate policies to evaluate implementation of the Paris Agreement,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020- 15414-6.spa
dc.relation.referencesL. Aleluia Reis and M. Tavoni, “Glasgow to Paris—The impact of the Glasgow commitments for the Paris climate agreement,” iScience, vol. 26, no. 2, p. 105933, Feb. 2023, doi: 10.1016/j.isci.2023.105933.spa
dc.relation.referencesZ. Yu, I. Lanre Ridwan, A. ur R. Irshad, M. Tanveer, and S. A. R. Khan, “Investigating the nexuses between transportation Infrastructure, renewable energy Sources, and economic Growth: Striving towards sustainable development,” Ain Shams Engineering Journal, Mar. 2022, doi: 10.1016/j.asej.2022.101843.spa
dc.relation.referencesJ. Hardoy and P. Romero Lankao, “Latin American cities and climate change: Challenges and options to mitigation and adaptation responses,” Current Opinion in Environmental Sustainability, vol. 3, no. 3. pp. 158–163, May 2011. doi: 10.1016/j.cosust.2011.01.004.spa
dc.relation.referencesD. Delgado Pugley, “América Latina frente a la COP26 Posiciones y perspectivas,” 2021.spa
dc.relation.referencesF. D. Meylan, V. Moreau, and S. Erkman, “CO2 utilization in the perspective of industrial ecology, an overview,” Journal of CO2 Utilization, vol. 12, pp. 101–108, 2015, doi: 10.1016/j.jcou.2015.05.003.spa
dc.relation.referencesD. Cebrucean, V. Cebrucean, and I. Ionel, “CO2 capture and storage from fossil fuel power plants,” Energy Procedia, vol. 63, no. ii, pp. 18–26, 2014, doi: 10.1016/j.egypro.2014.11.003.spa
dc.relation.referencesH. Yang et al., “Progress in carbon dioxide separation and capture: A review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008, doi: 10.1016/S1001- 0742(08)60002-9.spa
dc.relation.referencesM. Bui et al., “Carbon capture and storage (CCS): The way forward,” Energy Environ Sci, vol. 11, no. 5, pp. 1062–1176, 2018, doi: 10.1039/c7ee02342a.spa
dc.relation.referencesK. Kelektsoglou, “Carbon capture and storage: A review of mineral storage of CO2 in Greece,” Sustainability (Switzerland), vol. 10, no. 12, 2018, doi: 10.3390/su10124400.spa
dc.relation.referencesT. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, and K. Tejima, “A twin fluid-bed reactor for removal of CO2 from combustion processes,” Chemical Engineering Research and Design, vol. 77, no. 1, pp. 62–68, 1999, doi: 10.1205/026387699525882.spa
dc.relation.referencesR. Ramezani, S. Mazinani, and R. Di Felice, Characterization and kinetics of CO2 absorption in potassium carbonate solution promoted by 2-methylpiperazine, vol. 6, no. 2. Elsevier B.V., 2018. doi: 10.1016/j.jece.2018.05.019.spa
dc.relation.referencesM. House and P. Brownsort, “Scottish Carbon Capture & Storage Ship transport of CO 2 for Enhanced Oil Recovery – Literature Survey,” vol. 44, no. January, 2015, [Online]. Available: www.sccs.org.ukspa
dc.relation.referencesN. Dewangan et al., “Recent progress on layered double hydroxide (LDH) derived metal- based catalysts for CO2 conversion to valuable chemicals,” Catal Today, vol. 356, pp. 490– 513, Oct. 2020, doi: 10.1016/j.cattod.2020.06.020.spa
dc.relation.referencesK. Świrk, J. Grams, M. Motak, P. Da Costa, and T. Grzybek, “Understanding of tri- reforming of methane over Ni/Mg/Al hydrotalcite-derived catalyst for CO2utilization from flue gases from natural gas-fired power plants,” Journal of CO2 Utilization, vol. 42, Dec. 2020, doi: 10.1016/j.jcou.2020.101317.spa
dc.relation.referencesA. Iulianelli, S. Liguori, J. Wilcox, and A. Basile, “Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review,” Catal Rev Sci Eng, vol. 58, no. 1, pp. 1–35, Jan. 2016, doi: 10.1080/01614940.2015.1099882.spa
dc.relation.referencesD. P. Minh et al., “Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane,” in Hydrogen Supply Chain: Design, Deployment and Operation, Elsevier, 2018, pp. 111–166. doi: 10.1016/B978-0-12-811197-0.00004-X.spa
dc.relation.referencesA. P. E. York, T. Xiao, and M. L. H. Green, “Brief overview of the partial oxidation of methane to synthesis gas,” 2003.spa
dc.relation.referencesE. le Saché and T. R. Reina, “Analysis of Dry Reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies,” Progress in Energy and Combustion Science, vol. 89. Elsevier Ltd, Mar. 01, 2022. doi: 10.1016/j.pecs.2021.100970.spa
dc.relation.referencesM. K. Nikoo and N. A. S. Amin, “Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation,” Fuel Processing Technology, vol. 92, no. 3, pp. 678–691, Mar. 2011, doi: 10.1016/j.fuproc.2010.11.027.spa
dc.relation.referencesS. Arora and R. Prasad, “An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts,” RSC Advances, vol. 6, no. 110. Royal Society of Chemistry, pp. 108668–108688, 2016. doi: 10.1039/c6ra20450c.spa
dc.relation.referencesY. Kathiraser, U. Oemar, E. T. Saw, Z. Li, and S. Kawi, “Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts,” Chemical Engineering Journal, vol. 278, pp. 62–78, 2015, doi: 10.1016/j.cej.2014.11.143.spa
dc.relation.referencesM. C. J. Bradford and M. A. Vannice, “CO2 reforming of CH4,” Catal Rev Sci Eng, vol. 41, no. 1, pp. 1–42, 1999, doi: 10.1081/CR-100101948.spa
dc.relation.referencesM. Takht Ravanchi and S. Sahebdelfar, “Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges,” Appl Petrochem Res, vol. 4, no. 1, pp. 63–77, May 2014, doi: 10.1007/s13203-014-0050-5.spa
dc.relation.referencesJ. Xu and G. F. Froment, “Methane Steam Reforming, Methanation and Water-Gas Shift: 1. Intrinsic Kinetics,” AIChE Journal, vol. 35, no. 1, pp. 88–96, Jan. 1989.spa
dc.relation.referencesY. A. Zhu, D. Chen, X. G. Zhou, and W. K. Yuan, “DFT studies of dry reforming of methane on Ni catalyst,” Catal Today, vol. 148, no. 3–4, pp. 260–267, Nov. 2009, doi: 10.1016/j.cattod.2009.08.022.spa
dc.relation.referencesM. C. J. Bradford and M. A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics,” Appl Catal A Gen, vol. 142, pp. 97–122, 1996.spa
dc.relation.referencesT. Osaki, T. Horiuchi, K. Suzuki, and T. Mori, “Suppression of carbon deposition in CO2- reforming of methane on metal sulfide catalysts,” Catal Letters, vol. 35, pp. 39–43, 1995.spa
dc.relation.referencesJ. Wei and E. Iglesia, “Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts,” J Catal, vol. 224, no. 2, pp. 370–383, 2004, doi: 10.1016/j.jcat.2004.02.032.spa
dc.relation.referencesZ. J. Zhao, C. C. Chiu, and J. Gong, “Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts,” Chem Sci, vol. 6, no. 8, pp. 4403–4425, Aug. 2015, doi: 10.1039/c5sc01227a.spa
dc.relation.referencesP. Djinović, J. Batista, and A. Pintar, “Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst,” Int J Hydrogen Energy, vol. 37, no. 3, pp. 2699–2707, 2012, doi: 10.1016/j.ijhydene.2011.10.107.spa
dc.relation.referencesH. Y. Wang and E. Ruckenstein, “Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support,” Appl Catal A Gen, vol. 204, no. 1, pp. 143–152, 2000, doi: 10.1016/S0926-860X(00)00547-0.spa
dc.relation.referencesN. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, “Catalyst design for dry reforming of methane: Analysis review,” Renewable and Sustainable Energy Reviews, vol. 82, no. December 2016, pp. 2570–2585, 2018, doi: 10.1016/j.rser.2017.09.076.spa
dc.relation.referencesN. A. K. Aramouni, J. Zeaiter, W. Kwapinski, and M. N. Ahmad, “Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation,” Energy Convers Manag, vol. 150, pp. 614–622, 2017, doi: 10.1016/j.enconman.2017.08.056.spa
dc.relation.referencesJ. Zhang, H. Wang, and A. K. Dalai, “Development of stable bimetallic catalysts for carbon dioxide reforming of methane,” J Catal, vol. 249, no. 2, pp. 300–310, 2007, doi: 10.1016/j.jcat.2007.05.004.spa
dc.relation.referencesJ. R. Rostrup-Nielsen and J. H. Bak Hansen, “CO2-reforming of methane over transition metals,” Journal of Catalysis, vol. 144, no. 1. pp. 38–49, 1993. doi: 10.1006/jcat.1993.1312.spa
dc.relation.referencesT. P. Beebe, D. W. Goodman, B. D. Kay, and J. T. Yates, “Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces,” J Chem Phys, vol. 87, no. 4, pp. 2305–2315, 1987, doi: 10.1063/1.453162.spa
dc.relation.referencesR. Dębek, M. Motak, T. Grzybek, M. E. Galvez, and P. Da Costa, “A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane,” Catalysts, vol. 7, no. 1. MDPI, Jan. 18, 2017. doi: 10.3390/catal7010032.spa
dc.relation.referencesS. Saeedi, X. T. Nguyen, F. Bossola, C. Evangelisti, and V. Dal Santo, “Methane Reforming Processes: Advances on Mono- and Bimetallic Ni-Based Catalysts Supported on Mg-Al Mixed Oxides,” Catalysts, vol. 13, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/catal13020379.spa
dc.relation.referencesD. Suescum-Morales, J. R. Jiménez, and J. M. Fernández-Rodríguez, “Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation,” ChemEngineering, vol. 6, no. 4. MDPI, Aug. 01, 2022. doi: 10.3390/chemengineering6040050.spa
dc.relation.referencesL. K. G. Bhatta, S. Subramanyam, M. D. Chengala, S. Olivera, and K. Venkatesh, “Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: A review,” J Clean Prod, vol. 103, pp. 171–196, 2015, doi: 10.1016/j.jclepro.2014.12.059.spa
dc.relation.referencesA. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, and T. Hayakawa, “Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides,” 2003. [Online]. Available: www.elsevier.com/locate/jcatspa
dc.relation.referencesR. Kumar and K. K. Pant, “Hydrotalcite-derived Ni-Zn-Mg-Al catalyst for Tri-reforming of methane: Effect of divalent to trivalent metal ratio and Ni loading,” Fuel Processing Technology, vol. 210, Dec. 2020, doi: 10.1016/j.fuproc.2020.106559.spa
dc.relation.referencesR. A. R. Ferreira, C. N. Ávila-Neto, F. B. Noronha, and C. E. Hori, “Study of LPG steam reform using Ni/Mg/Al hydrotalcite-type precursors,” Int J Hydrogen Energy, vol. 44, no. 45, pp. 24471–24484, Sep. 2019, doi: 10.1016/j.ijhydene.2019.07.193.spa
dc.relation.referencesR. Dębek, M. E. Galvez, F. Launay, M. Motak, T. Grzybek, and P. Da Costa, “Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite- derived catalysts,” Int J Hydrogen Energy, vol. 41, no. 27, pp. 11616–11623, Jul. 2016, doi: 10.1016/j.ijhydene.2016.02.074.spa
dc.relation.referencesD. Y. Kalai, K. Stangeland, W. M. Tucho, Y. Jin, and Z. Yu, “Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion,” 82 Journal of CO2 Utilization, vol. 33, pp. 189–200, Oct. 2019, doi: 10.1016/j.jcou.2019.05.011.spa
dc.relation.referencesW. N. Manan, W. N. R. Wan Isahak, and Z. Yaakob, “CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review,” Catalysts, vol. 12, no. 5. MDPI, May 01, 2022. doi: 10.3390/catal12050452.spa
dc.relation.referencesL. P. Teh, H. D. Setiabudi, S. N. Timmiati, M. A. A. Aziz, N. H. R. Annuar, and N. N. Ruslan, “Recent progress in ceria-based catalysts for the dry reforming of methane: A review,” Chem Eng Sci, vol. 242, Oct. 2021, doi: 10.1016/j.ces.2021.116606.spa
dc.relation.referencesH. P. Ren et al., “Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane,” Chemical Engineering Journal, vol. 259, pp. 581–593, Jan. 2015, doi: 10.1016/j.cej.2014.08.029.spa
dc.relation.referencesR. Di Monte and J. Kašpar, “Heterogeneous environmental catalysis - A gentle art: CeO 2- ZrO2 mixed oxides as a case history,” in Catalysis Today, Feb. 2005, pp. 27–35. doi: 10.1016/j.cattod.2004.11.005.spa
dc.relation.referencesJ. Abou Rached et al., “Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production,” Int J Hydrogen Energy, vol. 42, no. 17, pp. 12829–12840, Apr. 2017, doi: 10.1016/j.ijhydene.2016.10.053.spa
dc.relation.referencesR. Dębek, M. Motak, M. E. Galvez, P. Da Costa, and T. Grzybek, “Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition,” Reaction Kinetics, Mechanisms and Catalysis, vol. 121, no. 1, pp. 185–208, Jun. 2017, doi: 10.1007/s11144-017-1167-1.spa
dc.relation.referencesF. Rahbar Shamskar, F. Meshkani, and M. Rezaei, “Preparation and characterization of ultrasound-assisted co-precipitated nanocrystalline La-, Ce-, Zr -promoted Ni-Al2O3 catalysts for dry reforming reaction,” Journal of CO2 Utilization, vol. 22, pp. 124–134, Dec. 2017, doi: 10.1016/j.jcou.2017.09.014.spa
dc.relation.referencesR. Y. Chein and W. Y. Fung, “Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts,” Int J Hydrogen Energy, vol. 44, no. 28, pp. 14303–14315, May 2019, doi: 10.1016/j.ijhydene.2019.01.113.spa
dc.relation.referencesM. Khajenoori, M. Rezaei, and F. Meshkani, “Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio,” Journal of Industrial and Engineering Chemistry, vol. 21, pp. 717–722, Jan. 2015, doi: 10.1016/j.jiec.2014.03.043.spa
dc.relation.referencesC. E. Daza, J. Gallego, J. A. Moreno, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides,” Catal Today, vol. 133–135, no. 1– 4, pp. 357–366, 2008, doi: 10.1016/j.cattod.2007.12.081.spa
dc.relation.referencesC. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce- promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, Mar. 2010, doi: 10.1016/j.fuel.2009.10.010.spa
dc.relation.referencesC. E. Daza, C. R. Cabrera, S. Moreno, and R. Molina, “Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method,” Appl Catal A Gen, vol. 378, no. 2, pp. 125–133, Apr. 2010, doi: 10.1016/j.apcata.2010.01.037.spa
dc.relation.referencesC. E. Daza, S. Moreno, and R. Molina, “Ce - Promoted catalyst from hydrotalcites for CO2 reforming of methane: Calcination temperature effect,” Quim Nova, vol. 35, no. 7, pp. 1325– 1328, 2012, doi: 10.1590/S0100-40422012000700008.spa
dc.relation.referencesR. Dębek et al., “Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity,” Catal Today, vol. 257, no. P1, pp. 59–65, Nov. 2015, doi: 10.1016/j.cattod.2015.03.017.spa
dc.relation.referencesG. A. Tafete and N. G. Habtu, “Reactor configuration, operations and structural catalyst design in process intensification of catalytic reactors: A review,” Chemical Engineering and Processing - Process Intensification, vol. 184. Elsevier B.V., Feb. 01, 2023. doi: 10.1016/j.cep.2023.109290.spa
dc.relation.referencesV. Tomašić and F. Jović, “State-of-the-art in the monolithic catalysts/reactors,” Appl Catal A Gen, vol. 311, no. 1–2, pp. 112–121, Sep. 2006, doi: 10.1016/j.apcata.2006.06.013.spa
dc.relation.referencesR. M. Heck, S. Gulati, and R. J. Farrauto, “The application of monoliths for gas phase catalytic reactions,” 2001.spa
dc.relation.referencesI. Luisetto et al., “Ni supported on γ-Al2O3promoted by Ru for the dry reforming of methane in packed and monolithic reactors,” Fuel Processing Technology, vol. 158, pp. 130–140, 2017, doi: 10.1016/j.fuproc.2016.12.015.spa
dc.relation.referencesF. Agueniou et al., “3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: the Ni-based catalysts in methane dry reforming showcase,” Catal Commun, vol. 148, no. October 2020, p. 106181, 2021, doi: 10.1016/j.catcom.2020.106181.spa
dc.relation.referencesH. Liu et al., “Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas,” Catal Commun, vol. 9, no. 1, pp. 51–54, 2008, doi: 10.1016/j.catcom.2007.05.002.spa
dc.relation.referencesJ. Chen, H. Yang, N. Wang, Z. Ring, and T. Dabros, “Mathematical modeling of monolith catalysts and reactors for gas phase reactions,” Applied Catalysis A: General, vol. 345, no. 1. pp. 1–11, Jul. 31, 2008. doi: 10.1016/j.apcata.2008.04.010.spa
dc.relation.referencesI. Cornejo, P. Nikrityuk, C. Lange, and R. E. Hayes, “Influence of upstream turbulence on the pressure drop inside a monolith,” Chemical Engineering and Processing - Process Intensification, vol. 147, Jan. 2020, doi: 10.1016/j.cep.2019.107735.spa
dc.relation.referencesM. Tu, R. Ratnakar, and V. Balakotaiah, “Reduced order models with local property dependent transfer coefficients for real time simulations of monolith reactors,” Chemical Engineering Journal, vol. 383, Mar. 2020, doi: 10.1016/j.cej.2019.123074.spa
dc.relation.referencesO. Deutschmann, R. Schwiedernoch, L. I. Maier, and D. Chatterjee, “Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena,” Stud Surf Sci Catal, pp. 251–258, 2001.spa
dc.relation.referencesT. A. Nijhuis, A. E. W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, and J. A. Moulijn, “Preparation of monolithic catalysts,” Catalysis Reviews - Science and Engineering, vol. 43, no. 4. pp. 345–380, Nov. 2001. doi: 10.1081/CR-120001807.spa
dc.relation.referencesC. Agrafiotis and A. Tsetsekou, “Effect of processing parameters on the properties of γ- alumina washcoats deposited on ceramic honeycombs,” J Mater Sci, vol. 35, no. 4, pp. 951– 960, 2000, doi: 10.1023/A:1004762827623.spa
dc.relation.referencesM. Valentini, G. Groppi, C. Cristiani, M. Levi, E. Tronconi, and P. Forzatti, “The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts,” Catal Today, vol. 69, no. 1–4, pp. 307–314, 2001, doi: 10.1016/S0920- 5861(01)00383-2.spa
dc.relation.referencesL. Villegas, F. Masset, and N. Guilhaume, “Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity,” Appl Catal A Gen, vol. 320, pp. 43–55, Mar. 2007, doi: 10.1016/j.apcata.2006.12.011.spa
dc.relation.referencesA. C. C. Chang and K. Y. Lee, “Biogas reforming by the honeycomb reactor for hydrogen production,” Int J Hydrogen Energy, vol. 41, no. 7, pp. 4358–4365, Feb. 2016, doi: 10.1016/j.ijhydene.2015.09.018.spa
dc.relation.referencesA. Leba and R. Yıldırım, “Determining most effective structural form of nickel-cobalt catalysts for dry reforming of methane,” Int J Hydrogen Energy, 2020, doi: 10.1016/j.ijhydene.2019.12.020.spa
dc.relation.referencesP. Oñativia and R. De Gaona, “Catalysts for the dry reforming of methane and method for the preparation.” pp. 5–10, 2016.spa
dc.relation.referencesH. L. Huynh and Z. Yu, “CO2 Methanation on Hydrotalcite-Derived Catalysts and Structured Reactors: A Review,” Energy Technology, vol. 8, no. 5. Wiley-VCH Verlag, May 01, 2020. doi: 10.1002/ente.201901475.spa
dc.relation.referencesX. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, “Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane,” Nanoscale, vol. 5, no. 7, pp. 2659–2663, 2013, doi: 10.1039/c3nr33921a.spa
dc.relation.referencesF. Agueniou et al., “Ultrathin washcoat and very low loading monolithic catalyst with outstanding activity and stability in dry reforming of methane,” Nanomaterials, vol. 10, no. 3, 2020, doi: 10.3390/nano10030445.spa
dc.relation.referencesM. J. Ledoux and C. Pham-Huu, “Silicon carbide a novel catalyst support for heterogeneous catalysis,” Cattech, vol. 5, no. 4, pp. 226–246, 2001, doi: 10.1023/A:1014092930183.spa
dc.relation.referencesX. Gao et al., “Carbon nanofibers decorated SiC foam monoliths as the support of anti- sintering Ni catalyst for methane dry reforming,” Int J Hydrogen Energy, vol. 42, no. 26, pp. 16547–16556, 2017, doi: 10.1016/j.ijhydene.2017.05.164.spa
dc.relation.referencesO. Daoura et al., “One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming,” Appl Catal B, vol. 280, no. May 2020, p. 119417, 2021, doi: 10.1016/j.apcatb.2020.119417.spa
dc.relation.referencesE. Soghrati, M. Kazemeini, A. M. Rashidi, and K. Jafari Jozani, “Preparation and characterization of Co-Mo catalyst supported on CNT coated cordierite monoliths utilized for naphta HDS process,” Procedia Eng, vol. 42, no. August, pp. 1484–1492, 2012, doi: 10.1016/j.proeng.2012.07.541.spa
dc.relation.referencesF. Agueniou et al., “Supplementary Materials: Ultrathin washcoat and very low loading monolithic catalyst with outstanding activity and stability in dry reforming of methane,” Nanomaterials, vol. 10, no. 3, 2020, doi: 10.3390/nano10030445.spa
dc.relation.referencesS. O. Soloviev, A. Y. Kapran, S. N. Orlyk, and E. V. Gubareni, “Carbon dioxide reforming of methane on monolithic Ni/Al2O 3-based catalysts,” Journal of Natural Gas Chemistry, vol. 20, no. 2, pp. 184–190, Mar. 2011, doi: 10.1016/S1003-9953(10)60149-1.spa
dc.relation.referencesP. Pornruangsakun, S. Tungkamani, T. Ratana, M. Phongaksorn, and T. Sornchamni, “Investigation of Coke Formation in Dry Methane Reforming over Nickel-based Monolithic Catalysts,” The International Journal of Advanced Culture Technology, vol. 3, no. 1, pp. 31– 38, Jun. 2015, doi: 10.17703/ijact.2015.3.1.31.spa
dc.relation.referencesF. Agueniou et al., “Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane,” Catal Today, 2020, doi: 10.1016/j.cattod.2020.07.030.spa
dc.relation.referencesR. Chava, D. Purbia, B. Roy, V. M. Janardhanan, A. Bahurudeen, and S. Appari, “Effect of Calcination Time on the Catalytic Activity of Ni/γ-Al2O3 Cordierite Monolith for Dry Reforming of Biogas,” Int J Hydrogen Energy, vol. 46, no. 9, pp. 6341–6357, Feb. 2021, doi: 10.1016/j.ijhydene.2020.11.125.spa
dc.relation.referencesR. Chava, A. V. D. Bhaskar, B. Roy, and S. Appari, “Reforming of model biogas using Ni/CeO2/γ-Al2O3 monolith catalyst,” Mater Today Proc, vol. 72, pp. 134–139, Jan. 2023, doi: 10.1016/j.matpr.2022.06.234.spa
dc.relation.referencesC. Wang, T. Wang, L. Ma, Y. Gao, and C. Wu, “Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst,” Energy Convers Manag, vol. 51, no. 3, pp. 446–451, Mar. 2010, doi: 10.1016/j.enconman.2009.10.006.spa
dc.relation.referencesA. Vita, C. Italiano, M. A. Ashraf, L. Pino, and S. Specchia, “Syngas production by steam and oxy-steam reforming of biogas on monolith-supported CeO2-based catalysts,” Int J Hydrogen Energy, vol. 43, no. 26, pp. 11731–11744, Jun. 2018, doi: 10.1016/j.ijhydene.2017.11.140.spa
dc.relation.referencesY. Zhu et al., “Optimization of the washcoat slurry for hydrotalcite-based lnt catalyst,” Catalysts, vol. 9, no. 8, Aug. 2019, doi: 10.3390/CATAL9080696.spa
dc.relation.referencesC. Daza, A. Kiennemann, S. Moreno, and R. Molina, “Stability of Ni-Ce catalysts supported over Al-PVA modified mineral clay in dry reforming of methane,” Energy and Fuels, vol. 23, no. 7, pp. 3497–3509, 2009, doi: 10.1021/ef9000874.spa
dc.relation.referencesS. S. Miri, F. Meshkani, A. Rastegarpanah, and M. Rezaei, “Influence of Fe, La, Zr, Ce, and Ca on the catalytic performance and coke formation in dry reforming of methane over Ni/MgO.Al2O3 catalyst,” Chem Eng Sci, vol. 250, Mar. 2022, doi: 10.1016/j.ces.2021.116956.spa
dc.relation.referencesS. Yu, Y. Hu, H. Cui, Z. Cheng, and Z. Zhou, “Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane,” Chem Eng Sci, vol. 232, Mar. 2021, doi: 10.1016/j.ces.2020.116379.spa
dc.relation.referencesF. Meng, Z. Li, J. Liu, X. Cui, and H. Zheng, “Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor,” J Nat Gas Sci Eng, vol. 23, pp. 250–258, Mar. 2015, doi: 10.1016/j.jngse.2015.01.041.spa
dc.relation.referencesZ. Alipour, M. Rezaei, and F. Meshkani, “Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane,” Journal of Energy Chemistry, vol. 23, no. 5, pp. 633–638, 2014, doi: 10.1016/S2095- 4956(14)60194-7.spa
dc.relation.referencesM. Boaro, S. Colussi, and A. Trovarelli, “Ceria-based materials in hydrogenation and reforming reactions for CO 2 valorization,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., Feb. 01, 2019. doi: 10.3389/fchem.2019.00028.spa
dc.relation.referencesL. P. Matte et al., “Influence of the CeO2 Support on the Reduction Properties of Cu/CeO2 and Ni/CeO2 Nanoparticles,” Journal of Physical Chemistry C, vol. 119, no. 47, pp. 26459– 26470, Nov. 2015, doi: 10.1021/acs.jpcc.5b07654.spa
dc.relation.referencesJ. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia, and C. R. Apesteguía, “Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides,” 1998.spa
dc.relation.referencesA. Cárdenas-Arenas et al., “Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts,” Appl Catal B, vol. 265, May 2020, doi: 10.1016/j.apcatb.2019.118538.spa
dc.relation.referencesZ. Yu, D. Chen, M. Rønning, T. Vrålstad, E. Ochoa-Fernández, and A. Holmen, “Large- scale synthesis of carbon nanofibers on Ni-Fe-Al hydrotalcite derived catalysts. I. Preparation and characterization of the Ni-Fe-Al hydrotalcites and their derived catalysts,” Appl Catal A Gen, vol. 338, no. 1–2, pp. 136–146, Apr. 2008, doi: 10.1016/j.apcata.2008.01.003.spa
dc.relation.referencesC. Lv, H. Chen, M. Hu, T. Ai, and H. Fu, “Nano-oxides washcoat for enhanced catalytic oxidation activity toward the perovskite-based monolithic catalyst,” Environmental Science and Pollution Research, vol. 28, no. 28, pp. 37142–37157, Jul. 2021, doi: 10.1007/s11356- 021-13354-2.spa
dc.relation.referencesS. L. Kharatyan, H. A. Chatilyan, and K. V Manukyan, “Kinetics and Mechanism of Nickel Oxide Reduction by Methane,” J Phys Chem, vol. 123, pp. 21513–21521, 2019, doi: https://doi.org/10.1021/acs.jpcc.9b04506.spa
dc.relation.referencesC. Jensen and M. S. Duyar, “Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas,” Energy Technology, vol. 9, no. 7, Jul. 2021, doi: 10.1002/ente.202100106.spa
dc.relation.referencesR. Dębek, M. Motak, M. E. Galvez, T. Grzybek, and P. Da Costa, “Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming,” Int J Hydrogen Energy, vol. 42, no. 37, pp. 23556–23567, Sep. 2017, doi: 10.1016/j.ijhydene.2016.12.121.spa
dc.relation.referencesX. Feng, J. Feng, and W. Li, “Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4,” Cuihua Xuebao/Chinese Journal of Catalysis, vol. 39, no. 1, pp. 88–98, Jan. 2018, doi: 10.1016/S1872-2067(17)62928-0.spa
dc.relation.referencesJ. Ashok and S. Kawi, “Steam reforming of toluene as a biomass tar model compound over CeO 2 promoted Ni/CaOeAl2O3 catalytic systems,” Int J Hydrogen Energy, vol. 38, no. 32, pp. 13938–13949, Oct. 2013, doi: 10.1016/j.ijhydene.2013.08.029.spa
dc.relation.referencesS. Katheria, G. Deo, and D. Kunzru, “Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane,” Energy and Fuels, vol. 31, no. 3, pp. 3143– 3153, Mar. 2017, doi: 10.1021/acs.energyfuels.6b03423.spa
dc.relation.referencesD. Ugues, S. Specchia, and G. Saracco, “Optimal Microstructural Design of a Catalytic Premixed FeCrAlloy Fiber Burner for Methane Combustion,” Ind Eng Chem Res, vol. 43, no. 9, pp. 1990–1998, Apr. 2004, doi: 10.1021/ie034202q.spa
dc.relation.referencesN. de Miguel, J. Manzanedo, J. Thormann, P. Pfeifer, and P. L. Arias, “Ni catalyst coating on Fecralloy ® Microchanneled foils and testing for Methane steam reforming,” Chem Eng Technol, vol. 33, no. 1, pp. 155–166, Jan. 2010, doi: 10.1002/ceat.200900439.spa
dc.relation.referencesZ. Ma, P. Perreault, D. C. Pelegrin, D. C. Boffito, and G. S. Patience, “Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2 FeCralloy catalysts,” Chemical Engineering Journal, vol. 380, Jan. 2020, doi: 10.1016/j.cej.2019.122470.spa
dc.relation.referencesV. N. Rogozhnikov et al., “Structured composite catalyst Pd/Ce0.75Zr0.25O2-x/θ- Al2O3/FeCrAlloy for complete oxidation of methane,” Mater Lett, vol. 310, Mar. 2022, doi: 10.1016/j.matlet.2021.131481.spa
dc.relation.referencesC. Y. Chou, J. A. Loiland, and R. F. Lobo, “Reverse water-gas shift iron catalyst derived from magnetite,” Catalysts, vol. 9, no. 9, Sep. 2019, doi: 10.3390/catal9090773.spa
dc.relation.referencesM. Jafarbegloo, A. Tarlani, A. W. Mesbah, and S. Sahebdelfar, “Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance,” Int J Hydrogen Energy, vol. 40, no. 6, pp. 2445–2451, Feb. 2015, doi: 10.1016/j.ijhydene.2014.12.103.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembCatalizadoresspa
dc.subject.lembCatalystseng
dc.subject.lembInhibidores químicosspa
dc.subject.lembChemical inhibitorseng
dc.subject.proposalSynthesis gasspa
dc.subject.proposalReformingeng
dc.subject.proposalMethaneeng
dc.subject.proposalMixed oxideseng
dc.subject.proposalMonolitheng
dc.subject.proposalGreenhouse effecteng
dc.subject.proposalGas de síntesisspa
dc.subject.proposalReformadospa
dc.subject.proposalMetanospa
dc.subject.proposalÓxidos mixtosspa
dc.subject.proposalMonolitospa
dc.subject.proposalEfectivo invernaderospa
dc.titleNi-Ce immobilized catalysts in cordierite monoliths for dry reforming of methane
dc.title.translatedCatalizadores de Ni-Ce inmovilizados en monolitos de cordierita para el reformado seco de metano
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCatalizadores de Ni a partir de hidrotalcitas inmovilizadas en monolitos para la transformación de gases de efecto invernaderospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032490325.2023.pdf
Tamaño:
4.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: