Implementación y optimización del proceso sintético para el cambio del contraión de trifluoroacetato a clorhidrato o acetato en péptidos sintéticos derivados de LfcinB

dc.contributor.advisorGarcía Castañeda, Javier Eduardospa
dc.contributor.authorLópez Sánchez, Amalia Gisellespa
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.date.accessioned2025-09-24T20:16:33Z
dc.date.available2025-09-24T20:16:33Z
dc.date.issued2025-09-16
dc.descriptionilustraciones, diagramasspa
dc.description.abstractSe han identificado péptidos que hacen parte de la primera línea de defensa de los organismos (respuesta inmune innata) frente a patógenos y se conocen péptidos antimicrobianos (PAMs). Algunos PAMs ejercen efecto citotóxico en líneas celulares humanas derivadas de diferentes tipos de cáncer, por lo que se conocen como péptidos anticancerígenos (PACs). En la etapa de identificación de moléculas promisorias generalmente los péptidos son obtenidos mediante síntesis química en fase sólida utilizando la estrategia Fmoc/tBu y purificados por extracción en fase sólida RP-SPE, utilizando como par iónico el ácido trifluoroacético. Sin embargo, la mayoría de los fármacos son comercializados con el contraión clorhidrato o acetato, siendo el trifluoroacetato menos frecuente debido a su toxicidad. En esta investigación se diseñaron, desarrollaron e implementaron metodologías para intercambiar el ion trifluoroacetato por clorhidrato o acetato. Para esto se seleccionaron los PACs/PAMS promisorios: Los péptidos (RRWQWRRLLR)2K-Ahx, (RRWQWRFKKLG)2K-Ahx, KKWQWK-Ahx-RLLRRLLR y RRWQWRRWQWR. En primer lugar, estos péptidos se obtuvieron en forma de sal, siendo el contraión el ión trifluoroacetato (CF3COO-). Se identificaron los pasos críticos del proceso y se establecieron las condiciones óptimas para el cambio del contraión de los péptidos, siendo la metodología optimizada eficiente, rápida, de bajo costo y amigable con el medio ambiente. Adicionalmente, se desarrolló una metodología novedosa por RP-SPE para el intercambio del contraión en un solo proceso. El intercambio del contraión fue monitoreado y los productos finales fueron caracterizados por RP-HPLC, LC-MS, RMN y FT-IR. Los resultados indican que el intercambio del contraión no afectó la integridad ni identidad del péptido. Por otro lado, se evaluó la actividad antimicrobiana de los péptidos en cepas de E. coli y S. aureus y el efecto citotóxico en líneas celulares de cáncer de mama MCF-7 y de cuello uterino HeLa. Se determinó que el cambio del contraión no afectó la actividad antibacteriana ni la actividad anticancerosa de los péptidos. Los resultados sugieren que los métodos desarrollados pueden ser implementados de manera rutinaria en la síntesis de péptidos en fase sólida y que el cambio del contraión puede ser realizado de manera eficiente, independiente de las propiedades fisicoquímicas de los péptidos como la longitud, polaridad, polivalencia, presencia de aminoácidos no naturales o moléculas no proteicas. (Texto tomado de la fuente).spa
dc.description.abstractPeptides have been identified as part of the organism's first line of defense (innate immune response) against pathogens and are known as antimicrobial peptides (AMPs). Some AMPs exert cytotoxic effects on human cell lines derived from different types of cancer and are therefore known as anticancer peptides (ACPs). In the stage of identifying promising molecules, peptides are generally obtained by solid-phase chemical synthesis using the Fmoc/tBu strategy and purified by solid-phase extraction (RP-SPE), using trifluoroacetic acid as the ion pair. However, most drugs are marketed with the counterion hydrochloride or acetate, with trifluoroacetate being less common due to its toxicity. In this research, methodologies were designed, developed, and implemented to exchange the trifluoroacetate ion for hydrochloride or acetate. For this purpose, the following promising PACs/PAMS were selected: the peptides (RRWQWRRLLR)2K-Ahx, (RRWQWRFKKLG)2K-Ahx, KKWQWK-Ahx-RLLRRLLR, and RRWQWRRWQWR. These peptides were first obtained in salt form, with the counterion being the trifluoroacetate ion (CF3COO-). Critical process steps were identified, and optimal conditions for peptide counterion exchange were established. The optimized methodology was efficient, rapid, low-cost, and environmentally friendly. Additionally, a novel RP-SPE methodology was developed for single-process counterion exchange. Counterion exchange was monitored, and the final products were characterized by RP-HPLC, LC-MS, NMR, and FT-IR. The results indicate that counterion exchange did not affect the integrity or identity of the peptide. Furthermore, the antimicrobial activity of the peptides was evaluated against E. coli and S. aureus strains, and the cytotoxic effect was assessed against MCF-7 breast cancer and HeLa cervical cancer cell lines. It was determined that the counterion exchange did not affect the antibacterial or anticancer activity of the peptides. The results suggest that the developed methods can be routinely implemented in solid-phase peptide synthesis and that the counterion exchange can be performed efficiently, independent of the physicochemical properties of the peptides, such as length, polarity, polyvalence, presence of unnatural amino acids, or non-protein molecules.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica analíticaspa
dc.format.extentxxvi, 123 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88954
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotà, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedBiremespa
dc.relation.referencesV. P. Martinovich and K. U. Baradzina, “Peptide Hormones in Medicine: A 100-Year History,” Apr. 01, 2022, Pleiades journals. doi: 10.1134/S1068162022020157.
dc.relation.referencesV. Erckes and C. Steuer, “A story of peptides, lipophilicity and chromatography - back and forth in time,” Mar. 22, 2022, Royal Society of Chemistry. doi: 10.1039/d2md00027j.
dc.relation.referencesC. Ardino et al., “The impact of counterions in biological activity: case study of antibacterial alkylguanidino ureas,” Mol Divers, vol. 27, no. 3, pp. 1489–1499, Jun. 2023, doi: 10.1007/s11030-022-10505-6.
dc.relation.referencesA. C. Barragán-Cárdenas et al., “LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines,” Arabian Journal of Chemistry, vol. 15, no. 8, Aug. 2022, doi: 10.1016/j.arabjc.2022.103998.
dc.relation.referencesK. Sikora, M. Jaśkiewicz, D. Neubauer, D. Migoń, and W. Kamysz, “The role of counter-ions in peptides—an overview,” Pharmaceuticals, vol. 13, no. 12, pp. 1–26, Dec. 2020, doi: 10.3390/ph13120442.
dc.relation.referencesA. Streuli, C. R. Coxon, and C. Steuer, “Simultaneous Quantification of Commonly Used Counter Ions in Peptides and Active Pharmaceutical Ingredients by Mixed Mode Chromatography and Evaporative Light Scattering Detection,” J Pharm Sci, vol. 110, no. 8, pp. 2997–3003, Aug. 2021, doi: 10.1016/j.xphs.2021.04.008.
dc.relation.referencesS. Sahakijpijarn, C. Moon, J. J. Koleng, and R. O. Williams, “Formulation composition and process affect counterion for CSP7 peptide,” Pharmaceutics, vol. 11, no. 10, Oct. 2019, doi: 10.3390/pharmaceutics11100498.
dc.relation.referencesS. Roux, E. Zékri, B. Rousseau, J. C. Cintrat, and N. Fay, “Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: A critical evaluation of different approaches,” Journal of Peptide Science, vol. 14, no. 3, pp. 354–359, Mar. 2008, doi: 10.1002/psc.951.
dc.relation.referencesK. Sikora, D. Neubauer, M. Jaśkiewicz, and W. Kamysz, “Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach,” Int J Pept Res Ther, vol. 24, no. 2, pp. 265–270, Jun. 2018, doi: 10.1007/s10989-017-9611-7.
dc.relation.referencesF. Castiglia et al., “NMR study of the secondary structure and biopharmaceutical formulation of an active branched antimicrobial peptide,” Molecules, vol. 24, no. 23, Nov. 2019, doi: 10.3390/molecules24234290.
dc.relation.referencesR. B. Merrifield, “Solid Phase Peptide Synthesis. I. The Synthesis of aTetrapeptide,” J Am Chem Soc, vol. 85, no. 14, pp. 2149–2154, Jul. 1963, doi: 10.1021/ja00897a025.
dc.relation.referencesD. Goyal and B. Goyal, “Solid phase peptide synthesis,” in De Novo Peptide Design, Elsevier, 2023, pp. 57–77. doi: 10.1016/B978-0-323-99917-5.00007-X.
dc.relation.referencesB. G. de la Torre and F. Albericio, “Peptide Therapeutics 2.0,” Molecules, vol. 25, no. 10, p. 2293, May 2020, doi: 10.3390/molecules25102293.
dc.relation.referencesD. A. T. Pires, M. P. Bemquerer, and C. J. Do Nascimento, “Some mechanistic aspects on Fmoc solid phase peptide synthesis,” Int J Pept Res Ther, vol. 20, no. 1, pp. 53–69, Mar. 2014, doi: 10.1007/s10989-013-9366-8.
dc.relation.referencesD. S. Insuasty Cepeda, “Implementación y Optimización de la Síntesis de Péptidos Diméricos Derivados de la Secuencia LfcinB (20-30) con Potencial Actividad Anticancerígena Contra el Cáncer de Mama,” Tesis de Doctorado en Ciencias-Química, Universidad Nacional de Colombia, 2022.
dc.relation.referencesH. M. Pineda Castañeda, “Péptidos quiméricos derivados de la Lactoferricina Bovina y la Buforina: síntesis, caracterización y evaluación de su actividad antibacteriana,” Tesis de Maestría en Ciencias-Química, Universidad Nacional de Colombia, 2019.
dc.relation.referencesX. Carolina Pulido, M. Royo, F. Albericio, and H. Rodríguez, “Péptidos que atraviesan la membrana celular como potenciales transportadores de fármacos,” Bionatura, vol. 1, no. 4, Dec. 2016, doi: 10.21931/RB/2016.01.04.9.
dc.relation.referencesJ. H. Cho, B. H. Sung, and S. C. Kim, “Buforins: Histone H2A-derived antimicrobial peptides from toad stomach,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1788, no. 8, pp. 1564–1569, Aug. 2009, doi: 10.1016/j.bbamem.2008.10.025.
dc.relation.referencesD. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules 2019, Vol. 24, Page 1215, vol. 24, no. 7, p. 1215, Mar. 2019, doi: 10.3390/MOLECULES24071215.
dc.relation.referencesJ. M. Andrews, “Determination of minimum inhibitory concentrations,” Journal of Antimicrobial Chemotherapy, vol. 48, no. suppl_1, pp. 5–16, Jul. 2001, doi: 10.1093/jac/48.suppl_1.5.
dc.relation.referencesJ. A. Plumb, “Cell Sensitivity Assays: The MTT Assay.”
dc.relation.referencesP. Kumar, A. Nagarajan, and P. D. Uchil, “Analysis of cell viability by the MTT assay,” Cold Spring Harb Protoc, vol. 2018, no. 6, pp. 469–471, Jun. 2018, doi: 10.1101/pdb.prot095505.
dc.relation.referencesM. Arora, “Cell Culture Media: A Review,” Materials and Methods, vol. 3, Mar. 2013, doi: 10.13070/mm.en.3.175.
dc.relation.referencesD. M. Pastor et al., “Primary cell lines: false representation or model system? a comparison of four human colorectal tumors and their coordinately established cell lines,” Int J Clin Exp Med, vol. 3, no. 1, pp. 69–83, 2010, [Online]. Available: www.ijcem.com
dc.relation.references“HeLa - CCL-2 | ATCC.” Accessed: May 21, 2024. [Online]. Available: https://www.atcc.org/products/ccl-2
dc.relation.referencesK. B. Horwitz, M. E. Costlow, and W. L. McGuire, “MCF-7: A human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors,” Steroids, vol. 26, no. 6, pp. 785–795, Dec. 1975, doi: 10.1016/0039-128X(75)90110-5.
dc.relation.references“MCF-7 - HTB-22 | ATCC.” Accessed: May 21, 2024. [Online]. Available: https://www.atcc.org/products/htb-22
dc.relation.referencesC. T. Muleva and S. S. Bharate, “Halide counterions in FDA-approved pharmaceutical salts,” Nov. 01, 2023, Editions de Sante. doi: 10.1016/j.jddst.2023.104999.
dc.relation.referencesE. Kaiser and J. Rohrer, “Determination of residual trifluoroacetate in protein purification buffers and peptide preparations by ion chromatography,” in Journal of Chromatography A, Jun. 2004, pp. 113–117. doi: 10.1016/j.chroma.2004.03.044.
dc.relation.referencesM. Johnson, M. Liu, E. Struble, and K. Hettiarachchi, “Characterization of cyclic peptides containing disulfide bonds,” J Pharm Biomed Anal, vol. 109, pp. 112–120, May 2015, doi: 10.1016/j.jpba.2015.01.009.
dc.relation.referencesT. M. Cahill, J. A. Benesch, M. S. Gustin, E. J. Zimmerman, and J. N. Seiber, “Simplified method for trace analysis of trifluoroacetic acid in plant, soil, and water samples using headspace gas chromatography,” Anal Chem, vol. 71, no. 20, pp. 4465–4471, Oct. 1999, doi: 10.1021/ac990484l.
dc.relation.referencesM. Namazian, M. Zakery, M. R. Noorbala, and M. L. Coote, “Accurate calculation of the pKa of trifluoroacetic acid using high-level ab initio calculations,” Chem Phys Lett, vol. 451, no. 1–3, pp. 163–168, Jan. 2008, doi: 10.1016/j.cplett.2007.11.088.
dc.relation.referencesSigma-Aldrich, “FICHA DE DATOS DE SEGURIDAD TFA.” Accessed: May 22, 2024. [Online]. Available: https://www.sigmaaldrich.com/CO/es/search/tfa?focus=products&page=1&perpage=30&sort=relevance&term=TFA&type=product
dc.relation.referencesC. Roth GmbH, “FICHA DE DATOS DE SEGURIDAD TFA.” Accessed: May 22, 2024. [Online]. Available: www.carlroth.de
dc.relation.referencesC. Sun and B. Corbett, “Trifluoroacetic acid: Three times the fluoride, three times the toxicity?,” American Journal of Emergency Medicine, vol. 36, no. 3, pp. 529.e1-529.e2, Mar. 2018, doi: 10.1016/j.ajem.2017.12.030.
dc.relation.referencesK. R. Solomon et al., “Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols,” Oct. 02, 2016, Taylor and Francis Inc. doi: 10.1080/10937404.2016.1175981.
dc.relation.referencesM. F. Smit, P. D. R. van Heerden, J. J. Pienaar, L. Weissflog, R. J. Strasser, and G. H. J. Krüger, “Effect of trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, on Phaseolus vulgaris and Zea mays,” Plant Physiology and Biochemistry, vol. 47, no. 7, pp. 623–634, Jul. 2009, doi: 10.1016/j.plaphy.2009.02.003.
dc.relation.referencesC. Wiegand, S. Pflugmacher, M. Giese, H. Frank, and C. Steinberg, “Uptake, toxicity, and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish,” Ecotoxicol Environ Saf, vol. 45, no. 2, pp. 122–131, 2000, doi: 10.1006/eesa.1999.1845.
dc.relation.referencesL. S. Kaminsky, J. M. Fraser, M. Seaman, and D. Dunbar, “Rat liver metabolism and toxicity of 2,2,2-trifluoroethanol,” Biochem Pharmacol, vol. 44, no. 9, pp. 1829–1837, 1992, doi: 10.1016/0006-2952(92)90078-w.
dc.relation.referencesA. Ahmad, K. P. Madhusudanan, and V. Bhakuni, “Trichloroacetic acid and trifluoroacetic acid-induced unfolding of cytochrome c: stabilization of a native-like folded intermediate,” Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol. 1480, no. 1–2, pp. 201–210, Jul. 2000, doi: 10.1016/S0167-4838(00)00069-8.
dc.relation.referencesA. I. Boullerne, P. E. Polak, D. Braun, A. Sharp, D. Pelligrino, and D. L. Feinstein, “Effects of peptide fraction and counter ion on the development of clinical signs in experimental autoimmune encephalomyelitis,” J Neurochem, vol. 129, no. 4, pp. 696–703, May 2014, doi: 10.1111/jnc.12664.
dc.relation.referencesM. R. Felício, O. N. Silva, S. Gonçalves, N. C. Santos, and O. L. Franco, “Peptides with Dual Antimicrobial and Anticancer Activities,” Front Chem, vol. 5, Feb. 2017, doi: 10.3389/fchem.2017.00005.
dc.relation.referencesM. D. L. R. Arbeláez, D. T. Aleixo, A. C. Barragán Cárdenas, F. Pittella, and G. D. Tavares, “The role of synthetic peptides derived from bovine lactoferricin against breast cancer cell lines: A mini-review,” 2023, Walter de Gruyter GmbH. doi: 10.1515/oncologie-2023-0297.
dc.relation.referencesA. Barragán-Cárdenas et al., “Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin,” RSC Adv, vol. 10, no. 30, pp. 17593–17601, 2020, doi: 10.1039/D0RA02688C.
dc.relation.referencesK. J. Cárdenas-Martínez et al., “Evaluating the In Vitro Activity and Safety of Modified LfcinB Peptides as Potential Colon Anticancer Agents: Cell Line Studies and Insect-Based Toxicity Assessments,” ACS Omega, vol. 8, no. 41, pp. 37948–37957, Oct. 2023, doi: 10.1021/acsomega.3c03455.
dc.relation.referencesD. S. Insuasty-Cepeda et al., “Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway,” Int J Mol Sci, vol. 21, no. 12, p. 4550, Jun. 2020, doi: 10.3390/ijms21124550.
dc.relation.referencesA. C. Barragán-Cárdenas et al., “Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines,” ACS Omega, vol. 8, no. 2, pp. 2712–2722, Jan. 2023, doi: 10.1021/acsomega.2c07336.
dc.relation.referencesK. Aguirre-Guataqui et al., “Chimeric Peptides Derived from Bovine Lactoferricin and Buforin II: Antifungal Activity against Reference Strains and Clinical Isolates of Candida spp.,” Antibiotics, vol. 11, no. 11, Nov. 2022, doi: 10.3390/antibiotics11111561.
dc.relation.referencesK. A. Huertas Ortiz, “Caracterización fisicoquímica de un péptido polivalente, derivado de la Lactoferricina Bovina, candidato a fármaco para el tratamiento del Cáncer de Mama,” Maestría en Ciencias-Química, Universidad Nacional de Colombia, 2021.
dc.relation.referencesL. R. Snyder, J. J. Kirkland, and J. W. Dolan, Introduction to Modern Liquid Chromatography, 3rd ed. New Jersey, USA: John Wiley and sons, 2010.
dc.relation.referencesA. T. Botina Rodríguez, “Actividad antimicrobiana del péptido palindrómico LfcinB (21-25)Pal RWQWRWQWR y sus análogos,” Maestría en Microbiología, Universidad Nacional de Colombia, 2023.
dc.relation.referencesP. R. Hansen, “Hemolytic Activity of Antimicrobial Peptides,” in Antimicrobial Peptides, vol. 1548, 2017, ch. 31, pp. 427–435. doi: 10.1007/978-1-4939-6737-7_32.
dc.relation.referencesV. V. Andrushchenko, H. J. Vogel, and E. J. Prenner, “Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides,” Journal of Peptide Science, vol. 13, no. 1, pp. 37–43, Jan. 2007, doi: 10.1002/psc.793.
dc.relation.referencesN. Mateo González López, “CARACTERIZACIÓN FISICOQUÍMICA DE PÉPTIDOS SINTÉTICOS MONOMÉRICOS Y DIMÉRICOS DERIVADOS DE LA LACTOFERRICINA BOVINA CON ACTIVIDAD ANTICANCERÍGENA COMPROBADA,” 2023.
dc.relation.references“Sodium trifluoroacetate(2923-18-4) IR1.” Accessed: May 26, 2024. [Online]. Available: https://www.chemicalbook.com/SpectrumEN_2923-18-4_IR1.htm.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalContraiónspa
dc.subject.proposalPéptidos sintéticosspa
dc.subject.proposalSíntesis en fase sólidaspa
dc.subject.proposalRP-HPLCspa
dc.subject.proposalAnión Trifluroacetatospa
dc.subject.proposalAnión acetatospa
dc.subject.proposalAnión clorurospa
dc.subject.proposalCounterioneng
dc.subject.proposalSynthetic peptideseng
dc.subject.proposalSolid phase synthesiseng
dc.subject.proposalTrifluoroacetate anioneng
dc.subject.proposalAcetate anioneng
dc.subject.proposalChloride anioneng
dc.subject.wikidatapéptido antimicrobianospa
dc.subject.wikidataantimicrobial peptideeng
dc.subject.wikidatacontraiónspa
dc.subject.wikidatacounterioneng
dc.subject.wikidataLactoferricinaspa
dc.subject.wikidatalactoferricineng
dc.titleImplementación y optimización del proceso sintético para el cambio del contraión de trifluoroacetato a clorhidrato o acetato en péptidos sintéticos derivados de LfcinBspa
dc.title.translatedImplementation and optimization of the synthetic process for changing the counterion from trifluoroacetate to hydrochloride or acetate in synthetic peptides derived from LfcinBeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleObtención de Un Prototipo Peptídico Promisorio Para el Desarrollo de un Medicamento de Amplio Espectro para el Tratamiento del Cáncer de Colon, Cuello Uterino y Próstata - Código 456422:spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032487212_2025.pdf
Tamaño:
5.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: