Diversidad de las comunidades microbianas del suelo asociadas a bosque andino y seco tropical bajo temporada seca y lluviosa empleando Metagenómica
dc.contributor.advisor | López Álvarez, Diana Carolina | |
dc.contributor.author | Duque Zapata, Juan Diego | |
dc.contributor.educationalvalidator | Muñoz Florez, Jaime Eduardo | |
dc.contributor.orcid | https://orcid.org/0000-0001-5496-2502 | spa |
dc.contributor.researchgroup | Grupo de Investigación en Diversidad Biológica | spa |
dc.date.accessioned | 2025-06-27T20:23:58Z | |
dc.date.available | 2025-06-27T20:23:58Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficas, tablas | spa |
dc.description.abstract | Los diferentes servicios ecosistémicos y cambios biológicos que ofrece el suelo como la degradación y aporte de materia orgánica, ciclos biogeoquímicos entre otros, depende en casi un 80% de los microorganismos habitan en el suelo, los cuales están involucrados directamente en estos procesos. Sin embargo, se estima que solo el 1,0% de estos organismos del suelo son cultivables en laboratorio, para mitigar este desconocimiento y gracias a los avances en la biología molecular y la bioinformática ha surgido la metagenómica, una técnica que extrae los ácidos nucleicos de los individuos directamente del suelo permitiendo así la caracterización y el estudio de los microorganismos no cultivables. Con base a esto, esta investigación tuvo como objetivo estudiar la composición y distribución taxonómica, el potencial funcional de las comunidades microbianas de suelos en el Bosque Andino y Bosque Seco Tropical de la cordillera Occidental y Central que circunscriben el valle geográfico del río Cauca, bajo dos temporadas climatológicas: seca y lluviosa. Para esto se realizó la colecta de muestras de suelos de Laguna de Sonso, Parque Natural Regional El Vínculo, Jardín Botánico Juan María Céspedes Mateguadua, Reserva Nacional Forestal Bosque de Yotoco, Reserva Natural El Pailón, Bosque Andino el Duende, Paramo las Domínguez, y Páramo del Duende. Para cada zona fueron colectadas muestras de suelo destinadas a análisis genómico, el cual consistió en un análisis de metataxonómico (metabarcoding) de las regiones del gen ribosomal 16S para bacterias e ITS para hongos. Para el análisis funcional se realizó metagenómica shotgun a 15 muestras empleando la secuenciación Illumina NovaSeq6000. Con los resultados obtenidos no rechazamos la hipótesis de que la diversidad, abundancia y funciones metabólicas de las comunidades microbianas en los suelos de bosque andino y seco tropical son mayores durante la temporada seca en comparación con la lluviosa. La temporada seca favorece una mayor actividad metabólica y diversidad microbiana, lo que sugiere que estas condiciones ambientales podrían promover la estabilidad y especialización de nichos ecológicos dentro de las comunidades microbianas, resaltando la importancia de conocer los patrones estacionales en la dinámica de las comunidades microbianas del suelo para entender cómo estos cambios climáticos influyen en los procesos ecosistémicos y la salud del suelo. (Texto tomado de la fuente). | spa |
dc.description.abstract | The different ecosystem services and biological changes offered by the soil, such as the degradation and contribution of organic matter, and biogeochemical cycles, depend almost 80% on the microorganisms that inhabit the soil, which are directly involved in these processes. However, it is estimated that only 1.0% of these soil organisms are cultivable in the laboratory. To mitigate this lack of knowledge and thanks to advances in molecular biology and bioinformatics, metagenomics has emerged, a technique that extracts nucleic acids from individuals directly from the soil, allowing the characterization and study of uncultivable microorganisms. Based on this, this research aimed to study the taxonomic composition and distribution, the functional potential of the microbial communities of soils in the Andean Forest and Tropical Dry Forest of the Western and Central mountain ranges that circumscribe the geographical valley of the Cauca River, under two climatic seasons: dry and rainy. Soil samples were collected from Laguna de Sonso (Buga) Parque Natural Regional El Vínculo (Buga), Jardín Botánico Juan María Céspedes - Mateguadua (Tuluá), Reserva Nacional Forestal Bosque de Yotoco (Yotoco), Reserva Natural El Pailón (Tenerife), Bosque Andino el Duende (Riofrio), Paramo las Domínguez (Tenerife), y Páramo del Duende (Riofrío). For each area, soil samples were collected for genomic analysis, which consisted of metabarcoding analysis of the 16S ribosomal gene regions for bacteria and ITS for fungi. We performed shotgun metagenomics for the functional analysis on 15 samples using Illumina NovaSeq6000 sequencing. Chemical analyses of the soil were also carried out to analyze the correlation between soil properties and the taxonomic and functional diversity of microorganisms. The results obtained do not reject the hypothesis that the diversity, abundance, and metabolic functions of microbial communities in Andean and tropical dry forest soils are higher during the dry season compared to the rainy season. The dry season favors greater metabolic activity and microbial diversity, suggesting that these environmental conditions could promote the stability and specialization of ecological niches within the microbial communities, highlighting the importance of knowing the seasonal patterns in the dynamics of soil microbial communities to understand how these climate changes influence ecosystem processes and soil health. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias Agrarias | spa |
dc.description.degreename | DOc | spa |
dc.description.methods | esta investigación tuvo como objetivo estudiar la composición y distribución taxonómica, el potencial funcional de las comunidades microbianas de suelos en el Bosque Andino y Bosque Seco Tropical de la cordillera Occidental y Central que circunscriben el valle geográfico del río Cauca, bajo dos temporadas climatológicas: seca y lluviosa. Para esto se realizó la colecta de muestras de suelos de Laguna de Sonso, Parque Natural Regional El Vínculo, Jardín Botánico Juan María Céspedes Mateguadua, Reserva Nacional Forestal Bosque de Yotoco, Reserva Natural El Pailón, Bosque Andino el Duende, Paramo las Domínguez, y Páramo del Duende. Para cada zona fueron colectadas muestras de suelo destinadas a análisis genómico, el cual consistió en un análisis de metataxonómico (metabarcoding) de las regiones del gen ribosomal 16S para bacterias e ITS para hongos. Para el análisis funcional se realizó metagenómica shotgun a 15 muestras empleando la secuenciación Illumina NovaSeq6000. | spa |
dc.description.sponsorship | This research was supported by the Ministerio de Ciencia y Tecnología of Colombia (Patrimonio Autónomo, Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas) through the grant: “Relaciones multiescalares de la biodiversidad en gradientes altitudinales del bosque tropical” (code number: 1106-852-70306; contract 491-2020) | spa |
dc.format.extent | xv, 96 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88255 | |
dc.language.iso | spa | spa |
dc.publisher | Universdiad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.department | Doctorado en Ciencias Agrarias | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrarias | spa |
dc.relation.references | Bai, Z., Jia, A., Li, H., Wang, M., & Qu, S. (2023). Explore the soil factors driving soil microbial community and structure in Songnen alkaline salt degraded grassland. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1110685 | spa |
dc.relation.references | Beidler, K. V., Powers, J. S., Dupuy-Rada, J. M., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Van Bloem, S. J., Vargas G, G., Waring, B. G., & Kennedy, P. G. (2023). Seasonality regulates the structure and biogeochemical impact of ectomycorrhizal fungal communities across environmentally divergent neotropical dry forests. Journal of Ecology, 111(8), 1598-1613. https://doi.org/10.1111/1365-2745.14112 | spa |
dc.relation.references | Bhardwaj, Y., Reddy, B., & Dubey, S. K. (2020). Temporal shift in methanotrophic community and methane oxidation potential in forest soils of dry tropics: High-throughput metagenomic approach. Biology and Fertility of Soils, 56(6), 859-867. https://doi.org/10.1007/s00374-020-01444-1 | spa |
dc.relation.references | Brugnoli, E., Verocai, J., Muniz, P., García-Rodríguez, F., Brugnoli, E., Verocai, J., Muniz, P., & García-Rodríguez, F. (2017). Weather, Hydrological and Oceanographic Conditions of the Northern Coast of the Río de la Plata Estuary during ENSO 2009–2010. En Estuary. IntechOpen. https://doi.org/10.5772/intechopen.71808 | spa |
dc.relation.references | Buscardo, E., Geml, J., & Nagy, L. (2024). Seasonal dependence of deterministic versus stochastic processes influencing soil fungal community composition in a lowland Amazonian rain forest. Communications Earth & Environment, 5(1), 1-11. https://doi.org/10.1038/s43247-024-01273-2 | spa |
dc.relation.references | Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2(9), 628-644. https://doi.org/10.1038/s43017-021-00199-z | spa |
dc.relation.references | Chen, X., Xu, G., Xiong, P., Peng, J., Fang, K., Wan, S., Wang, B., Gu, F., Li, J., & Xiong, H. (2023). Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. Environmental Science and Pollution Research, 30(59), 123694-123709. https://doi.org/10.1007/s11356-023-31042-1 | spa |
dc.relation.references | Du, C., Xu, C. ‐Y., Jian, J. ‐S., He, W. ‐X., Hou, L., & Geng, Z. ‐C. (2018). Seasonal dynamics of bacterial communities in a Betula albosinensis forest. European Journal of Soil Science, 69(4), 666-674. https://doi.org/10.1111/ejss.12568 | spa |
dc.relation.references | Estrada-Bonilla, G. A., Lopes, C. M., Durrer, A., Alves, P. R. L., Passaglia, N., & Cardoso, E. J. B. N. (2017). Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste. Systematic and Applied Microbiology, 40(5), 308-313. https://doi.org/10.1016/j.syapm.2017.05.003 | spa |
dc.relation.references | Gao, G.-F., Song, L., Zhang, Y., & Chu, H. (2024). Expedited loss of soil biodiversity in blue carbon ecosystems caused by rising sea levels. Soil Biology and Biochemistry, 191, 109348. https://doi.org/10.1016/j.soilbio.2024.109348 | spa |
dc.relation.references | Gerhard, L., Puhlmann, H., Vogt, M., & Luster, J. (2021). Phosphorus Leaching From Naturally Structured Forest Soils Is More Affected by Soil Properties Than by Drying and Rewetting. Frontiers in Forests and Global Change, 4. https://doi.org/10.3389/ffgc.2021.543037 | spa |
dc.relation.references | Gschwend, F., Hartmann, M., Mayerhofer, J., Hug, A.-S., Enkerli, J., Gubler, A., Meuli, R. G., Frey, B., & Widmer, F. (2021). Site and land-use associations of soil bacteria and fungi define core and indicative taxa. FEMS Microbiology Ecology, 97(12), fiab165. https://doi.org/10.1093/femsec/fiab165 | spa |
dc.relation.references | Han, W., Wang, G., Liu, J., & Ni, J. (2021). Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests. Applied Soil Ecology, 158, 103813. https://doi.org/10.1016/j.apsoil.2020.103813 | spa |
dc.relation.references | Hasnat, G. N. T., & Hossain, M. K. (2020). Global Overview of Tropical Dry Forests. En Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (pp. 1-23). IGI Global. https://doi.org/10.4018/978-1-7998-0014-9.ch001 | spa |
dc.relation.references | Huang, H., Zhou, L., Chen, J., & Wei, T. (2020). Ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7. | spa |
dc.relation.references | James, J., & Harrison, R. (2016). The Effect of Harvest on Forest Soil Carbon: A Meta-Analysis. Forests, 7(12), Article 12. https://doi.org/10.3390/f7120308 | spa |
dc.relation.references | Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35-46. https://doi.org/10.1038/s41579-019-0265-7 | spa |
dc.relation.references | Ji, L., Yang, Y., & Yang, L. (2021). Seasonal variations in soil fungal communities and co-occurrence networks along an altitudinal gradient in the cold temperate zone of China: A case study on Oakley Mountain. CATENA, 204, 105448. https://doi.org/10.1016/j.catena.2021.105448 | spa |
dc.relation.references | Jin, Y., Wei, X., White, J. F., Chen, T., Li, X., Chen, Z., & Li, C. (2022). Soil fungal and bacterial communities are altered by the incorporation of leaf litter containing a fungal endophyte. European Journal of Soil Science, 73(3), e13240. https://doi.org/10.1111/ejss.13240 | spa |
dc.relation.references | Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., & Wang, Z. (2019). MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. https://doi.org/10.7717/peerj.7359 | spa |
dc.relation.references | Kõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K.-H., May, T. W., Taylor, A. F. S., Jeppesen, T. S., Frøslev, T. G., Lindahl, B. D., Põldmaa, K., Saar, I., Suija, A., Savchenko, A., Yatsiuk, I., Adojaan, K., Ivanov, F., Piirmann, T., Pöhönen, R., … Abarenkov, K. (2020). The Taxon Hypothesis Paradigm—On the Unambiguous Detection and Communication of Taxa. Microorganisms, 8(12), Article 12. https://doi.org/10.3390/microorganisms8121910 | spa |
dc.relation.references | Lahti, L., & Shetty, S. (2019). Microbiome R package. Bioconductor. http://bioconductor.org/packages/microbiome/ | spa |
dc.relation.references | Lepcha, N. T., & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 65. https://doi.org/10.1186/s13717-020-00269-y | spa |
dc.relation.references | Li, G., Kim, S., Han, S. H., Chang, H., Du, D., & Son, Y. (2018). Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biology and Biochemistry, 120, 212-221. https://doi.org/10.1016/j.soilbio.2018.02.014 | spa |
dc.relation.references | Li, Y., Ma, J., Li, Y., Shen, X., & Xia, X. (2024). Microbial community and enzyme activity respond differently to seasonal and edaphic factors in forest and grassland ecosystems. Applied Soil Ecology, 194, 105167. https://doi.org/10.1016/j.apsoil.2023.105167 | spa |
dc.relation.references | Lin, Y., Yang, L., Chen, Z., Gao, Y., Kong, J., He, Q., Su, Y., Li, J., & Qiu, Q. (2023). Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Frontiers in Microbiology, 14, 1113616. https://doi.org/10.3389/fmicb.2023.1113616 | spa |
dc.relation.references | Ma, W., Yang, Z., Liang, L., Ma, Q., Wang, G., & Zhao, T. (2021). Seasonal Changes in Soil Microbial Community and Co-Occurrence Network of Species of the Genus Corylus. Microorganisms, 9(11), 2228. https://doi.org/10.3390/microorganisms9112228 | spa |
dc.relation.references | Mabagala, F. S., & Mng’ong’o, M. E. (2022). On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability. Saudi Journal of Biological Sciences, 29(5), 3635-3641. https://doi.org/10.1016/j.sjbs.2022.02.056 | spa |
dc.relation.references | Maurice, K., Bourceret, A., Youssef, S., Boivin, S., Laurent-Webb, L., Damasio, C., Boukcim, H., Selosse, M.-A., & Ducousso, M. (2024). Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem. Science of The Total Environment, 907, 167969. https://doi.org/10.1016/j.scitotenv.2023.167969 | spa |
dc.relation.references | Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2024). vegan: Community Ecology Package version 2.7-0 (p. 2.6-8) [Dataset]. https://doi.org/10.32614/CRAN.package.vegan | spa |
dc.relation.references | Onyango, L. A., Ngonga, F. A., Karanja, E. N., Kuja, J. O., Boga, H. I., Cowan, D. A., Mwangi, K. W., Maghenda, M. W., Marinho Lebre, P. B. N., & Kambura, A. K. (2023). The soil microbiomes of forest ecosystems in Kenya: Their diversity and environmental drivers. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-33993-4 | spa |
dc.relation.references | Palácios, R., Castagna, D., Barbosa, L., Souza, A. P., Imbiriba, B., Zolin, C. A., Nassarden, D., Duarte, L., Morais, F. G., Franco, M. A., Cirino, G., Kuhn, P., Sodré, G., Curado, L., Basso, J., Roberto de Paulo, S., & Rodrigues, T. (2024). ENSO effects on the relationship between aerosols and evapotranspiration in the south of the Amazon biome. Environmental Research, 250. Scopus. https://doi.org/10.1016/j.envres.2024.118516 | spa |
dc.relation.references | Pan, Y., Kang, P., Qu, X., Zhang, H., & Li, X. (2024). Response of the soil bacterial community to seasonal variations and land reclamation in a desert grassland. Ecological Indicators, 165, 112227. https://doi.org/10.1016/j.ecolind.2024.112227 | spa |
dc.relation.references | Pardo-Esté, C., Leiva, S. G., Remonsellez, F., Castro-Nallar, E., Castro-Severyn, J., & Saavedra, C. P. (2023). Exploring the Influence of Small-Scale Geographical and Seasonal Variations Over the Microbial Diversity in a Poly-extreme Athalosaline Wetland. Current Microbiology, 80(9), 297. https://doi.org/10.1007/s00284-023-03395-w | spa |
dc.relation.references | Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219 | spa |
dc.relation.references | Sánchez-Galindo, L. M., Sandmann, D., Marian, F., Krashevska, V., Maraun, M., & Scheu, S. (2021). Leaf litter identity rather than diversity shapes microbial functions and microarthropod abundance in tropical montane rainforests. Ecology and Evolution, 11(5), 2360-2374. https://doi.org/10.1002/ece3.7208 | spa |
dc.relation.references | Solanki, A. C., Gurjar, N. S., Sharma, S., Wang, Z., Kumar, A., Solanki, M. K., Kumar Divvela, P., Yadav, K., & Kashyap, B. K. (2024). Decoding seasonal changes: Soil parameters and microbial communities in tropical dry deciduous forests. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1258934 | spa |
dc.relation.references | Sun, F., Fan, L., Deng, G., Kuzyakov, Y., Zhang, Y., Wang, J., Li, Y., Wang, F., Li, Z., Tariq, A., Sardans, J., Penuelas, J., Wang, M., & Peng, C. (2024). Responses of tropical forest soil organic matter pools to shifts in precipitation patterns. Soil Biology and Biochemistry, 197, 109530. https://doi.org/10.1016/j.soilbio.2024.109530 | spa |
dc.relation.references | Vélez-Martínez, G. A., Reyes-Ardila, W. L., Duque-Zapata, J. D., Rugeles-Silva, P. A., Muñoz Flórez, J. E., & López-Álvarez, D. (2023). Soil bacteria and fungi communities are shaped by elevation influences in Colombian forest and páramo natural ecosystems. International Microbiology, 27(2), 377-391. https://doi.org/10.1007/s10123-023-00392-8 | spa |
dc.relation.references | Voříšková, J., Brabcová, V., Cajthaml, T., & Baldrian, P. (2014). Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist, 201(1), 269-278. https://doi.org/10.1111/nph.12481 | spa |
dc.relation.references | Wei, Y., Quan, F., Lan, G., Wu, Z., & Yang, C. (2022). Space Rather than Seasonal Changes Explained More of the Spatiotemporal Variation of Tropical Soil Microbial Communities. Microbiology Spectrum, 10(6), e01846-22. https://doi.org/10.1128/spectrum.01846-22 | spa |
dc.relation.references | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer. | spa |
dc.relation.references | Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0 | spa |
dc.relation.references | Abay, P., Gong, L., Luo, Y., Zhu, H., & Ding, Z. (2024). Soil extracellular enzyme stoichiometry reveals the nutrient limitations in soil microbial metabolism under different carbon input manipulations. Science of The Total Environment, 913, 169793. https://doi.org/10.1016/j.scitotenv.2023.169793 | spa |
dc.relation.references | Aguilar-Paredes, A., Valdés, G., & Nuti, M. (2020). Ecosystem Functions of Microbial Consortia in Sustainable Agriculture. Agronomy, 10(12), Article 12. https://doi.org/10.3390/agronomy10121902 | spa |
dc.relation.references | Alarcón Gutiérrez, E., Hernández, C., Gardner, T., García Pérez, J. A., Caballero, M., Perroni, Y., Farnet da Silva, A. M. A., Gaime Perraud, I., & Barois, I. (2021). Soil bioindicators associated to different management regimes of cedrela odorata plantations. Madera y Bosques, 27(1). https://doi.org/10.21829/myb.2021.2711912 | spa |
dc.relation.references | Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. v, Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., … McArthur, A. G. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz935 | spa |
dc.relation.references | Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Zech Xu, Z., Kightley, E. P., Thompson, L. R., Hyde, E. R., Gonzalez, A., & Knight, R. (2017). Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. Msystems, 2(2). https://doi.org/10.1128/mSystems.00191-16 | spa |
dc.relation.references | Baksay, S., Andalo, C., Galop, D., Burrus, M., Escaravage, N., & Pornon, A. (2022). Using Metabarcoding to Investigate the Strength of Plant-Pollinator Interactions From Surveys of Visits to DNA Sequences. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.735588 | spa |
dc.relation.references | Baldrian, P. (2017). Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiology Reviews, 41(2), 109-130. https://doi.org/10.1093/femsre/fuw040 | spa |
dc.relation.references | Bhowmik, A., Kukal, S. S., Saha, D., Sharma, H., Kalia, A., & Sharma, S. (2019). Potential indicators of soil health degradation in different land use-based ecosystems in the shiwaliks of northwestern India. Sustainability (Switzerland), 11(14). https://doi.org/10.3390/su11143908 | spa |
dc.relation.references | Bodor, A., Bounedjoum, N., Vincze, G. E., Erdeiné Kis, Á., Laczi, K., Bende, G., Szilágyi, Á., Kovács, T., Perei, K., & Rákhely, G. (2020). Challenges of unculturable bacteria: Environmental perspectives. Reviews in Environmental Science and Biotechnology, 19(1). https://doi.org/10.1007/s11157-020-09522-4 | spa |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 | spa |
dc.relation.references | Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 | spa |
dc.relation.references | Bonomo, M. G., Calabrone, L., Scrano, L., Bufo, S. A., di Tomaso, K., Buongarzone, E., & Salzano, G. (2022). Metagenomic monitoring of soil bacterial community after the construction of a crude oil flowline. Environmental Monitoring and Assessment, 194(2), 48. https://doi.org/10.1007/s10661-021-09637-3 | spa |
dc.relation.references | Borrel, G., Adam, P. S., & Gribaldo, S. (2016). Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. Genome Biology and Evolution, 8(6), 1706. https://doi.org/10.1093/gbe/evw114 | spa |
dc.relation.references | Brady, A., & Salzberg, S. L. (2009). Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nature Methods, 6(9), 673–676. https://doi.org/10.1038/nmeth.1358 | spa |
dc.relation.references | Breitwieser, F. P., Baker, D. N., & Salzberg, S. L. (2018). KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biology, 19(1), 198. https://doi.org/10.1186/s13059-018-1568-0 | spa |
dc.relation.references | Brück, S. A., Torres, B. D. M., & de Moraes Polizeli, M. de L. T. (2023). The Ecuadorian paramo in danger: What we know and what might be learned from northern wetlands. Global Ecology and Conservation, 47, e02639. https://doi.org/10.1016/j.gecco.2023.e02639 | spa |
dc.relation.references | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 | spa |
dc.relation.references | Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., & Karp, P. D. (2020). The MetaCyc database of metabolic pathways and enzymes – a 2019 update. Nucleic Acids Research, 48(D1), D445–D453. https://doi.org/10.1093/nar/gkz862 | spa |
dc.relation.references | Chen, L.-C., Guan, X., Li, H.-M., Wang, Q.-K., Zhang, W.-D., Yang, Q.-P., & Wang, S.-L. (2019). Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. Forest Ecology and Management, 432, 656-666. https://doi.org/10.1016/j.foreco.2018.09.059 | spa |
dc.relation.references | Chen, Z., Luo, X., Hu, R., Wu, M., Wu, J., & Wei, W. (2010). Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 60(4), 850-861. https://doi.org/10.1007/s00248-010-9700-z | spa |
dc.relation.references | Chukwuneme, C. F., Ayangbenro, A. S., & Babalola, O. O. (2021). Metagenomic analyses of plant growth-promoting and carbon-cycling genes in maize rhizosphere soils with distinct land-use and management histories. Genes, 12(9). https://doi.org/10.3390/genes12091431 | spa |
dc.relation.references | Churcheward, B., Millet, M., Bihouée, A., Fertin, G., & Chaffron, S. (2022). MAGNETO: An Automated Workflow for Genome-Resolved Metagenomics. Msystems. https://doi.org/10.1128/msystems.00432-22 | spa |
dc.relation.references | Clarridge, J. E. (2004). Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews, 17(4), 840–862. https://doi.org/10.1128/CMR.17.4.840-862.2004 | spa |
dc.relation.references | Conrad, R. (2020). Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms, 8(6), 881. https://doi.org/10.3390/microorganisms8060881 | spa |
dc.relation.references | Correa, S. S., Schultz, J., Lauersen, K. J., & Rosado, A. S. (2022). Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of Advanced Research, 47, 75. https://doi.org/10.1016/j.jare.2022.07.011 | spa |
dc.relation.references | Corrochano-Monsalve, M., Saiz, H., & Maestre, F. T. (2024). Influence of soil copper and zinc levels on the abundance of methanotrophic, nitrifying, and N2O-reducing microorganisms in drylands worldwide. Applied Soil Ecology, 196, 105284. https://doi.org/10.1016/j.apsoil.2024.105284 | spa |
dc.relation.references | Craig, J. W., Chang, F.-Y., Kim, J. H., Obiajulu, S. C., & Brady, S. F. (2010). Expanding Small-Molecule Functional Metagenomics through Parallel Screening of Broad-Host-Range Cosmid Environmental DNA Libraries in Diverse Proteobacteria. Applied and Environmental Microbiology, 76(5), 1633–1641. https://doi.org/10.1128/AEM.02169-09 | spa |
dc.relation.references | Cresso, M., Clerici, N., Sanchez, A., & Jaramillo, F. (2020). Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability, 12(20), Article 20. https://doi.org/10.3390/su12208373 | spa |
dc.relation.references | Dai, W., Liu, R., Yang, F., He, G., & Wei, C. (2023). Denitrifying bacteria agent together with composite materials enhanced soil chemical properties and denitrifying functions in rare earth tailings: A field study. Journal of Hazardous Materials, 448, 130913. https://doi.org/10.1016/j.jhazmat.2023.130913 | spa |
dc.relation.references | Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008 | spa |
dc.relation.references | Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental <scp>DNA</scp> metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350 | spa |
dc.relation.references | Delmont, T. O., Simonet, P., & Vogel, T. M. (2012). Describing microbial communities and performing global comparisons in the ‘omic era. The ISME Journal, 6(9), 1625–1628. https://doi.org/10.1038/ismej.2012.55 | spa |
dc.relation.references | Dentinger, B. T. M., Didukh, M. Y., & Moncalvo, J.-M. (2011). Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina). PloS ONE, 6(9), e25081. https://doi.org/10.1371/journal.pone.0025081 | spa |
dc.relation.references | Diaz, N. N., Krause, L., Goesmann, A., Niehaus, K., & Nattkemper, T. W. (2009). TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics, 10(1), 56. https://doi.org/10.1186/1471-2105-10-56 | spa |
dc.relation.references | Dong, X., Li, F., Lin, Z., Harrison, S. P., Chen, Y., & Kug, J.-S. (2021). Climate influence on the 2019 fires in Amazonia. Science of The Total Environment, 794, 148718. https://doi.org/10.1016/j.scitotenv.2021.148718 | spa |
dc.relation.references | Dröge, J., Gregor, I., & McHardy, A. C. (2015). Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. Bioinformatics, 31(6), 817–824. https://doi.org/10.1093/bioinformatics/btu745 | spa |
dc.relation.references | Du, T., Hu, Q., Mao, W., Yang, Z., Chen, H., Sun, L., & Zhai, M. (2023). Metagenomics insights into the functional profiles of soil carbon, nitrogen, and phosphorus cycles in a walnut orchard under various regimes of long-term fertilisation. European Journal of Agronomy, 148, 126887. https://doi.org/10.1016/j.eja.2023.126887 | spa |
dc.relation.references | Dutta, A., Connors, E., Trinh, R., Erazo, N., Dasarathy, S., Ducklow, H. W., Steinberg, D. K., Schofield, O. M., & Bowman, J. S. (2023). Depth drives the distribution of microbial ecological functions in the coastal western Antarctic Peninsula. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1168507 | spa |
dc.relation.references | Espinoza, J.-C., Marengo, J. A., Schongart, J., & Jimenez, J. C. (2022). The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: Atmospheric features in the context of the intensification of floods. Weather and Climate Extremes, 35, 100406. https://doi.org/10.1016/j.wace.2021.100406 | spa |
dc.relation.references | Etter, A., & Villa, L. A. (2000). Andean Forests and Farming Systems in part of the Eastern Cordillera (Colombia). Mountain Research and Development, 20(3), 236-245. https://doi.org/10.1659/0276-4741(2000)020[0236:afafsi]2.0.co;2 | spa |
dc.relation.references | Evans, B. R., & Leighton, F. A. (2014). A history of One Health. Revue Scientifique et Technique de l’OIE, 33(2), 413–420. https://doi.org/10.20506/rst.33.2.2298 | spa |
dc.relation.references | Ezeokoli, O. T., Bezuidenhout, C. C., Maboeta, M. S., Khasa, D. P., & Adeleke, R. A. (2020). Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58576-5 | spa |
dc.relation.references | Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., Percy, D. M., Hajibabaei, M., & Barrett, S. C. H. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PloS ONE, 3(7), e2802. https://doi.org/10.1371/journal.pone.0002802 | spa |
dc.relation.references | Feng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., & Zhao, Y. (2018). Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology, 18(1), 1–13. https://doi.org/10.1186/s12866-018-1152-5 | spa |
dc.relation.references | Ferrer, M., Beloqui, A., Timmis, K. N., & Golyshin, P. N. (2009). Metagenomics for Mining New Genetic Resources of Microbial Communities. Journal of Molecular Microbiology and Biotechnology, 16(1-2), 109-123. https://doi.org/10.1159/000142898 | spa |
dc.relation.references | Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87 | spa |
dc.relation.references | Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631. https://doi.org/10.1073/pnas.0507535103 | spa |
dc.relation.references | Frąc, M., Hannula, E. S., Bełka, M., Salles, J. F., & Jedryczka, M. (2022). Soil mycobiome in sustainable agriculture. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1033824 | spa |
dc.relation.references | Frąc, M., Hannula, S. E., Belka, M., & Jȩdryczka, M. (2018). Fungal biodiversity and their role in soil health. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00707 | spa |
dc.relation.references | Gayathri, R., Mahboob, S., Govindarajan, M., Al-Ghanim, K. A., Ahmed, Z., Al-Mulhm, N., Vodovnik, M., & Vijayalakshmi, S. (2021). A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks. Journal of King Saud University - Science, 33(2), 101282. https://doi.org/10.1016/j.jksus.2020.101282 | spa |
dc.relation.references | Gerner-Smidt, P., Besser, J., Concepción-Acevedo, J., Folster, J. P., Huffman, J., Joseph, L. A., Kucerova, Z., Nichols, M. C., Schwensohn, C. A., & Tolar, B. (2019). Whole Genome Sequencing: Bridging One-Health Surveillance of Foodborne Diseases. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00172 | spa |
dc.relation.references | Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biology, 12(1), 69. https://doi.org/10.1186/s12915-014-0069-1 | spa |
dc.relation.references | Gilbert, J. A., Meyer, F., Antonopoulos, D., Balaji, P., Brown, C. T., Brown, C. T., Desai, N., Eisen, J. A., Evers, D., Field, D., Feng, W., Huson, D., Jansson, J., Knight, R., Knight, J., Kolker, E., Konstantindis, K., Kostka, J., Kyrpides, N., … Stevens, R. (2010). Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards in Genomic Sciences, 3(3), 243–248. https://doi.org/10.4056/sigs.1433550 | spa |
dc.relation.references | Glass, J. B., & Orphan, V. J. (2012). Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide. Frontiers in Microbiology, 3, 61. https://doi.org/10.3389/fmicb.2012.00061 | spa |
dc.relation.references | Greninger, A. L., Chen, E. C., Sittler, T., Scheinerman, A., Roubinian, N., Yu, G., Kim, E., Pillai, D. R., Guyard, C., Mazzulli, T., Isa, P., Arias, C. F., Hackett, J., Schochetman, G., Miller, S., Tang, P., & Chiu, C. Y. (2010). A Metagenomic Analysis of Pandemic Influenza A (2009 H1N1) Infection in Patients from North America. PloS ONE, 5(10), e13381. https://doi.org/10.1371/journal.pone.0013381 | spa |
dc.relation.references | Grosso, F., Iovieno, P., Alfani, A., & De Nicola, F. (2018). Structure and activity of soil microbial communities in three Mediterranean forests. Applied Soil Ecology, 130, 280-287. https://doi.org/10.1016/j.apsoil.2018.07.007 | spa |
dc.relation.references | Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9 | spa |
dc.relation.references | Hatten, J., & Liles, G. (2019). A ‘healthy’ balance – The role of physical and chemical properties in maintaining forest soil function in a changing world (pp. 373–396). https://doi.org/10.1016/B978-0-444-63998-1.00015-X | spa |
dc.relation.references | Haygarth, P. M., & Ritz, K. (2009). The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. Land Use Policy, 26(SUPPL. 1), 187–197. https://doi.org/10.1016/j.landusepol.2009.09.016 | spa |
dc.relation.references | Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218 | spa |
dc.relation.references | Hollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and Using a Plant DNA Barcode. PloS ONE, 6(5), e19254. https://doi.org/10.1371/journal.pone.0019254 | spa |
dc.relation.references | Hügler, M., Huber, H., Molyneaux, S. J., Vetriani, C., & Sievert, S. M. (2007). Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: Evidence for two ways of citrate cleavage. Environmental Microbiology, 9(1), 81-92. https://doi.org/10.1111/j.1462-2920.2006.01118.x | spa |
dc.relation.references | Human Microbiome Project. (2019). The Integrative Human Microbiome Project. Nature, 569(7758), 641–648. https://doi.org/10.1038/s41586-019-1238-8 | spa |
dc.relation.references | Huson, D. H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.-J., & Tappu, R. (2016). MEGAN Community Edition – Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLOS Computational Biology, 12(6), e1004957. https://doi.org/10.1371/journal.pcbi.1004957 | spa |
dc.relation.references | Isobe, K., Ise, Y., Kato, H., Oda, T., Vincenot, C. E., Koba, K., Tateno, R., Senoo, K., & Ohte, N. (2020). Consequences of microbial diversity in forest nitrogen cycling: Diverse ammonifiers and specialized ammonia oxidizers. The ISME Journal, 14(1), 12-25. https://doi.org/10.1038/s41396-019-0500-2 | spa |
dc.relation.references | Jiao, J. Y., Liu, L., Hua, Z. S., Fang, B. Z., Zhou, E. M., Salam, N., Hedlund, B. P., & Li, W. J. (2021). Microbial dark matter coming to light: Challenges and opportunities. In National Science Review (Vol. 8, Issue 3). Oxford University Press. https://doi.org/10.1093/nsr/nwaa280 | spa |
dc.relation.references | Kačergius, A., Sivojienė, D., Gudiukaitė, R., Bakšienė, E., Masevičienė, A., & Žičkienė, L. (2023). Comparison of the Structure of Soil Microbial Communities of Different Ecosystems Using the Microbiome Sequencing Approach. Soil Systems, 7(3), Article 3. https://doi.org/10.3390/soilsystems7030070 | spa |
dc.relation.references | Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28(11), 1947-1951. https://doi.org/10.1002/pro.3715 | spa |
dc.relation.references | Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27 | spa |
dc.relation.references | Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587-D592. https://doi.org/10.1093/nar/gkac963 | spa |
dc.relation.references | Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(Database issue), D457-D462. https://doi.org/10.1093/nar/gkv1070 | spa |
dc.relation.references | Katz, K., Shutov, O., Lapoint, R., Kimelman, M., Brister, J. R., & O’Sullivan, C. (2022). The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Research, 50(D1), D387–D390. https://doi.org/10.1093/nar/gkab1053 | spa |
dc.relation.references | Kaushik, P., Singh Sandhu, O., Singh Brar, N., Kumar, V., Singh Malhi, G., Kesh, H., & Saini, I. (2021). Soil Metagenomics: Prospects and Challenges. In Mycorrhizal Fungi – Utilization in Agriculture and Industry. IntechOpen. https://doi.org/10.5772/intechopen.93306 | spa |
dc.relation.references | Keegan, K. P., Glass, E. M., & Meyer, F. (2016). MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function (pp. 207–233). https://doi.org/10.1007/978-1-4939-3369-3_13 | spa |
dc.relation.references | Kotsyurbenko, O. R., Glagolev, M. V., Merkel, A. Y., Sabrekov, A. F., & Terentieva, I. E. (2019). Methanogenesis in Soils, Wetlands, and Peat. En A. J. M. Stams & D. Z. Sousa (Eds.), Biogenesis of Hydrocarbons (pp. 211-228). Springer International Publishing. https://doi.org/10.1007/978-3-319-78108-2_9 | spa |
dc.relation.references | Kuang, B., Xiao, R., Hu, Y., Wang, Y., Zhang, L., Wei, Z., Bai, J., Zhang, K., Acuña, J. J., Jorquera, M. A., & Pan, W. (2023). Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Frontiers in Microbiology, 13, 1112669. https://doi.org/10.3389/fmicb.2022.1112669 | spa |
dc.relation.references | Kultima, J. R., Coelho, L. P., Forslund, K., Huerta-Cepas, J., Li, S. S., Driessen, M., Voigt, A. Y., Zeller, G., Sunagawa, S., & Bork, P. (2016). MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics, 32(16), 2520–2523. https://doi.org/10.1093/bioinformatics/btw183 | spa |
dc.relation.references | Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263-276. https://doi.org/10.1038/nrmicro.2018.9 | spa |
dc.relation.references | Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676 | spa |
dc.relation.references | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923 | spa |
dc.relation.references | Lannes, R., Olsson-Francis, K., Lopez, P., & Bapteste, E. (2019). Carbon Fixation by Marine Ultrasmall Prokaryotes. Genome Biology and Evolution, 11(4), 1166-1177. https://doi.org/10.1093/gbe/evz050 | spa |
dc.relation.references | Leite, M. F. A., van den Broek, S. W. E. B., & Kuramae, E. E. (2022). Current Challenges and Pitfalls in Soil Metagenomics. Microorganisms, 10(10). https://doi.org/10.3390/microorganisms10101900 | spa |
dc.relation.references | Li, A. M. L. (2017). Ecological determinants of health: food and environment on human health. Environmental Science and Pollution Research, 24(10), 9002–9015. https://doi.org/10.1007/s11356-015-5707-9 | spa |
dc.relation.references | Li, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033 | spa |
dc.relation.references | Li, F., Zi, H., Sonne, C., & Li, X. (2023). Microbiome sustains forest ecosystem functions across hierarchical scales. Eco-Environment & Health, 2(1), 24-31. https://doi.org/10.1016/j.eehl.2023.03.001 | spa |
dc.relation.references | Li, X., Qu, Z., Zhang, Y., Ge, Y., & Sun, H. (2022). Soil Fungal Community and Potential Function in Different Forest Ecosystems. Diversity, 14(7), Article 7. https://doi.org/10.3390/d14070520 | spa |
dc.relation.references | Liu, B., Gibbons, T., Ghodsi, M., & Pop, M. (2010). MetaPhyler: Taxonomic profiling for metagenomic sequences. 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 95–100. https://doi.org/10.1109/BIBM.2010.5706544 | spa |
dc.relation.references | Liu, R., Wang, Z., Wang, L., Li, Z., Fang, J., Wei, X., Wei, W., Cao, J., Wei, Y., & Xie, Z. (2020). Bulk and Active Sediment Prokaryotic Communities in the Mariana and Mussau Trenches. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01521 | spa |
dc.relation.references | Liu, S., Moon, C. D., Zheng, N., Huws, S., Zhao, S., & Wang, J. (2022). Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome, 10(1), 76. https://doi.org/10.1186/s40168-022-01272-5 | spa |
dc.relation.references | Lomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Research, 28(7), 1079–1089. https://doi.org/10.1101/gr.230615.117 | spa |
dc.relation.references | Long, P. E., Williams, K. H., Hubbard, S. S., & Banfield, J. F. (2016). Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes. Trends in Microbiology, 24(8), 600–610. https://doi.org/10.1016/j.tim.2016.04.006 | spa |
dc.relation.references | Louca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272–1277. https://doi.org/10.1126/science.aaf4507 | spa |
dc.relation.references | Luo, S., He, B., Zeng, Q., Li, N., & Yang, L. (2020). Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. Journal of Mountain Science, 17(6), 1398-1409. https://doi.org/10.1007/s11629-019-5825-9 | spa |
dc.relation.references | Luo, X., Wang, M. K., Hu, G., & Weng, B. (2019). Seasonal Change in Microbial Diversity and Its Relationship with Soil Chemical Properties in an Orchard. PLOS ONE, 14(12), e0215556. https://doi.org/10.1371/journal.pone.0215556 | spa |
dc.relation.references | Ma, B., Stirling, E., Liu, Y., Zhao, K., Zhou, J., Singh, B. K., Tang, C., Dahlgren, R. A., & Xu, J. (2021). Soil Biogeochemical Cycle Couplings Inferred from a Function-Taxon Network. Research, 2021, 7102769. https://doi.org/10.34133/2021/7102769 | spa |
dc.relation.references | Ma, N., Ji, Y., Dong, H., Zhu, J., Peng, Y., Yue, K., Zhang, H., Ma, Y., Zheng, T., Wu, Q., & Li, Y. (2024). Effects of seasonal precipitation regimes on microbial biomass and extracellular enzyme activity during shrub foliar litter decomposition in a subtropical forest. Science of The Total Environment, 932, 173098. https://doi.org/10.1016/j.scitotenv.2024.173098 | spa |
dc.relation.references | Madden, T. (2002). The BLAST Sequence Analysis Tool. In The NCBI Handbook . | spa |
dc.relation.references | Martin, T., Wade, J., Singh, P., & Sprunger, C. D. (2022). The integration of nematode communities into the soil biological health framework by factor analysis. Ecological Indicators, 136, 108676. https://doi.org/10.1016/j.ecolind.2022.108676 | spa |
dc.relation.references | McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 | spa |
dc.relation.references | Menta, C., & Remelli, S. (2020). Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054 | spa |
dc.relation.references | Mikheenko, A., Saveliev, V., & Gurevich, A. (2016). MetaQUAST: evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–1090. https://doi.org/10.1093/bioinformatics/btv697 | spa |
dc.relation.references | Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913 | spa |
dc.relation.references | Mitchell, G., Wilson, P. J., Manseau, M., Redquest, B., Patterson, B. R., & Rutledge, L. Y. (2022). DNA metabarcoding of faecal pellets reveals high consumption of yew ( Taxus spp.) by caribou ( Rangifer tarandus ) in a lichen-poor environment. FACETS, 7, 701–717. https://doi.org/10.1139/facets-2021-0071 | spa |
dc.relation.references | Moreira, F. M. S., Huising, J. E., & Bignell, D. E. (2012). Manual de biología de suelos tropicales. Muestreo y caracterización de la biodiversidad bajo suelo. Instituto Nacional de Ecologia INE. | spa |
dc.relation.references | Mukhtar, H., Wunderlich, R. F., Muzaffar, A., Ansari, A., Shipin, O. V., Cao, T. N.-D., & Lin, Y.-P. (2023). Soil microbiome feedback to climate change and options for mitigation. Science of The Total Environment, 882, 163412. https://doi.org/10.1016/j.scitotenv.2023.163412 | spa |
dc.relation.references | N. Sabale, S., P. Suryawanshi, P., & Krishnaraj, P. U. (2020). Soil Metagenomics: Concepts and Applications. En Metagenomics—Basics, Methods and Applications (pp. 1-27). IntechOpen. https://doi.org/10.5772/intechopen.88958 | spa |
dc.relation.references | Nacke, H., Will, C., Herzog, S., Nowka, B., Engelhaupt, M., & Daniel, R. (2011). Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiology Ecology, 78(1), 188–201. https://doi.org/10.1111/j.1574-6941.2011.01088.x | spa |
dc.relation.references | Nagarajan, N., & Pop, M. (2013). Sequence assembly demystified. Nature Reviews Genetics, 14(3), 157–167. https://doi.org/10.1038/nrg3367 | spa |
dc.relation.references | Namiki, T., Hachiya, T., Tanaka, H., & Sakakibara, Y. (2012). MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research, 40(20), e155–e155. https://doi.org/10.1093/nar/gks678 | spa |
dc.relation.references | Nannipieri, P. (2014). Soil as a biological system and omics approaches. International Journal of Environmental Quality, 13, 61-66. https://doi.org/10.6092/issn.2281-4485/4541 | spa |
dc.relation.references | Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.x | spa |
dc.relation.references | Nannipieri, P., Pietramellara, G., & Renella, G. (2014). Omics in Soil Science. | spa |
dc.relation.references | Natural Resources Conservation Services. (2012). Soil Health. | spa |
dc.relation.references | Navarrete, A. A., Aburto, F., González-Rocha, G., Guzmán, C. M., Schmidt, R., & Scow, K. (2023). Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. Science of the Total Environment, 854. https://doi.org/10.1016/j.scitotenv.2022.158508 | spa |
dc.relation.references | Nearing, J. T., Douglas, G. M., Comeau, A. M., & Langille, M. G. I. (2018). Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches. PeerJ, 6, e5364. https://doi.org/10.7717/peerj.5364 | spa |
dc.relation.references | Nesme, J., Achouak, W., Agathos, S. N., Bailey, M., Baldrian, P., Brunel, D., Frostegård, Å., Heulin, T., Jansson, J. K., Jurkevitch, E., Kruus, K. L., Kowalchuk, G. A., Lagares, A., Lappin-Scott, H. M., Lemanceau, P., le Paslier, D., Mandic-Mulec, I., Murrell, J. C., Myrold, D. D., … Simonet, P. (2016). Back to the future of soil metagenomics. Frontiers in Microbiology, 7(FEB), 1–5. https://doi.org/10.3389/fmicb.2016.00073 | spa |
dc.relation.references | Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006 | spa |
dc.relation.references | Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824-834. https://doi.org/10.1101/gr.213959.116 | spa |
dc.relation.references | Pajares, S., Campo, J., Bohannan, B. J. M., & Etchevers, J. D. (2018). Environmental controls on soil microbial communities in a seasonally dry tropical forest. Applied and Environmental Microbiology, 84(17). https://doi.org/10.1128/AEM.00342-18 | spa |
dc.relation.references | Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., & Larsson, D. G. J. (2014). BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42(D1), D737–D743. https://doi.org/10.1093/nar/gkt1252 | spa |
dc.relation.references | Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043–1055. https://doi.org/10.1101/gr.186072.114 | spa |
dc.relation.references | Pearman, W. S., Freed, N. E., & Silander, O. K. (2020). Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads. BMC Bioinformatics, 21(1), 220. https://doi.org/10.1186/s12859-020-3528-4 | spa |
dc.relation.references | Pérez-Cobas, A. E., Gomez-Valero, L., & Buchrieser, C. (2020). Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses. Microbial Genomics, 6(8), 1–22. https://doi.org/10.1099/mgen.0.000409 | spa |
dc.relation.references | Pizano, C., González-M., R., López, R., Jurado, R. D., Cuadros, H., Castaño-Naranjo, A., Rojas, A., Peréz, K., Vergara-Varela, H., Idárraga, Á., Isaacs, P., & García, H. (2016). El bosque seco tropical en Colombia. En Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia (Número May, pp. 21-22). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/B001.2015.202 | spa |
dc.relation.references | Poghosyan, L., & Lehtovirta-Morley, L. E. (2024). Investigating microbial and environmental drivers of nitrification in alkaline forest soil. ISME Communications, 4(1), ycae093. https://doi.org/10.1093/ismeco/ycae093 | spa |
dc.relation.references | Quintero-Vallejo, E., Benavides, A. M., Moreno, N., & González-Caro, S. (2018). Estado de los bosques de Antioquia entre 1990-2015. En Fundación Jardín Botánico de Medellín Joaquín Antonio UribePrograma Bosques Andinos (COSUDE). | spa |
dc.relation.references | Reyes-Ardila, W. L., Vélez-Martínez, G. A., Duque-Zapata, J. D., Rugeles-Silva, P. A., Muñoz Flórez, J. E., & López-Álvarez, D. (2024). Exploring Soil Bacterial and Fungal Communities in Colombian Terrestrial Ecosystems Modulated by Altitude-Influenced Factors. PLOS ONE. | spa |
dc.relation.references | Rodrigues, J. I. de M., Martins, W. B. R., de Oliveira, V. P., Wanzerley, M. S. da S., dos Santos Júnior, H. B., & Oliveira, F. de A. (2023). ENSO impacts on litter stocks and water holding capacity in secondary forests in eastern Amazonia. Journal of Forestry Research, 35(1), 8. https://doi.org/10.1007/s11676-023-01665-8 | spa |
dc.relation.references | Rodríguez, V., Bartholomäus, A., Witzgall, K., Riveras-Muñoz, N., Oses, R., Liebner, S., Kallmeyer, J., Rach, O., Mueller, C. W., Seguel, O., Scholten, T., & Wagner, D. (2024). Microbial impact on initial soil formation in arid and semiarid environments under simulated climate change. Frontiers in Microbiology, 15, 1319997. https://doi.org/10.3389/fmicb.2024.1319997 | spa |
dc.relation.references | Salazar Zarzosa, P., Palacios Mc Cubbin, E., Curiel Yuste, J., Muenchow, J., Cruz, G., & Rodriguez, R. (2020). Tree influence exacerbates the El Niño effects over soil CO2 emissions and its microclimatic controls. Applied Soil Ecology, 147, 103379. https://doi.org/10.1016/j.apsoil.2019.103379 | spa |
dc.relation.references | Schloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soils, 54(1), 1–10. https://doi.org/10.1007/s00374-017-1248-3 | spa |
dc.relation.references | Senn, S., Pangell, K., & Bowerman, A. L. (2022). Metagenomic Insights into the Composition and Function of Microbes Associated with the Rootzone of Datura inoxia. BioTech, 11(1). https://doi.org/10.3390/BIOTECH11010001 | spa |
dc.relation.references | Sepp, S.-K., Vasar, M., Davison, J., Oja, J., Anslan, S., Al-Quraishy, S., Bahram, M., Bueno, C. G., Cantero, J. J., Fabiano, E. C., Decocq, G., Drenkhan, R., Fraser, L., Garibay Oriel, R., Hiiesalu, I., Koorem, K., Kõljalg, U., Moora, M., Mucina, L., … Zobel, M. (2023). Global diversity and distribution of nitrogen-fixing bacteria in the soil. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1100235 | spa |
dc.relation.references | Sheng, M., Hu, W., Liu, C.-Q., Niu, M., Jin, R., Deng, J., Wu, L., Li, P., Yan, Z., Zhu, Y.-G., & Fu, P. (2024). Characteristics and assembly mechanisms of bacterial and fungal communities in soils from Chinese forests across different climatic zones. CATENA, 245, 108306. https://doi.org/10.1016/j.catena.2024.108306 | spa |
dc.relation.references | Shi, Y., Su, C., Wang, M., Liu, X., Liang, C., Zhao, L., Zhang, X., Minggagud, H., Feng, G., & Ma, W. (2020). Modern Climate and Soil Properties Explain Functional Structure Better Than Phylogenetic Structure of Plant Communities in Northern China. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.531947 | spa |
dc.relation.references | Shigyo, N., Umeki, K., & Hirao, T. (2019). Seasonal Dynamics of Soil Fungal and Bacterial Communities in Cool-Temperate Montane Forests. Frontiers in Microbiology, 10, 1944. https://doi.org/10.3389/fmicb.2019.01944 | spa |
dc.relation.references | Shumo, M., Khamis, F. M., Ombura, F. L., Tanga, C. M., Fiaboe, K. K. M., Subramanian, S., Ekesi, S., Schlüter, O. K., van Huis, A., & Borgemeister, C. (2021). A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae (Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.687103 | spa |
dc.relation.references | Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1 | spa |
dc.relation.references | Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. v., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 | spa |
dc.relation.references | Singh, R., Chirag, C., Neeta, C., & Sharma, R. (2020). Metagenomics: Techniques, Applications, Challenges and Opportunities (R. S. Chopra, C. Chopra, & N. R. Sharma, Eds.). Springer Singapore. https://doi.org/10.1007/978-981-15-6529-8 | spa |
dc.relation.references | Solden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: Lessons learned from the uncultivated majority. In Current Opinion in Microbiology (Vol. 31, pp. 217–226). Elsevier Ltd. https://doi.org/10.1016/j.mib.2016.04.020 | spa |
dc.relation.references | Strous, M., Kraft, B., Bisdorf, R., & Tegetmeyer, H. E. (2012). The Binning of Metagenomic Contigs for Microbial Physiology of Mixed Cultures. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00410 | spa |
dc.relation.references | Su, P., Wicaksono, W. A., Li, C., Michl, K., Berg, G., Wang, D., Xiao, Y., Huang, R., Kang, H., Zhang, D., Cernava, T., & Liu, Y. (2022). Recovery of metagenome-assembled genomes from the phyllosphere of 110 rice genotypes. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01320-7 | spa |
dc.relation.references | Tang, L. (2019). Culturing uncultivated bacteria. Nature Methods, 16(11), 1078–1078. https://doi.org/10.1038/s41592-019-0634-1 | spa |
dc.relation.references | Techtmann, S. M., & Hazen, T. C. (2016). Metagenomic applications in environmental monitoring and bioremediation. Journal of Industrial Microbiology and Biotechnology, 43(10), 1345–1354. https://doi.org/10.1007/s10295-016-1809-8 | spa |
dc.relation.references | Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Xu, Z. Z., Jiang, L., … Zhao, H. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681), 457–463. https://doi.org/10.1038/nature24621 | spa |
dc.relation.references | Torres, G. G., Figueroa-Galvis, I., Muñoz-García, A., Polanía, J., & Vanegas, J. (2019). Potential bacterial bioindicators of urban pollution in mangroves. Environmental Pollution, 255, 113293. https://doi.org/10.1016/j.envpol.2019.113293 | spa |
dc.relation.references | Treangen, T. J., Koren, S., Sommer, D. D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A. E., Phillippy, A. M., & Pop, M. (2013). MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biology, 14(1), R2. https://doi.org/10.1186/gb-2013-14-1-r2 | spa |
dc.relation.references | Ungerer, M. C., Johnson, L. C., & Herman, M. A. (2008). Ecological genomics: understanding gene and genome function in the natural environment. Heredity, 100(2), 178–183. https://doi.org/10.1038/sj.hdy.6800992 | spa |
dc.relation.references | Uroz, S., Buée, M., Deveau, A., Mieszkin, S., & Martin, F. (2016). Ecology of the forest microbiome: Highlights of temperate and boreal ecosystems. Soil Biology and Biochemistry, 103, 471-488. https://doi.org/10.1016/j.soilbio.2016.09.006 | spa |
dc.relation.references | USDA, N. R. C. S. (2022). What is Soil Health? Https://Www.Nrcs.Usda.Gov/Wps/Portal/Nrcs/Main/Soils/Health/. | spa |
dc.relation.references | Veerasamy, V., Jagannathan, U. M., Arakkala, S. D., Shafee, W. A., & Kaliannan, T. (2023). Exploring the bacterial genetic diversity and community structure of crude oil contaminated soils using microbiomics. Environmental Research, 236, 116779. https://doi.org/10.1016/j.envres.2023.116779 | spa |
dc.relation.references | Viso, N. P., Ortiz, J., Maury, M., Frene, J. P., Iocoli, G. A., Lorenzon, C., Rivarola, M., García, F. O., Gudelj, V., & Faggioli, V. S. (2024). Long-term maintenance rate fertilisation increases soil bacterial-archaeal community diversity in the subsoil and N-cycling potentials in a humid crop season. Applied Soil Ecology, 193, 105149. https://doi.org/10.1016/j.apsoil.2023.105149 | spa |
dc.relation.references | Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., Bailey, M. J., Nalin, R., & Philippot, L. (2009). TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 7(4), 252–252. https://doi.org/10.1038/nrmicro2119 | spa |
dc.relation.references | Wang, J., Lv, L., Hu, R., Ma, H., Liu, B., Zhang, W., & Wu, L. (2024). Patterns and determinants of nitrification and denitrification potentials across 24 rice paddy soils in subtropical China. Agriculture, Ecosystems & Environment, 361, 108799. https://doi.org/10.1016/j.agee.2023.108799 | spa |
dc.relation.references | Wang, M., Garrido-Sanz, D., Sansegundo-Lobato, P., Redondo-Nieto, M., Conlon, R., Martin, M., Mali, R., Liu, X., Dowling, D. N., Rivilla, R., & Germaine, K. J. (2021). Soil Microbiome Structure and Function in Ecopiles Used to Remediate Petroleum-Contaminated Soil. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.624070 | spa |
dc.relation.references | Wang, S., Yan, Z., Wang, P., Zheng, X., & Fan, J. (2020). Comparative metagenomics reveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of Qinhuangdao mariculture area. PLOS ONE, 15(6), e0234128. https://doi.org/10.1371/journal.pone.0234128 | spa |
dc.relation.references | Wang, X., Li, Y., Ciampitti, I. A., He, P., Xu, X., Qiu, S., & Zhao, S. (2022). Response of soil denitrification potential and community composition of denitrifying bacterial to different rates of straw return in north-central China. Applied Soil Ecology, 170, 104312. https://doi.org/10.1016/j.apsoil.2021.104312 | spa |
dc.relation.references | Wang, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics, 28(18), i356–i362. https://doi.org/10.1093/bioinformatics/bts397 | spa |
dc.relation.references | Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. https://doi.org/10.1073/pnas.95.12.6578 | spa |
dc.relation.references | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. | spa |
dc.relation.references | Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46 | spa |
dc.relation.references | Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0 | spa |
dc.relation.references | Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R. V., Jacobs, B. F., Kooyman, R., Law, E. A., Leishman, M. R., Niinemets, Ü., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357(6354), 917-921. https://doi.org/10.1126/science.aal4760 | spa |
dc.relation.references | Wu, D., Zhao, C., Bai, H., Feng, F., Sui, X., & Sun, G. (2021). Characteristics and metabolic patterns of soil methanogenic archaea communities in the high‐latitude natural forested wetlands of China. Ecology and Evolution, 11(15), 10396. https://doi.org/10.1002/ece3.7842 | spa |
dc.relation.references | Wu, Y.-W., & Ye, Y. (2011). A Novel Abundance-Based Algorithm for Binning Metagenomic Sequences Using l -tuples. Journal of Computational Biology, 18(3), 523–534. https://doi.org/10.1089/cmb.2010.0245 | spa |
dc.relation.references | Wu, Y.-W., Simmons, B. A., & Singer, S. W. (2016). MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638 | spa |
dc.relation.references | Wurtzel, O., Sesto, N., Mellin, J. R., Karunker, I., Edelheit, S., Bécavin, C., Archambaud, C., Cossart, P., & Sorek, R. (2012). Comparative transcriptomics of pathogenic and non‐pathogenic Listeria species. Molecular Systems Biology, 8(1), 583. https://doi.org/10.1038/msb.2012.11 | spa |
dc.relation.references | Xu, A., Li, L., Xie, J., Zhang, R., Luo, Z., Cai, L., Liu, C., Wang, L., Anwar, S., & Jiang, Y. (2022). Bacterial Diversity and Potential Functions in Response to Long-Term Nitrogen Fertilizer on the Semiarid Loess Plateau. Microorganisms, 10(8), 1579. https://doi.org/10.3390/microorganisms10081579 | spa |
dc.relation.references | Xu, B., Wang, J., Wu, N., Wu, Y., & Shi, F. (2018). Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai–Tibet Plateau, China. Biogeosciences, 15(2), 567-579. https://doi.org/10.5194/bg-15-567-2018 | spa |
dc.relation.references | Xu, T., Shen, Y., Ding, Z., & Zhu, B. (2023). Seasonal dynamics of microbial communities in rhizosphere and bulk soils of two temperate forests. Rhizosphere, 25, 100673. https://doi.org/10.1016/j.rhisph.2023.100673 | spa |
dc.relation.references | Xu, Y., Liu, K., Yao, S., Zhang, Y., Zhang, X., He, H., Feng, W., Ndzana, G. M., Chenu, C., Olk, D. C., Mao, J., & Zhang, B. (2022). Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality. Geoderma, 412, 115727. https://doi.org/10.1016/j.geoderma.2022.115727 | spa |
dc.relation.references | Xue, C.-X., Lin, H., Zhu, X.-Y., Liu, J., Zhang, Y., Rowley, G., Todd, J. D., Li, M., & Zhang, X.-H. (2021). DiTing: A Pipeline to Infer and Compare Biogeochemical Pathways From Metagenomic and Metatranscriptomic Data. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.698286 | spa |
dc.relation.references | Yang, C., Mai, J., Cao, X., Burberry, A., Cominelli, F., & Zhang, L. (2023). ggpicrust2: An R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics, 39(8), btad470. https://doi.org/10.1093/bioinformatics/btad470 | spa |
dc.relation.references | Zaghloul, A., Saber, M., Gadow, S., & Awad, F. (2020). Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bulletin of the National Research Centre, 44(1), 127. https://doi.org/10.1186/s42269-020-00385-x | spa |
dc.relation.references | Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614–620. https://doi.org/10.1093/bioinformatics/btt59 | spa |
dc.relation.references | Zhang, J., Liang, M., Tong, S., Qiao, X., Li, B., Yang, Q., Chen, T., Hu, P., & Yu, S. (2023). Response of leaf functional traits to soil nutrients in the wet and dry seasons in a subtropical forest on an island. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1236607 | spa |
dc.relation.references | Zhang, K., Delgado-Baquerizo, M., Zhu, Y.-G., & Chu, H. (2020). Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. mSystems. https://doi.org/10.1128/msystems.00783-19 | spa |
dc.relation.references | Zhang, X. H., Ahmad, W., Zhu, X. Y., Chen, J., & Austin, B. (2021). Viable but nonculturable bacteria and their resuscitation: Implications for cultivating uncultured marine microorganisms. Marine Life Science and Technology, 3(2), 189-203. https://doi.org/10.1007/s42995-020-00041-3 | spa |
dc.relation.references | Zhang, X., Zeng, H., & Wang, W. (2018). Two contrasting seasonal patterns in microbial nitrogen immobilization from temperate ecosystems. Ecological Indicators, 93, 164-172. https://doi.org/10.1016/j.ecolind.2018.04.078 | spa |
dc.relation.references | Zhang, Z.-Y., Qiang, F.-F., Liu, G.-Q., Liu, C.-H., & Ai, N. (2023). Distribution characteristics of soil microbial communities and their responses to environmental factors in the sea buckthorn forest in the water-wind erosion crisscross region. Frontiers in Microbiology, 13, 1098952. https://doi.org/10.3389/fmicb.2022.1098952 | spa |
dc.relation.references | Zhao, A., Lu, Y., Li, Q., Li, T., & Zhao, J. (2023). Metagenomics reveals the diversity and role of surface-water microbes in biogeochemical cycles in lakes at different terrain ladders. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1121775 | spa |
dc.relation.references | Zhu, B., Karwautz, C., Andrei, S., Klingl, A., Pernthaler, J., & Lueders, T. (2022). A novel Methylomirabilota methanotroph potentially couples methane oxidation to iodate reduction. mLife, 1(3), 323-328. https://doi.org/10.1002/mlf2.12033 | spa |
dc.relation.references | Zhu, H.-Z., Jiang, C.-Y., & Liu, S.-J. (2022). Microbial roles in cave biogeochemical cycling. Frontiers in Microbiology, 13, 950005. https://doi.org/10.3389/fmicb.2022.950005 | spa |
dc.relation.references | Zhuang, J., & Tian, Y. (2023). Effects of Precipitation on ForestrySoil Microorganisms. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/169456 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Servicio de los ecosistemas | |
dc.subject.agrovoc | Ecosystem services | |
dc.subject.agrovoc | Microorganismo del suelo | |
dc.subject.agrovoc | Soil microorganisms | |
dc.subject.agrovoc | Diversidad microbiana | |
dc.subject.agrovoc | Microbial diversity | |
dc.subject.agrovoc | Diversidad genética | |
dc.subject.agrovoc | Genetic diversity | |
dc.subject.agrovoc | Bosque seco | |
dc.subject.agrovoc | Dry forests | |
dc.subject.agrovoc | Bosque tropical | |
dc.subject.agrovoc | Tropical forests | |
dc.subject.agrovoc | Variabilidad del clima | |
dc.subject.agrovoc | Climate variability | |
dc.subject.agrovoc | Clima tropical | |
dc.subject.agrovoc | Tropical climate | |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.proposal | Ciencias omicas | spa |
dc.subject.proposal | Ecología microbiana | spa |
dc.subject.proposal | Microorganismos no cultivables | spa |
dc.subject.proposal | Perfiles funcionales | spa |
dc.subject.proposal | Suelos forestales | spa |
dc.subject.proposal | Forest soils | eng |
dc.subject.proposal | Functional profiles | eng |
dc.subject.proposal | Microbial ecology | eng |
dc.subject.proposal | Non-culturable microorganisms | eng |
dc.subject.proposal | Omics sciences | eng |
dc.title | Diversidad de las comunidades microbianas del suelo asociadas a bosque andino y seco tropical bajo temporada seca y lluviosa empleando Metagenómica | spa |
dc.title.translated | Diversity of Soil Microbial Communities Associated with Andean and Tropical Dry Forests Under Dry and Rainy Seasons Using Metagenomics | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Relaciones multiescalares de la biodiversidad en gradientes altitudinales del bosque tropical. Cod 1106-852-70306 Contrato 491-2020 | spa |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026282360.2025.pdf
- Tamaño:
- 2.41 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Doctorado en Ciencias Agrarias