Associated prime ideals of noncommutative rings of polynomials type

dc.contributor.advisorReyes, Armandospa
dc.contributor.authorRamírez Cubillos, María Camilaspa
dc.date.accessioned2020-03-06T20:09:41Zspa
dc.date.available2020-03-06T20:09:41Zspa
dc.date.issued2019-10spa
dc.description.abstractEn el presente trabajo estudiamos los ideales primos asociados de algunos anillos no conmutativos de tipo polinomial. En la literatura encontramos que estos ideales fueron caracterizados en un primer trabajo por Brewer y Heinzer (1974), donde ellos muestran que los ideales primos asociados de un anillo de polinomios sobre un anillo R pueden ser extendidos a partir de los ideales primos asociados de R. A partir de esto, diferentes autores han extendido este resultado para otras estructuras como lo hizo Annin (2004) desarrollando su trabajo sobre las extensiones de Ore. Otro trabajo que resaltamos es el realizado por Bhat (2010) en donde él caracterizó los ideales primos asociados sobre anillos $\sigma$-rígidos débiles. A partir de los resultados encontrados en la literatura, en este trabajo extendemos estos trabajos para las extensiones PBW torcidas introducidas por Gallego y Lezama (2011). Nosotros desarrollamos nuestro trabajo en dos partes: primero, extendemos los resultados de (2004) para las extensiones PBW torcidas. Con este objetivo en mente, presentamos algunas propiedades de esta estructura bajo la condición de $(\Sigma, \Delta)$-compatibilidad (definida en Hashemi, Khalil and Alhevaz (2017) y Reyes and Suarez (2018)) y definimos la noción de anulador complaciente (noción definida por Annin (2004) para extensiones de Ore) sobre las extensiones PBW torcidas. Como una segunda parte, extendemos los resultados de Bhat (2010), para las extensiones PBW torcidas sobre anillos $\Sigma$-rígidos débiles introducidos en Reyes and Suarez (2018).spa
dc.description.abstractIn this work we study the associated prime ideals of some noncommutative rings of polynomial type. In the literature we find that these ideals were characterized in a first work by Brewer and Heinzer (1974), where they shown that the associated prime ideals of a polynomial ring over a ring R can be extended from the associated prime ideals of R. From that, different authors have extended this result to other structures as Annin did in (2004) developing his work over Ore extensions. Another work that we highlight be the one carried out by Bhat (2010) where he characterized the associated prime ideals over weak $\sigma$-rigid rings. From the results found in the literature, in this work we extend these works for the skew PBW extensions introduced by Gallego and Lezama (2011). We develop our work in two parts: first, we extend the results of Annin (2004) for skew PBW extensions. With this objective in mind, we present some properties of this structure under the condition of $(\Sigma, \Delta)$-compatibility (defined in Hashemi, Khalil and Alhevaz (2017) and Reyes and Suarez (2018)), and we define the notion of annihilator-compliant (notion defined by Annin in (2004) for Ore extensions) for the context of skew PBW extensions. As a second part, we extend the results of Bhat (2010) for the skew PBW extensions over weak $\Sigma$-rigid rings introduced in Reyes and Suarez (2018).spa
dc.description.additionalMagíster en Ciencias en Matemáticasspa
dc.description.degreelevelMaestríaspa
dc.format.extent55spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75953
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.relation.referencesM. F. Atiyah and I. G.MacDonald. Introduction to Commutative Algebra. Addison- Wesley Publishing Company, 1969.spa
dc.relation.referencesS. Annin. Associated and Attached Primes Over Noncommutative Rings. PhD thesis, University of California, Berkeley, 2002.spa
dc.relation.referencesS. Annin. Associated primes over skew polynomial rings. Comm. Algebra, 30(5):2511– 2528, 2002.spa
dc.relation.referencesS. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193–205, 2004.spa
dc.relation.referencesA. Bell and K. Goodearl. Uniformrank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J.Math., 131(1):13–37, 1988.spa
dc.relation.referencesJ. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003.spa
dc.relation.referencesJ.W. Brewer andW. J. Heinzer. Associated primes of principal ideals. DukeMath. J., 41(1):1–7, 1974.spa
dc.relation.referencesV. K. Bhat. Polynomial rings over pseudovaluation rings. Int. J.Math.Math. Sci., 2007.spa
dc.relation.referencesV. K. Bhat. Associated prime ideals of skew polynomial rings. Beitr. Algebra Geom., 49(1):277–283, 2008.spa
dc.relation.referencesV. K. Bhat. Transparent rings and their extensions. New York J.Math., 15(291-299), 2009.spa
dc.relation.referencesV. K. Bhat. Associated prime ideals of weak $\sigma$-rigid rings and their extensions. Algebra DiscreteMath., 10(1):8–17, 2010.spa
dc.relation.referencesV. K. Bhat. Ore extensions over weak $\sigma$-rigid rings and $\sigma$(*)-rings. Eur. J. Pure Appl. Math., 3(4):695–703, 2010.spa
dc.relation.referencesG. F. Birkenmeier, H. E. Heatherly, and E. K. Lee. Completely prime ideals and associated radicals. Ring Theory, eds. S. K. Jain and S. T. Rizvi,World Scientific,Singapore, pages 102–129, 1993.spa
dc.relation.referencesN. Bourbaki. Elements ofMathematics Commutative Algebra. Springer, 1972.spa
dc.relation.referencesT. Becker and V.Weispfenning. Gröbner Bases. A Computational Approach to Commutative Algebra. 141. Graduate Texts inMathematics, Springer-Verlag, 1993.spa
dc.relation.referencesC. Faith. Associated primes in commutative polynomial rings. Comm. Algebra, 28(8):3983–3986, 2000.spa
dc.relation.referencesC. Gallego. Matrix methods for projective modules over $\sigma$-PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, 2015.spa
dc.relation.referencesC. Gallego and O. Lezama. Gröbner bases for ideals of $\sigma$-PBW extensions. Comm. Algebra, 39(1):50–75, 2011.spa
dc.relation.referencesG.M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer- Verlag Berlin Heidelberg, Second edition, 2008.spa
dc.relation.referencesK. R. Goodearl and R. B.Warfield. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004.spa
dc.relation.referencesE. Hashemi, K. Khalilnezhad, and A. Alhevaz. (\Sigma,\Delta)-compatible skew PBW extension ring. KyungpookMath. J., 57(3):401–417, 2017.spa
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra, 151(3):215–226, 2000.spa
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. On skew Armendariz rings. Comm. Algebra, 31(1):103–122, 2003.spa
dc.relation.referencesJ. Jaramillo and A. Reyes. Symmetry and reversibility properties for quantumalgebras and skew Poincaré-Birkhoff-Witt extensions. Ingeniería y Ciencia, 14(27):29–52, 2018.spa
dc.relation.referencesJ. Krempa. Some examples of reduced rings. Algebra Colloq., 3(4):289–300, 1996.spa
dc.relation.referencesT. Y. Lam. Lectures on Modules and Rings, Graduate Texts in Mathematics Vol. 189. Springer-Verlag, Berlin, 1998.spa
dc.relation.referencesT. Y. Lam. A First Course in Noncommutative Rings. Graduate Texts inMathematics Vol. 131. Springer, New York, NY, 2001.spa
dc.relation.referencesO. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015.spa
dc.relation.referencesD. Lazard. Autour de la platitude. Bull. Soc.Math. France, 97:81–128, 1969.spa
dc.relation.referencesO. Lezama. Cuadernos de Álgebra, No. 9: Álgebra no conmutativa. SAC2, Departamento deMatemáticas, Universidad Nacional de Colombia, Bogotá, Colombia, 2019.spa
dc.relation.referencesO. Lezama and C. Gallego. d-Hermite rings and skew PBWextensions. São Paulo J. Math. Sci., 10(1):60–72, 2016.spa
dc.relation.referencesO. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017.spa
dc.relation.referencesA. Leroy and J.Matczuk. On induced modules over Ore extensions. Comm. Algebra, 32(7):2743–2766, 2004.spa
dc.relation.referencesO. Lezama and A. Reyes. Some homological properties of skew PBW extensions. Comm. Algebra, 42(3):1200–1230, 2014.spa
dc.relation.referencesO. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss.Math. Gen. Algebra Appl., 37(1):45–57, 2017.spa
dc.relation.referencesG.Marks. Direct product and power series formations over 2-primal rings. Advances in Ring Theory, pages 239–245, 1997.spa
dc.relation.referencesJ.McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. AmericanMathematical Society, Second edition, 2001.spa
dc.relation.referencesH. Nordstrom. Associated primes over Ore extensions. J. Algebra, 286(1):69–75, 2005.spa
dc.relation.referencesH. Nordstrom. Simplemodules over generalizedWeyl algebras and their associated primes. Comm. Algebra, 40(9):3224–3235, 2012.spa
dc.relation.referencesA.Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol.Mat., 24(2):131–148, 2017.spa
dc.relation.referencesA. Niño and A. Reyes. Some remarks aboutminimal prime ideals of skew Poincaré- Birkhoff-Witt extensions. Algebra DiscreteMath., 2020. To appear.spa
dc.relation.referencesO. Ore. Theory of non-commutative polynomials. Ann. of Math. Second Series, 34(3):480–508, 1933.spa
dc.relation.referencesL. Ouyang. Extensions of generalized \sigma-rigid rings. Int. Electron. J. Algebra, 3:103–116, 2008.spa
dc.relation.referencesA. Reyes. Uniform dimension over skew PBW extensions. Rev. Colombiana Mat., 48(1):79–96, 2014.spa
dc.relation.referencesA. Reyes. Skew PBWextensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. TemasMat., 33(2):173–189, 2015.spa
dc.relation.referencesA. Reyes. Armendarizmodules over skewPBWextensions. Comm. Algebra, 47(3):1248– 1270, 2019.spa
dc.relation.referencesA. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995.spa
dc.relation.referencesA. Reyes and C. Rodríguez. The McCoy condition on skew Poincaré-Birkhoff-Witt extensions. Commun.Math. Stat., 2019. https://doi.org/10.1007/s40304-019-00184-5.spa
dc.relation.referencesA. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol.Mat., 23(1):71–79, 2016.spa
dc.relation.referencesA. Reyes and H. Suárez. Bases for quantum algebras and skew Poincaré-Birkhoff-Witt extensions. Momento, 54(1):54–75, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. Enveloping algebra and skew Calabi-Yau Algebras over skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 102(2):373–397, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. PBWbases for some 3-dimensional skew polynomial algebras. Far East J.Math. Sci. (FJMS), 101(6):1207–1228, 2017.spa
dc.relation.referencesA. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBWextensions. Rev. Un.Mat. Argentina, 59(1):157–178, 2018.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak §-rigid rings. Far East J.Math. Sci., 106(2):421–440, 2018.spa
dc.relation.referencesA. Reyes and Y. Suárez. On the ACCP in skew Poincaré-Birkhoff-Witt extensions. Beitr. Algebra Geom., 59(4):625–643, 2018.spa
dc.relation.referencesA. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun.Math. Stat., 2019. https://doi.org/10.1007/s40304-019-00189-0.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019.spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 2020. https://doi.org/10.1142/S0219498820502254.spa
dc.relation.referencesR. Schock. Polynomial rings over finite dimensional rings. Pacific J.Math, 42(1):251– 257, 1972.spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Revista Ciencia en Desarrollo, 6(2):205–213, 2015.spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat., 51(2):221–238, 2017.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcMatemáticas::Álgebraspa
dc.subject.proposalIdeal primo asociadospa
dc.subject.proposalAssociated prime idealeng
dc.subject.proposalAnillo no conmutativospa
dc.subject.proposalNoncommutative ringeng
dc.subject.proposalSkew PBW extensioneng
dc.subject.proposalExtensión PBW torcidaspa
dc.subject.proposalAnillo compatiblespa
dc.subject.proposalCompatible ringeng
dc.subject.proposalAnillo $\Sigma$-rígido débilspa
dc.subject.proposalWeak $\Sigma$-rigid ringeng
dc.titleAssociated prime ideals of noncommutative rings of polynomials typespa
dc.title.alternativeIdeales primos asociados de anillos noconmutativos de tipo polinomialspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032455053.2020.pdf
Tamaño:
593.63 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: