Estudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)

dc.contributor.advisorArboleda, Gonzalo
dc.contributor.authorSantos-Gil, Daniel
dc.contributor.cvlacSantos-Gil, Daniel F. [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001688007]spa
dc.contributor.orcidSantos-Gil, Daniel [0000-0002-1309-8081]spa
dc.contributor.researchgroupMuerte Celularspa
dc.contributor.researchgroupGrupo de Neurociencias-Universidad Nacional de Colombiaspa
dc.date.accessioned2023-10-30T20:53:20Z
dc.date.available2023-10-30T20:53:20Z
dc.date.issued2023-06-26
dc.descriptionilustraciones, diagramas,spa
dc.description.abstractEl síndrome de Wiedemann-Rautenstracuh (WRS) ha sido caracterizado como una entidad progeroide neonatal o de envejecimiento prematuro. Este grupo de síndromes tienen en común cambios monogenéticos que contribuyen a la aparición de fenotipos de envejecimiento que se evidencian en distintas etapas del desarrollo del individuo e in vitro presentan senescencia celular prematura. El WRS presenta un patrón de herencia autosómica recesiva cuya etiología es poco conocida. Recientemente se han descrito mutaciones en el gen POLR3A que codifica la subunidad catalítica A de la RNA polimerasa III. Esta enzima sintetiza un grupo de RNAs pequeños no codificantes (snRNAs), entre ellos tRNAs, 5S rRNA y U6 snRNA, que son importantes para el correcto funcionamiento del nucleolo, el ensamblaje de ribosomas, la traducción de proteínas y el metabolismo celular. Se planteó como objetivo describir las características celulares y moleculares de los fibroblastos WRS y la relación con un modelo de pérdida de función. Métodos: Se cultivaron fibroblastos primarios de dos pacientes WRS con variantes monoalélicas: WRS1[POLR3A c.3772_3773delCT (p. Leu1258Glyfs*12)] y WRS2 [POLR3A c.3G>T (p. Met1Leu*)]; fibroblastos knockout (KO) [POLR3A -/-] y fibroblastos control [POLR3A +/+]. Se determinó la expresión global de RNA mediante RNAseq, identificando los genes diferencialmente expresados de cada conjunto de datos, los cuales fueron filtrados y analizados según los criterios de exclusión a nivel estadístico y biológico. Se llevó a cabo un análisis de enriquecimiento funcional con las bases de datos Gene Ontology (GO) y Kyoto Encyclopedia of Genes and Genomes (KEGG). Por RTqPCR, inmunofluorescencia y western blot, se analizaron los patrones de expresión de POLR3A, la expresión y localización de marcadores nucleolares y los niveles de marcadores de senescencia celular. Resultados: Se observó que hay un desbalance en la transcripción de los genes diana de la RNA Polimerasa III. Se encontraron perfiles de expresión diferenciales y se identificaron los genes diferencialmente expresados (DEGs) de cada conjunto de datos, siendo 204 en común entre el fenotipo WRS y 147 con la condición KO. El análisis de enriquecimiento funcional mostró sobrerrepresentadas múltiples categorías, entre ellas la vía PI3K-Akt, la interacción del receptor con la matriz extracelular, el metabolismo del retinol y la regulación de la respuesta inflamatoria. Se detectó una mayor área de inmunoreactividad de los componentes nucleolares en los fibroblastos WRS, mientras que el grupo KO muestra una reducción; a nivel transcripcional y traduccional, hay un desbalance de los distintos componentes estructurales, acompañado de la reducción de la síntesis de los precursores ribosomales. Por último, se encontró una regulación al alza de los marcadores de senescencia celular P53/P21, P16/RB y GLB1. Conclusión: Las células WRS experimentan un proceso de senescencia celular prematura asociado a las mutaciones de POLR3A que conducen a una alteración de su función transcripcional. Esto resulta en un aumento en el área nucleolar, un desequilibrio en la producción de los componentes nucleolares y una alteración en la biogénesis ribosomal. Además, el análisis de enriquecimiento funcional reveló que múltiples vías de señalización están comprometidas como la supervivencia celular, la interacción y organización de la matriz extracelular y regulación de la respuesta inflamatoria. Estos hallazgos contribuyen a mejorar nuestra comprensión de los mecanismos subyacentes del WRS, que explican la alteración funcional de POLR3A y que dan lugar al fenotipo de envejecimiento prematuro y senescencia celular. También, amplían nuestra comprensión del panorama funcional del complejo RNA Polimerasa III en diversos componentes celulares, procesos biológicos y funciones moleculares. (Texto tomado de la fuente)spa
dc.description.abstractWiedemann-Rautenstracuh Syndrome (WRS) has been characterized as a neonatal progeroid entity or premature aging disorder. This group of syndromes share monogenetic changes that contribute to the emergence of aging phenotypes manifested at different stages of individual development and display premature cellular senescence in vitro. WRS follows an autosomal recessive inheritance pattern, and its etiology is poorly understood. Recently, mutations in the POLR3A gene, which encodes the catalytic subunit A of RNA polymerase III, have been described. This enzyme synthesizes a group of small non-coding RNAs (snRNAs), including tRNAs, 5S rRNA, and U6 snRNA, which are crucial for proper nucleolar function, ribosome assembly, protein translation, and cellular metabolism. The objective of this study was to describe the cellular and molecular characteristics of WRS fibroblasts and their relationship with a loss-of-function model. Methods: Primary fibroblasts were cultured from two WRS patients with monoallelic variants: WRS1 [POLR3A c.3772_3773delCT (p. Leu1258Glyfs12)] and WRS2 [POLR3A c.3G>T (p. Met1Leu)], as well as knockout (KO) fibroblasts [POLR3A -/-] and control fibroblasts [POLR3A +/+] were included. Global RNA expression was determined using RNAseq, identifying the differentially expressed genes in each dataset, which were filtered and analyzed based on statistical and biological exclusion criteria. Functional enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Expression patterns of POLR3A, nucleolar marker expression and localization, and cellular senescence markers were analyzed using RT-qPCR, immunofluorescence, and western blotting. Results: It was observed that there is an imbalance in the transcription of target genes of RNA Polymerase III. Differential expression profiles were found, and the differentially expressed genes (DEGs) were identified in each dataset, with 204 genes in common between the WRS phenotype and 147 genes compared to the KO condition. Functional enrichment analysis showed multiple overrepresented categories, including the PI3K-Akt pathway, receptor interaction with the extracellular matrix, retinol metabolism, and regulation of the inflammatory response. A greater area of immunoreactivity in nucleolar components was detected in WRS fibroblasts, while the KO group showed a reduction. At the transcriptional and translational level, there was an imbalance in different structural components, accompanied by a decrease in the synthesis of ribosomal precursors. Finally, an upregulation of cellular senescence markers P53/P21, P16/RB, and GLB1 was found. Conclusion: WRS cells undergo a process of premature cellular senescence associated with POLR3A mutations, which lead to an alteration in their transcriptional function. This results in an increase in nucleolar area, an imbalance in the production of nucleolar components, and a disruption in ribosomal biogenesis. Furthermore, the functional enrichment analysis revealed that multiple signaling pathways are compromised, including cell survival, interaction and organization of the extracellular matrix, and regulation of the inflammatory response. These findings contribute to improving our understanding of the underlying mechanisms of WRS, explaining the functional impairment of POLR3A, and resulting in the phenotype of premature aging and cellular senescence. They also broaden our understanding of the functional landscape of the RNA Polymerase III complex in various cellular components, biological processes, and molecular functions.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaBiología del envejecimientospa
dc.format.extent102 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84852
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAdams, D. R., & Eng, C. M. (2018). Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. The New England journal of medicine, 379(14), 1353–1362. https://doi.org/10.1056/NEJMra1711801spa
dc.relation.referencesAllsopp, R. C., Chang, E., Kashefi-Aazam, M., Rogaev, E. I., Piatyszek, M. A., Shay, J. W., & Harley, C. B. (1995). Telomere shortening is associated with cell division in vitro and in vivo. Experimental cell research, 220(1), 194–200. https://doi.org/10.1006/excr.1995.1306spa
dc.relation.referencesArboleda, H., Quintero, L., & Yunis, E. (1997). Wiedemann-Rautenstrauch neonatal progeroid syndrome: report of three new patients. Journal of medical genetics, 34(5), 433–437. https://doi.org/10.1136/jmg.34.5.433spa
dc.relation.referencesArboleda, G., Morales, L. C., Quintero, L., & Arboleda, H. (2011). Neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome): report of three affected sibs. American journal of medical genetics. Part A, 155A(7), 1712–1715. https://doi.org/10.1002/ajmg.a.34019spa
dc.relation.referencesArboleda, H., & Arboleda, G. (2005). Follow-up study of Wiedemann-Rautenstrauch syndrome: long-term survival and comparison with Rautenstrauch's patient "G". Birth defects research. Part A, Clinical and molecular teratology, 73(8), 562–568. https://doi.org/10.1002/bdra.20166spa
dc.relation.referencesArimbasseri, A. G., & Maraia, R. J. (2016). RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends in biochemical sciences, 41(6), 546–559. https://doi.org/10.1016/j.tibs.2016.03.003spa
dc.relation.referencesAstle, M. V., Hannan, K. M., Ng, P. Y., Lee, R. S., George, A. J., Hsu, A. K., Haupt, Y., Hannan, R. D., & Pearson, R. B. (2012). AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene, 31(15), 1949–1962. https://doi.org/10.1038/onc.2011.394spa
dc.relation.referencesAustad, S. N., & Hoffman, J. M. (2018). Is antagonistic pleiotropy ubiquitous in aging biology? Evolution, medicine, and public health, 2018(1), 287–294. https://doi.org/10.1093/emph/eoy033spa
dc.relation.referencesAzmanov, D. N., Siira, S. J., Chamova, T., Kaprelyan, A., Guergueltcheva, V., Shearwood, A. J., Liu, G., Morar, B., Rackham, O., Bynevelt, M., Grudkova, M., Kamenov, Z., Svechtarov, V., Tournev, I., Kalaydjieva, L., & Filipovska, A. (2016). Transcriptome-wide effects of a POLR3A gene mutation in patients with an unusual phenotype of striatal involvement. Human molecular genetics, 25(19), 4302–4314. https://doi.org/10.1093/hmg/ddw263spa
dc.relation.referencesBáez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms of ageing and development, 192, 111360. https://doi.org/10.1016/j.mad.2020.111360spa
dc.relation.referencesBarrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140spa
dc.relation.referencesBernard, G., Chouery, E., Putorti, M. L., Tétreault, M., Takanohashi, A., Carosso, G., Clément, I., Boespflug-Tanguy, O., Rodriguez, D., Delague, V., Abou Ghoch, J., Jalkh, N., Dorboz, I., Fribourg, S., Teichmann, M., Megarbane, A., Schiffmann, R., Vanderver, A., & Brais, B. (2011). Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. American journal of human genetics, 89(3), 415–423. https://doi.org/10.1016/j.ajhg.2011.07.014spa
dc.relation.referencesBoulon, S., Westman, B. J., Hutten, S., Boisvert, F. M., & Lamond, A. I. (2010). The nucleolus under stress. Molecular cell, 40(2), 216–227. https://doi.org/10.1016/j.molcel.2010.09.024spa
dc.relation.referencesBrown W. T. (1992). Progeria: a human-disease model of accelerated aging. The American journal of clinical nutrition, 55(6 Suppl), 1222S–1224S. https://doi.org/10.1093/ajcn/55.6.1222Sspa
dc.relation.referencesBurtner, C. R., & Kennedy, B. K. (2010). Progeria syndromes and ageing: what is the connection?. Nature reviews. Molecular cell biology, 11(8), 567–578. https://doi.org/10.1038/nrm2944spa
dc.relation.referencesBuchwalter, A., & Hetzer, M. W. (2017). Nucleolar expansion and elevated protein translation in premature aging. Nature communications, 8(1), 328. https://doi.org/10.1038/s41467-017-00322-zspa
dc.relation.referencesBurke, B., & Stewart, C. L. (2002). Life at the edge: the nuclear envelope and human disease. Nature reviews. Molecular cell biology, 3(8), 575–585. https://doi.org/10.1038/nrm879spa
dc.relation.referencesCampisi J. (1997). The biology of replicative senescence. European journal of cancer (Oxford, England : 1990), 33(5), 703–709. https://doi.org/10.1016/S0959-8049(96)00058-5spa
dc.relation.referencesCampisi J. (1998). The role of cellular senescence in skin aging. The journal of investigative dermatology. Symposium proceedings, 3(1), 1–5.spa
dc.relation.referencesCampisi J. (2005). Suppressing cancer: the importance of being senescent. Science (New York, N.Y.), 309(5736), 886–887. https://doi.org/10.1126/science.1116801spa
dc.relation.referencesCampisi, J., & Robert, L. (2014). Cell senescence: role in aging and age-related diseases. Interdisciplinary topics in gerontology, 39, 45–61. https://doi.org/10.1159/000358899spa
dc.relation.referencesCao, H., & Hegele, R. A. (2003). LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). Journal of human genetics, 48(5), 271–274. https://doi.org/10.1007/s10038-003-0025-3spa
dc.relation.referencesCarter, C. S., Sonntag, W. E., Onder, G., & Pahor, M. (2002). Physical performance and longevity in aged rats. The journals of gerontology. Series A, Biological sciences and medical sciences, 57(5), B193–B197. https://doi.org/10.1093/gerona/57.5.b193spa
dc.relation.referencesChilds, B. G., Durik, M., Baker, D. J., & van Deursen, J. M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine, 21(12), 1424–1435. https://doi.org/10.1038/nm.4000spa
dc.relation.referencesCiganda, M., & Williams, N. (2011). Eukaryotic 5S rRNA biogenesis. Wiley interdisciplinary reviews. RNA, 2(4), 523–533. https://doi.org/10.1002/wrna.74spa
dc.relation.referencesClancy, D. J., Gems, D., Hafen, E., Leevers, S. J., & Partridge, L. (2002). Dietary restriction in long-lived dwarf flies. Science (New York, N.Y.), 296(5566), 319. https://doi.org/10.1126/science.1069366spa
dc.relation.referencesCoppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual review of pathology, 5, 99–118. https://doi.org/10.1146/annurev-pathol-121808-102144spa
dc.relation.referencesCole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research, 42(Database issue), D633–D642.spa
dc.relation.referencesCsoka, A. B., English, S. B., Simkevich, C. P., Ginzinger, D. G., Butte, A. J., Schatten, G. P., Rothman, F. G., & Sedivy, J. M. (2004). Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging cell, 3(4), 235–243. https://doi.org/10.1111/j.1474-9728.2004.00105.xspa
dc.relation.referencesDieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M., & Pagano, A. (2007). The expanding RNA polymerase III transcriptome. Trends in genetics : TIG, 23(12), 614–622. https://doi.org/10.1016/j.tig.2007.09.001spa
dc.relation.referencesDimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., & Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363–9367. https://doi.org/10.1073/pnas.92.20.9363spa
dc.relation.referencesEllis, J. A., & Shackleton, S. (2011). Nuclear envelope disease and chromatin organization. Biochemical Society transactions, 39(6), 1683–1686. https://doi.org/10.1042/BST20110744spa
dc.relation.referencesEriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., Berglund, P., Dutra, A., Pak, E., Durkin, S., Csoka, A. B., Boehnke, M., Glover, T. W., & Collins, F. S. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298. https://doi.org/10.1038/nature01629spa
dc.relation.referencesFranceschi, C., Garagnani, P., Parini, P., Giuliani, C., & Santoro, A. (2018). Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nature reviews. Endocrinology, 14(10), 576–590. https://doi.org/10.1038/s41574-018-0059-4spa
dc.relation.referencesFreund, A., Patil, C. K., & Campisi, J. (2011). p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. The EMBO journal, 30(8), 1536–1548. https://doi.org/10.1038/emboj.2011.69spa
dc.relation.referencesGeorge, S., Rochford, J. J., Wolfrum, C., Gray, S. L., Schinner, S., Wilson, J. C., Soos, M. A., Murgatroyd, P. R., Williams, R. M., Acerini, C. L., Dunger, D. B., Barford, D., Umpleby, A. M., Wareham, N. J., Davies, H. A., Schafer, A. J., Stoffel, M., O'Rahilly, S., & Barroso, I. (2004). A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science (New York, N.Y.), 304(5675), 1325–1328. https://doi.org/10.1126/science.1096706spa
dc.relation.referencesGingold, H., Tehler, D., Christoffersen, N. R., Nielsen, M. M., Asmar, F., Kooistra, S. M., Christophersen, N. S., Christensen, L. L., Borre, M., Sørensen, K. D., Andersen, L. D., Andersen, C. L., Hulleman, E., Wurdinger, T., Ralfkiær, E., Helin, K., Grønbæk, K., Ørntoft, T., Waszak, S. M., Dahan, O., … Pilpel, Y. (2014). A dual program for translation regulation in cellular proliferation and differentiation. Cell, 158(6), 1281–1292. https://doi.org/10.1016/j.cell.2014.08.011spa
dc.relation.referencesGonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing research reviews, 33, 18–29. https://doi.org/10.1016/j.arr.2016.06.007spa
dc.relation.referencesHan, Y., Yan, C., Fishbain, S., Ivanov, I., & He, Y. (2018). Structural visualization of RNA polymerase III transcription machineries. Cell discovery, 4, 40. https://doi.org/10.1038/s41421-018-0044-zspa
dc.relation.referencesHarkema, L., Youssef, S. A., & de Bruin, A. (2016). Pathology of Mouse Models of Accelerated Aging. Veterinary pathology, 53(2), 366–389. https://doi.org/10.1177/0300985815625169spa
dc.relation.referencesHayflick L. (1974). The longevity of cultured human cells. Journal of the American Geriatrics Society, 22(1), 1–12. https://doi.org/10.1111/j.1532-5415.1974.tb02152.xspa
dc.relation.referencesHerranz, N., Gallage, S., Mellone, M., Wuestefeld, T., Klotz, S., Hanley, C. J., Raguz, S., Acosta, J. C., Innes, A. J., Banito, A., Georgilis, A., Montoya, A., Wolter, K., Dharmalingam, G., Faull, P., Carroll, T., Martínez-Barbera, J. P., Cutillas, P., Reisinger, F., Heikenwalder, M., … Gil, J. (2015). mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature cell biology, 17(9), 1205–1217. https://doi.org/10.1038/ncb3225spa
dc.relation.referencesHerranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. The Journal of clinical investigation, 128(4), 1238–1246. https://doi.org/10.1172/JCI95148spa
dc.relation.referencesHsu, A. L., Murphy, C. T., & Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science (New York, N.Y.), 300(5622), 1142–1145. https://doi.org/10.1126/science.1083701spa
dc.relation.referencesHughes, K. A., Alipaz, J. A., Drnevich, J. M., & Reynolds, R. M. (2002). A test of evolutionary theories of aging. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14286–14291. https://doi.org/10.1073/pnas.222326199spa
dc.relation.referencesJay, A. M., Conway, R. L., Thiffault, I., Saunders, C., Farrow, E., Adams, J., & Toriello, H. V. (2016). Neonatal progeriod syndrome associated with biallelic truncating variants in POLR3A. American journal of medical genetics. Part A, 170(12), 3343–3346. https://doi.org/10.1002/ajmg.a.37960spa
dc.relation.referencesKipling, D., Davis, T., Ostler, E. L., & Faragher, R. G. (2004). What can progeroid syndromes tell us about human aging?. Science (New York, N.Y.), 305(5689), 1426–1431. https://doi.org/10.1126/science.1102587spa
dc.relation.referencesKirkland, J. L., & Tchkonia, T. (2017). Cellular Senescence: A Translational Perspective. EBioMedicine, 21, 21–28. https://doi.org/10.1016/j.ebiom.2017.04.013spa
dc.relation.referencesKirkwood, T. B., & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 332(1262), 15–24. https://doi.org/10.1098/rstb.1991.0028spa
dc.relation.referencesKirkwood T. B. (1996). Human senescence. BioEssays : news and reviews in molecular, cellular and developmental biology, 18(12), 1009–1016. https://doi.org/10.1002/bies.950181211spa
dc.relation.referencesKong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H., & Lee, S. (2018). Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. International journal of molecular sciences, 19(4), 1057. https://doi.org/10.3390/ijms19041057spa
dc.relation.referencesKorniszewski, L., Nowak, R., Oknińska-Hoffmann, E., Skórka, A., Gieruszczak-Białek, D., & Sawadro-Rochowska, M. (2001). Wiedemann-Rautenstrauch (neonatal progeroid) syndrome: new case with normal telomere length in skin fibroblasts. American journal of medical genetics, 103(2), 144–148. https://doi.org/10.1002/ajmg.1530spa
dc.relation.referencesKrishnamurthy, J., Torrice, C., Ramsey, M. R., Kovalev, G. I., Al-Regaiey, K., Su, L., & Sharpless, N. E. (2004). Ink4a/Arf expression is a biomarker of aging. The Journal of clinical investigation, 114(9), 1299–1307. https://doi.org/10.1172/JCI22475spa
dc.relation.referencesLessel, D., Ozel, A. B., Campbell, S. E., Saadi, A., Arlt, M. F., McSweeney, K. M., Plaiasu, V., Szakszon, K., Szőllős, A., Rusu, C., Rojas, A. J., Lopez-Valdez, J., Thiele, H., Nürnberg, P., Nickerson, D. A., Bamshad, M. J., Li, J. Z., Kubisch, C., Glover, T. W., & Gordon, L. B. (2018). Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations. Human genetics, 137(11-12), 921–939. https://doi.org/10.1007/s00439-018-1957-1spa
dc.relation.referencesLevi, N., Papismadov, N., Solomonov, I., Sagi, I., & Krizhanovsky, V. (2020). The ECM path of senescence in aging: components and modifiers. The FEBS journal, 287(13), 2636–2646. https://doi.org/10.1111/febs.15282spa
dc.relation.referencesLi, P., Gan, Y., Xu, Y., Song, L., Wang, L., Ouyang, B., Zhang, C., & Zhou, Q. (2017). The inflammatory cytokine TNF-α promotes the premature senescence of rat nucleus pulposus cells via the PI3K/Akt signaling pathway. Scientific reports, 7, 42938. https://doi.org/10.1038/srep42938spa
dc.relation.referencesLieberman J. (2018). Unveiling the RNA World. The New England journal of medicine, 379(13), 1278–1280. https://doi.org/10.1056/NEJMcibr1808725spa
dc.relation.referencesLópez-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039spa
dc.relation.referencesLópez-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001spa
dc.relation.referencesMajewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., & Jabado, N. (2011). What can exome sequencing do for you?. Journal of medical genetics, 48(9), 580–589. https://doi.org/10.1136/jmedgenet-2011-100223spa
dc.relation.referencesMartin G. M. (1982). Syndromes of accelerated aging. National Cancer Institute monograph, 60, 241–247.spa
dc.relation.referencesMartin G. M. (2005). Genetic modulation of senescent phenotypes in Homo sapiens. Cell, 120(4), 523–532. https://doi.org/10.1016/j.cell.2005.01.031spa
dc.relation.referencesMathon, N. F., Malcolm, D. S., Harrisingh, M. C., Cheng, L., & Lloyd, A. C. (2001). Lack of replicative senescence in normal rodent glia. Science (New York, N.Y.), 291(5505), 872–875. https://doi.org/10.1126/science.1056782spa
dc.relation.referencesMorales, L. C., Arboleda, G., Rodríguez, Y., Forero, D. A., Ramírez, N., Yunis, J. J., & Arboleda, H. (2009). Absence of Lamin A/C gene mutations in four Wiedemann-Rautenstrauch syndrome patients. American journal of medical genetics. Part A, 149A(12), 2695–2699. https://doi.org/10.1002/ajmg.a.33090spa
dc.relation.referencesMukherjee, S., Date, A., Patravale, V., Korting, H. C., Roeder, A., & Weindl, G. (2006). Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clinical interventions in aging, 1(4), 327–348. https://doi.org/10.2147/ciia.2006.1.4.327spa
dc.relation.referencesNunes, V. S., & Moretti, N. S. (2017). Nuclear subcompartments: an overview. Cell biology international, 41(1), 2–7. https://doi.org/10.1002/cbin.10703spa
dc.relation.referencesOvadya, Y., & Krizhanovsky, V. (2014). Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 15(6), 627–642. https://doi.org/10.1007/s10522-014-9529-9spa
dc.relation.referencesPaolacci, S., Bertola, D., Franco, J., Mohammed, S., Tartaglia, M., Wollnik, B., & Hennekam, R. C. (2017). Wiedemann-Rautenstrauch syndrome: A phenotype analysis. American journal of medical genetics. Part A, 173(7), 1763–1772. https://doi.org/10.1002/ajmg.a.38246spa
dc.relation.referencesPaolacci, S., Li, Y., Agolini, E., Bellacchio, E., Arboleda-Bustos, C. E., Carrero, D., Bertola, D., Al-Gazali, L., Alders, M., Altmüller, J., Arboleda, G., Beleggia, F., Bruselles, A., Ciolfi, A., Gillessen-Kaesbach, G., Krieg, T., Mohammed, S., Müller, C., Novelli, A., Ortega, J., … Hennekam, R. C. (2018). Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. Journal of medical genetics, 55(12), 837–846. https://doi.org/10.1136/jmedgenet-2018-105528spa
dc.relation.referencesPartridge, L., & Gems, D. (2002). Mechanisms of ageing: public or private?. Nature reviews. Genetics, 3(3), 165–175. https://doi.org/10.1038/nrg753spa
dc.relation.referencesPivnick, E. K., Angle, B., Kaufman, R. A., Hall, B. D., Pitukcheewanont, P., Hersh, J. H., Fowlkes, J. L., Sanders, L. P., O'Brien, J. M., Carroll, G. S., Gunther, W. M., Morrow, H. G., Burghen, G. A., & Ward, J. C. (2000). Neonatal progeroid (Wiedemann-Rautenstrauch) syndrome: report of five new cases and review. American journal of medical genetics, 90(2), 131–140.spa
dc.relation.referencesPlotnikov, A., Zehorai, E., Procaccia, S., & Seger, R. (2011). The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et biophysica acta, 1813(9), 1619–1633. https://doi.org/10.1016/j.bbamcr.2010.12.012spa
dc.relation.referencesPuzianowska-Kuznicka, M., & Kuznicki, J. (2005). Genetic alterations in accelerated ageing syndromes. Do they play a role in natural ageing?. The international journal of biochemistry & cell biology, 37(5), 947–960. https://doi.org/10.1016/j.biocel.2004.10.011spa
dc.relation.referencesRautenstrauch, T., & Snigula, F. (1977). Progeria: A cell culture study and clinical report of familial incidence. European Journal of Pediatrics, 124(2), 101– 111. https://doi.org/10.1007/BF00477545spa
dc.relation.referencesRautenstrauch, T., Snigula, F., & Wiedemann, H. R. (1994). Neonatales progeroides Syndrom (Wiedemann-Rautenstrauch). Eine follow-up-Studie [Neonatal progeroid syndrome (Wiedemann-Rautenstrauch). A follow-up study]. Klinische Padiatrie, 206(6), 440–443. https://doi.org/10.1055/s-2008-1046647spa
dc.relation.referencesRessler, S., Bartkova, J., Niederegger, H., Bartek, J., Scharffetter-Kochanek, K., Jansen-Dürr, P., & Wlaschek, M. (2006). p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging cell, 5(5), 379–389. https://doi.org/10.1111/j.1474-9726.2006.00231.xspa
dc.relation.referencesRicklefs R. E. (1998). Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. The American naturalist, 152(1), 24–44. https://doi.org/10.1086/286147spa
dc.relation.referencesRomá-Mateo, C., Seco-Cervera, M., Ibáñez-Cabellos, J. S., Pérez, G., Berenguer-Pascual, E., Rodríguez, L. R., & García-Giménez, J. L. (2018). Oxidative Stress and the Epigenetics of Cell Senescence: Insights from Progeroid Syndromes. Current pharmaceutical design, 24(40), 4755–4770. https://doi.org/10.2174/1381612824666190114164117spa
dc.relation.referencesSaitsu, H., Osaka, H., Sasaki, M., Takanashi, J., Hamada, K., Yamashita, A., Shibayama, H., Shiina, M., Kondo, Y., Nishiyama, K., Tsurusaki, Y., Miyake, N., Doi, H., Ogata, K., Inoue, K., & Matsumoto, N. (2011). Mutations in POLR3A and POLR3B encoding RNA Polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. American journal of human genetics, 89(5), 644–651. https://doi.org/10.1016/j.ajhg.2011.10.003spa
dc.relation.referencesScaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science (New York, N.Y.), 312(5776), 1059–1063. https://doi.org/10.1126/science.1127168spa
dc.relation.referencesShalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelson, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G., & Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science (New York, N.Y.), 343(6166), 84–87. https://doi.org/10.1126/science.1247005spa
dc.relation.referencesSherr, C. J., & DePinho, R. A. (2000). Cellular senescence: mitotic clock or culture shock?. Cell, 102(4), 407–410. https://doi.org/10.1016/s0092-8674(00)00046-5spa
dc.relation.referencesShimojima, K., Shimada, S., Tamasaki, A., Akaboshi, S., Komoike, Y., Saito, A., Furukawa, T., & Yamamoto, T. (2014). Novel compound heterozygous mutations of POLR3A revealed by whole-exome sequencing in a patient with hypomyelination. Brain & development, 36(4), 315–321. https://doi.org/10.1016/j.braindev.2013.04.011spa
dc.relation.referencesSinclair, D. A., & Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell, 91(7), 1033–1042. https://doi.org/10.1016/s0092-8674(00)80493-6spa
dc.relation.referencesThiffault, I., Wolf, N. I., Forget, D., Guerrero, K., Tran, L. T., Choquet, K., Lavallée-Adam, M., Poitras, C., Brais, B., Yoon, G., Sztriha, L., Webster, R. I., Timmann, D., van de Warrenburg, B. P., Seeger, J., Zimmermann, A., Máté, A., Goizet, C., Fung, E., van der Knaap, M. S., Bernard, G. (2015). Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nature communications, 6, 7623. https://doi.org/10.1038/ncomms8623spa
dc.relation.referencesThorey, F., Jäger, M., Seller, K., Krauspe, R., & Wild, A. (2003). Kyphoskoliose beim Wiedemann-Rautenstrauch-Syndrom (neonatales Progerie Syndrom) [Kyphoscoliosis in Wiedemann-Rautenstrauch-syndrome (neonatal progeroid syndrome)]. Zeitschrift fur Orthopadie und ihre Grenzgebiete, 141(3), 341–344. https://doi.org/10.1055/s-2003-40084spa
dc.relation.referencesTiku, V., & Antebi, A. (2018). Nucleolar Function in Lifespan Regulation. Trends in cell biology, 28(8), 662–672. https://doi.org/10.1016/j.tcb.2018.03.007spa
dc.relation.referencesTimmers, P. R. H. J., Tiys, E. S., Sakaue, S., Akiyama, M., Kiiskinen, T. T. J., Zhou, W., Hwang, S. J., Yao, C., Biobank Japan Project, FinnGen, Deelen, J., Levy, D., Ganna, A., Kamatani, Y., Okada, Y., Joshi, P. K., Wilson, J. F., & Tsepilov, Y. A. (2022). Mendelian randomization of genetically independent aging phenotypes identifies LPA and VCAM1 as biological targets for human aging. Nature aging, 2(1), 19–30. https://doi.org/10.1038/s43587-021-00159-8spa
dc.relation.referencesTroen B. R. (2003). The biology of aging. The Mount Sinai journal of medicine, New York, 70(1), 3–22.spa
dc.relation.referencesTurowski, T. W., & Tollervey, D. (2016). Transcription by RNA polymerase III: insights into mechanism and regulation. Biochemical Society transactions, 44(5), 1367–1375. https://doi.org/10.1042/BST20160062spa
dc.relation.referencesUngewitter, E., & Scrable, H. (2009). Antagonistic pleiotropy and p53. Mechanisms of ageing and development, 130(1-2), 10–17. https://doi.org/10.1016/j.mad.2008.06.002spa
dc.relation.referencesVarani, J., Warner, R. L., Gharaee-Kermani, M., Phan, S. H., Kang, S., Chung, J. H., Wang, Z. Q., Datta, S. C., Fisher, G. J., & Voorhees, J. J. (2000). Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. The Journal of investigative dermatology, 114(3), 480–486. https://doi.org/10.1046/j.1523-1747.2000.00902.xspa
dc.relation.referencesVelasquez-Mendez K. (2019). Analysis of POLR3A gene expression in fibroblasts from Wiedemann-Rautenstrauch Syndrome patients. Autonomous University of Barcelona.spa
dc.relation.referencesVitale, G., Salvioli, S., & Franceschi, C. (2013). Oxidative stress and the ageing endocrine system. Nature reviews. Endocrinology, 9(4), 228–240. https://doi.org/10.1038/nrendo.2013.29spa
dc.relation.referencesWang, M., & Lemos, B. (2019). Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome research, 29(3), 325–333. https://doi.org/10.1101/gr.241745.118spa
dc.relation.referencesWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484spa
dc.relation.referencesWang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. https://doi.org/10.1126/science.1246981spa
dc.relation.referencesWarner, H. R., & Sierra, F. (2003). Models of accelerated ageing can be informative about the molecular mechanisms of ageing and/or age-related pathology. Mechanisms of ageing and development, 124(5), 581–587. https://doi.org/10.1016/s0047-6374(03)00008-3spa
dc.relation.referencesWarrenburg, B. P., Seeger, J., Zimmermann, A., Máté, A., Goizet, C., Fung, E., van der Knaap, M. S., … Bernard, G. (2015). Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nature communications, 6, 7623. https://doi.org/10.1038/ncomms8623spa
dc.relation.referencesWiedemann H. R. (1979). An unidentified neonatal progeroid syndrome: follow-up report. European journal of pediatrics, 130(1), 65–70. https://doi.org/10.1007/BF00441901spa
dc.relation.referencesWolf, N. I., Vanderver, A., van Spaendonk, R. M., Schiffmann, R., Brais, B., Bugiani, M., Sistermans, E., Catsman-Berrevoets, C., Kros, J. M., Pinto, P. S., Pohl, D., Tirupathi, S., Strømme, P., de Grauw, T., Fribourg, S., Demos, M., Pizzino, A., Naidu, S., Guerrero, K., van der Knaap, M. S., … 4H Research Group (2014). Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology, 83(21), 1898–1905. https://doi.org/10.1212/WNL.0000000000001002spa
dc.relation.referencesXu, Y., Li, N., Xiang, R., & Sun, P. (2014). Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends in biochemical sciences, 39(6), 268–276. https://doi.org/10.1016/j.tibs.2014.04.004spa
dc.relation.referencesYosef, R., Pilpel, N., Papismadov, N., Gal, H., Ovadya, Y., Vadai, E., Miller, S., Porat, Z., Ben-Dor, S., & Krizhanovsky, V. (2017). p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. The EMBO journal, 36(15), 2280–2295. https://doi.org/10.15252/embj.201695553spa
dc.relation.referencesYousef, H., Czupalla, C. J., Lee, D., Chen, M. B., Burke, A. N., Zera, K. A., Zandstra, J., Berber, E., Lehallier, B., Mathur, V., Nair, R. V., Bonanno, L. N., Yang, A. C., Peterson, T., Hadeiba, H., Merkel, T., Körbelin, J., Schwaninger, M., Buckwalter, M. S., Quake, S. R., … Wyss-Coray, T. (2019). Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nature medicine, 25(6), 988–1000. https://doi.org/10.1038/s41591-019-0440-4spa
dc.relation.referencesZarei, A., Razban, V., Hosseini, S. E., & Tabei, S. M. B. (2019). Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. The journal of gene medicine, 21(4), e3082. https://doi.org/10.1002/jgm.3082spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.decsMedicina molecularspa
dc.subject.decsMolecular Medicineeng
dc.subject.proposalSíndrome Progeroidespa
dc.subject.proposalSenescencia Celularspa
dc.subject.proposalEnvejecimiento Humanospa
dc.subject.proposalRNA Polimerasa IIIspa
dc.subject.proposalPOLR3Aeng
dc.subject.proposalNucleolospa
dc.subject.proposalRNA-seqeng
dc.subject.proposalAgingeng
dc.titleEstudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)spa
dc.title.translatedCellular and Molecular Study of the POLR3A Gene Associated with Neonatal Progeroid Syndrome (Wiedemann-Rautenstrauch Syndrome)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleAnálisis funcional celular/molecular de la RNA polimerasa III A (POLR3A) asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022422573.2023.pdf
Tamaño:
13.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: