Diversidad de las comunidades microbianas del suelo asociadas a bosque andino y seco tropical bajo temporada seca y lluviosa empleando Metagenómica

dc.contributor.advisorLópez Álvarez, Diana Carolina
dc.contributor.authorDuque Zapata, Juan Diego
dc.contributor.educationalvalidatorMuñoz Florez, Jaime Eduardo
dc.contributor.orcidhttps://orcid.org/0000-0001-5496-2502spa
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológicaspa
dc.date.accessioned2025-06-27T20:23:58Z
dc.date.available2025-06-27T20:23:58Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractLos diferentes servicios ecosistémicos y cambios biológicos que ofrece el suelo como la degradación y aporte de materia orgánica, ciclos biogeoquímicos entre otros, depende en casi un 80% de los microorganismos habitan en el suelo, los cuales están involucrados directamente en estos procesos. Sin embargo, se estima que solo el 1,0% de estos organismos del suelo son cultivables en laboratorio, para mitigar este desconocimiento y gracias a los avances en la biología molecular y la bioinformática ha surgido la metagenómica, una técnica que extrae los ácidos nucleicos de los individuos directamente del suelo permitiendo así la caracterización y el estudio de los microorganismos no cultivables. Con base a esto, esta investigación tuvo como objetivo estudiar la composición y distribución taxonómica, el potencial funcional de las comunidades microbianas de suelos en el Bosque Andino y Bosque Seco Tropical de la cordillera Occidental y Central que circunscriben el valle geográfico del río Cauca, bajo dos temporadas climatológicas: seca y lluviosa. Para esto se realizó la colecta de muestras de suelos de Laguna de Sonso, Parque Natural Regional El Vínculo, Jardín Botánico Juan María Céspedes Mateguadua, Reserva Nacional Forestal Bosque de Yotoco, Reserva Natural El Pailón, Bosque Andino el Duende, Paramo las Domínguez, y Páramo del Duende. Para cada zona fueron colectadas muestras de suelo destinadas a análisis genómico, el cual consistió en un análisis de metataxonómico (metabarcoding) de las regiones del gen ribosomal 16S para bacterias e ITS para hongos. Para el análisis funcional se realizó metagenómica shotgun a 15 muestras empleando la secuenciación Illumina NovaSeq6000. Con los resultados obtenidos no rechazamos la hipótesis de que la diversidad, abundancia y funciones metabólicas de las comunidades microbianas en los suelos de bosque andino y seco tropical son mayores durante la temporada seca en comparación con la lluviosa. La temporada seca favorece una mayor actividad metabólica y diversidad microbiana, lo que sugiere que estas condiciones ambientales podrían promover la estabilidad y especialización de nichos ecológicos dentro de las comunidades microbianas, resaltando la importancia de conocer los patrones estacionales en la dinámica de las comunidades microbianas del suelo para entender cómo estos cambios climáticos influyen en los procesos ecosistémicos y la salud del suelo. (Texto tomado de la fuente).spa
dc.description.abstractThe different ecosystem services and biological changes offered by the soil, such as the degradation and contribution of organic matter, and biogeochemical cycles, depend almost 80% on the microorganisms that inhabit the soil, which are directly involved in these processes. However, it is estimated that only 1.0% of these soil organisms are cultivable in the laboratory. To mitigate this lack of knowledge and thanks to advances in molecular biology and bioinformatics, metagenomics has emerged, a technique that extracts nucleic acids from individuals directly from the soil, allowing the characterization and study of uncultivable microorganisms. Based on this, this research aimed to study the taxonomic composition and distribution, the functional potential of the microbial communities of soils in the Andean Forest and Tropical Dry Forest of the Western and Central mountain ranges that circumscribe the geographical valley of the Cauca River, under two climatic seasons: dry and rainy. Soil samples were collected from Laguna de Sonso (Buga) Parque Natural Regional El Vínculo (Buga), Jardín Botánico Juan María Céspedes - Mateguadua (Tuluá), Reserva Nacional Forestal Bosque de Yotoco (Yotoco), Reserva Natural El Pailón (Tenerife), Bosque Andino el Duende (Riofrio), Paramo las Domínguez (Tenerife), y Páramo del Duende (Riofrío). For each area, soil samples were collected for genomic analysis, which consisted of metabarcoding analysis of the 16S ribosomal gene regions for bacteria and ITS for fungi. We performed shotgun metagenomics for the functional analysis on 15 samples using Illumina NovaSeq6000 sequencing. Chemical analyses of the soil were also carried out to analyze the correlation between soil properties and the taxonomic and functional diversity of microorganisms. The results obtained do not reject the hypothesis that the diversity, abundance, and metabolic functions of microbial communities in Andean and tropical dry forest soils are higher during the dry season compared to the rainy season. The dry season favors greater metabolic activity and microbial diversity, suggesting that these environmental conditions could promote the stability and specialization of ecological niches within the microbial communities, highlighting the importance of knowing the seasonal patterns in the dynamics of soil microbial communities to understand how these climate changes influence ecosystem processes and soil health.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.degreenameDOcspa
dc.description.methodsesta investigación tuvo como objetivo estudiar la composición y distribución taxonómica, el potencial funcional de las comunidades microbianas de suelos en el Bosque Andino y Bosque Seco Tropical de la cordillera Occidental y Central que circunscriben el valle geográfico del río Cauca, bajo dos temporadas climatológicas: seca y lluviosa. Para esto se realizó la colecta de muestras de suelos de Laguna de Sonso, Parque Natural Regional El Vínculo, Jardín Botánico Juan María Céspedes Mateguadua, Reserva Nacional Forestal Bosque de Yotoco, Reserva Natural El Pailón, Bosque Andino el Duende, Paramo las Domínguez, y Páramo del Duende. Para cada zona fueron colectadas muestras de suelo destinadas a análisis genómico, el cual consistió en un análisis de metataxonómico (metabarcoding) de las regiones del gen ribosomal 16S para bacterias e ITS para hongos. Para el análisis funcional se realizó metagenómica shotgun a 15 muestras empleando la secuenciación Illumina NovaSeq6000.spa
dc.description.sponsorshipThis research was supported by the Ministerio de Ciencia y Tecnología of Colombia (Patrimonio Autónomo, Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas) through the grant: “Relaciones multiescalares de la biodiversidad en gradientes altitudinales del bosque tropical” (code number: 1106-852-70306; contract 491-2020)spa
dc.format.extentxv, 96 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88255
dc.language.isospaspa
dc.publisherUniversdiad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentDoctorado en Ciencias Agrariasspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrariasspa
dc.relation.referencesBai, Z., Jia, A., Li, H., Wang, M., & Qu, S. (2023). Explore the soil factors driving soil microbial community and structure in Songnen alkaline salt degraded grassland. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1110685spa
dc.relation.referencesBeidler, K. V., Powers, J. S., Dupuy-Rada, J. M., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Van Bloem, S. J., Vargas G, G., Waring, B. G., & Kennedy, P. G. (2023). Seasonality regulates the structure and biogeochemical impact of ectomycorrhizal fungal communities across environmentally divergent neotropical dry forests. Journal of Ecology, 111(8), 1598-1613. https://doi.org/10.1111/1365-2745.14112spa
dc.relation.referencesBhardwaj, Y., Reddy, B., & Dubey, S. K. (2020). Temporal shift in methanotrophic community and methane oxidation potential in forest soils of dry tropics: High-throughput metagenomic approach. Biology and Fertility of Soils, 56(6), 859-867. https://doi.org/10.1007/s00374-020-01444-1spa
dc.relation.referencesBrugnoli, E., Verocai, J., Muniz, P., García-Rodríguez, F., Brugnoli, E., Verocai, J., Muniz, P., & García-Rodríguez, F. (2017). Weather, Hydrological and Oceanographic Conditions of the Northern Coast of the Río de la Plata Estuary during ENSO 2009–2010. En Estuary. IntechOpen. https://doi.org/10.5772/intechopen.71808spa
dc.relation.referencesBuscardo, E., Geml, J., & Nagy, L. (2024). Seasonal dependence of deterministic versus stochastic processes influencing soil fungal community composition in a lowland Amazonian rain forest. Communications Earth & Environment, 5(1), 1-11. https://doi.org/10.1038/s43247-024-01273-2spa
dc.relation.referencesCai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2(9), 628-644. https://doi.org/10.1038/s43017-021-00199-zspa
dc.relation.referencesChen, X., Xu, G., Xiong, P., Peng, J., Fang, K., Wan, S., Wang, B., Gu, F., Li, J., & Xiong, H. (2023). Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. Environmental Science and Pollution Research, 30(59), 123694-123709. https://doi.org/10.1007/s11356-023-31042-1spa
dc.relation.referencesDu, C., Xu, C. ‐Y., Jian, J. ‐S., He, W. ‐X., Hou, L., & Geng, Z. ‐C. (2018). Seasonal dynamics of bacterial communities in a Betula albosinensis forest. European Journal of Soil Science, 69(4), 666-674. https://doi.org/10.1111/ejss.12568spa
dc.relation.referencesEstrada-Bonilla, G. A., Lopes, C. M., Durrer, A., Alves, P. R. L., Passaglia, N., & Cardoso, E. J. B. N. (2017). Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste. Systematic and Applied Microbiology, 40(5), 308-313. https://doi.org/10.1016/j.syapm.2017.05.003spa
dc.relation.referencesGao, G.-F., Song, L., Zhang, Y., & Chu, H. (2024). Expedited loss of soil biodiversity in blue carbon ecosystems caused by rising sea levels. Soil Biology and Biochemistry, 191, 109348. https://doi.org/10.1016/j.soilbio.2024.109348spa
dc.relation.referencesGerhard, L., Puhlmann, H., Vogt, M., & Luster, J. (2021). Phosphorus Leaching From Naturally Structured Forest Soils Is More Affected by Soil Properties Than by Drying and Rewetting. Frontiers in Forests and Global Change, 4. https://doi.org/10.3389/ffgc.2021.543037spa
dc.relation.referencesGschwend, F., Hartmann, M., Mayerhofer, J., Hug, A.-S., Enkerli, J., Gubler, A., Meuli, R. G., Frey, B., & Widmer, F. (2021). Site and land-use associations of soil bacteria and fungi define core and indicative taxa. FEMS Microbiology Ecology, 97(12), fiab165. https://doi.org/10.1093/femsec/fiab165spa
dc.relation.referencesHan, W., Wang, G., Liu, J., & Ni, J. (2021). Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests. Applied Soil Ecology, 158, 103813. https://doi.org/10.1016/j.apsoil.2020.103813spa
dc.relation.referencesHasnat, G. N. T., & Hossain, M. K. (2020). Global Overview of Tropical Dry Forests. En Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (pp. 1-23). IGI Global. https://doi.org/10.4018/978-1-7998-0014-9.ch001spa
dc.relation.referencesHuang, H., Zhou, L., Chen, J., & Wei, T. (2020). Ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7.spa
dc.relation.referencesJames, J., & Harrison, R. (2016). The Effect of Harvest on Forest Soil Carbon: A Meta-Analysis. Forests, 7(12), Article 12. https://doi.org/10.3390/f7120308spa
dc.relation.referencesJansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35-46. https://doi.org/10.1038/s41579-019-0265-7spa
dc.relation.referencesJi, L., Yang, Y., & Yang, L. (2021). Seasonal variations in soil fungal communities and co-occurrence networks along an altitudinal gradient in the cold temperate zone of China: A case study on Oakley Mountain. CATENA, 204, 105448. https://doi.org/10.1016/j.catena.2021.105448spa
dc.relation.referencesJin, Y., Wei, X., White, J. F., Chen, T., Li, X., Chen, Z., & Li, C. (2022). Soil fungal and bacterial communities are altered by the incorporation of leaf litter containing a fungal endophyte. European Journal of Soil Science, 73(3), e13240. https://doi.org/10.1111/ejss.13240spa
dc.relation.referencesKang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., & Wang, Z. (2019). MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. https://doi.org/10.7717/peerj.7359spa
dc.relation.referencesKõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K.-H., May, T. W., Taylor, A. F. S., Jeppesen, T. S., Frøslev, T. G., Lindahl, B. D., Põldmaa, K., Saar, I., Suija, A., Savchenko, A., Yatsiuk, I., Adojaan, K., Ivanov, F., Piirmann, T., Pöhönen, R., … Abarenkov, K. (2020). The Taxon Hypothesis Paradigm—On the Unambiguous Detection and Communication of Taxa. Microorganisms, 8(12), Article 12. https://doi.org/10.3390/microorganisms8121910spa
dc.relation.referencesLahti, L., & Shetty, S. (2019). Microbiome R package. Bioconductor. http://bioconductor.org/packages/microbiome/spa
dc.relation.referencesLepcha, N. T., & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 65. https://doi.org/10.1186/s13717-020-00269-yspa
dc.relation.referencesLi, G., Kim, S., Han, S. H., Chang, H., Du, D., & Son, Y. (2018). Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biology and Biochemistry, 120, 212-221. https://doi.org/10.1016/j.soilbio.2018.02.014spa
dc.relation.referencesLi, Y., Ma, J., Li, Y., Shen, X., & Xia, X. (2024). Microbial community and enzyme activity respond differently to seasonal and edaphic factors in forest and grassland ecosystems. Applied Soil Ecology, 194, 105167. https://doi.org/10.1016/j.apsoil.2023.105167spa
dc.relation.referencesLin, Y., Yang, L., Chen, Z., Gao, Y., Kong, J., He, Q., Su, Y., Li, J., & Qiu, Q. (2023). Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Frontiers in Microbiology, 14, 1113616. https://doi.org/10.3389/fmicb.2023.1113616spa
dc.relation.referencesMa, W., Yang, Z., Liang, L., Ma, Q., Wang, G., & Zhao, T. (2021). Seasonal Changes in Soil Microbial Community and Co-Occurrence Network of Species of the Genus Corylus. Microorganisms, 9(11), 2228. https://doi.org/10.3390/microorganisms9112228spa
dc.relation.referencesMabagala, F. S., & Mng’ong’o, M. E. (2022). On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability. Saudi Journal of Biological Sciences, 29(5), 3635-3641. https://doi.org/10.1016/j.sjbs.2022.02.056spa
dc.relation.referencesMaurice, K., Bourceret, A., Youssef, S., Boivin, S., Laurent-Webb, L., Damasio, C., Boukcim, H., Selosse, M.-A., & Ducousso, M. (2024). Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem. Science of The Total Environment, 907, 167969. https://doi.org/10.1016/j.scitotenv.2023.167969spa
dc.relation.referencesOksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2024). vegan: Community Ecology Package version 2.7-0 (p. 2.6-8) [Dataset]. https://doi.org/10.32614/CRAN.package.veganspa
dc.relation.referencesOnyango, L. A., Ngonga, F. A., Karanja, E. N., Kuja, J. O., Boga, H. I., Cowan, D. A., Mwangi, K. W., Maghenda, M. W., Marinho Lebre, P. B. N., & Kambura, A. K. (2023). The soil microbiomes of forest ecosystems in Kenya: Their diversity and environmental drivers. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-33993-4spa
dc.relation.referencesPalácios, R., Castagna, D., Barbosa, L., Souza, A. P., Imbiriba, B., Zolin, C. A., Nassarden, D., Duarte, L., Morais, F. G., Franco, M. A., Cirino, G., Kuhn, P., Sodré, G., Curado, L., Basso, J., Roberto de Paulo, S., & Rodrigues, T. (2024). ENSO effects on the relationship between aerosols and evapotranspiration in the south of the Amazon biome. Environmental Research, 250. Scopus. https://doi.org/10.1016/j.envres.2024.118516spa
dc.relation.referencesPan, Y., Kang, P., Qu, X., Zhang, H., & Li, X. (2024). Response of the soil bacterial community to seasonal variations and land reclamation in a desert grassland. Ecological Indicators, 165, 112227. https://doi.org/10.1016/j.ecolind.2024.112227spa
dc.relation.referencesPardo-Esté, C., Leiva, S. G., Remonsellez, F., Castro-Nallar, E., Castro-Severyn, J., & Saavedra, C. P. (2023). Exploring the Influence of Small-Scale Geographical and Seasonal Variations Over the Microbial Diversity in a Poly-extreme Athalosaline Wetland. Current Microbiology, 80(9), 297. https://doi.org/10.1007/s00284-023-03395-wspa
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219spa
dc.relation.referencesSánchez-Galindo, L. M., Sandmann, D., Marian, F., Krashevska, V., Maraun, M., & Scheu, S. (2021). Leaf litter identity rather than diversity shapes microbial functions and microarthropod abundance in tropical montane rainforests. Ecology and Evolution, 11(5), 2360-2374. https://doi.org/10.1002/ece3.7208spa
dc.relation.referencesSolanki, A. C., Gurjar, N. S., Sharma, S., Wang, Z., Kumar, A., Solanki, M. K., Kumar Divvela, P., Yadav, K., & Kashyap, B. K. (2024). Decoding seasonal changes: Soil parameters and microbial communities in tropical dry deciduous forests. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1258934spa
dc.relation.referencesSun, F., Fan, L., Deng, G., Kuzyakov, Y., Zhang, Y., Wang, J., Li, Y., Wang, F., Li, Z., Tariq, A., Sardans, J., Penuelas, J., Wang, M., & Peng, C. (2024). Responses of tropical forest soil organic matter pools to shifts in precipitation patterns. Soil Biology and Biochemistry, 197, 109530. https://doi.org/10.1016/j.soilbio.2024.109530spa
dc.relation.referencesVélez-Martínez, G. A., Reyes-Ardila, W. L., Duque-Zapata, J. D., Rugeles-Silva, P. A., Muñoz Flórez, J. E., & López-Álvarez, D. (2023). Soil bacteria and fungi communities are shaped by elevation influences in Colombian forest and páramo natural ecosystems. International Microbiology, 27(2), 377-391. https://doi.org/10.1007/s10123-023-00392-8spa
dc.relation.referencesVoříšková, J., Brabcová, V., Cajthaml, T., & Baldrian, P. (2014). Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist, 201(1), 269-278. https://doi.org/10.1111/nph.12481spa
dc.relation.referencesWei, Y., Quan, F., Lan, G., Wu, Z., & Yang, C. (2022). Space Rather than Seasonal Changes Explained More of the Spatiotemporal Variation of Tropical Soil Microbial Communities. Microbiology Spectrum, 10(6), e01846-22. https://doi.org/10.1128/spectrum.01846-22spa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer.spa
dc.relation.referencesWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0spa
dc.relation.referencesAbay, P., Gong, L., Luo, Y., Zhu, H., & Ding, Z. (2024). Soil extracellular enzyme stoichiometry reveals the nutrient limitations in soil microbial metabolism under different carbon input manipulations. Science of The Total Environment, 913, 169793. https://doi.org/10.1016/j.scitotenv.2023.169793spa
dc.relation.referencesAguilar-Paredes, A., Valdés, G., & Nuti, M. (2020). Ecosystem Functions of Microbial Consortia in Sustainable Agriculture. Agronomy, 10(12), Article 12. https://doi.org/10.3390/agronomy10121902spa
dc.relation.referencesAlarcón Gutiérrez, E., Hernández, C., Gardner, T., García Pérez, J. A., Caballero, M., Perroni, Y., Farnet da Silva, A. M. A., Gaime Perraud, I., & Barois, I. (2021). Soil bioindicators associated to different management regimes of cedrela odorata plantations. Madera y Bosques, 27(1). https://doi.org/10.21829/myb.2021.2711912spa
dc.relation.referencesAlcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. v, Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., … McArthur, A. G. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz935spa
dc.relation.referencesAmir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Zech Xu, Z., Kightley, E. P., Thompson, L. R., Hyde, E. R., Gonzalez, A., & Knight, R. (2017). Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. Msystems, 2(2). https://doi.org/10.1128/mSystems.00191-16spa
dc.relation.referencesBaksay, S., Andalo, C., Galop, D., Burrus, M., Escaravage, N., & Pornon, A. (2022). Using Metabarcoding to Investigate the Strength of Plant-Pollinator Interactions From Surveys of Visits to DNA Sequences. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.735588spa
dc.relation.referencesBaldrian, P. (2017). Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiology Reviews, 41(2), 109-130. https://doi.org/10.1093/femsre/fuw040spa
dc.relation.referencesBhowmik, A., Kukal, S. S., Saha, D., Sharma, H., Kalia, A., & Sharma, S. (2019). Potential indicators of soil health degradation in different land use-based ecosystems in the shiwaliks of northwestern India. Sustainability (Switzerland), 11(14). https://doi.org/10.3390/su11143908spa
dc.relation.referencesBodor, A., Bounedjoum, N., Vincze, G. E., Erdeiné Kis, Á., Laczi, K., Bende, G., Szilágyi, Á., Kovács, T., Perei, K., & Rákhely, G. (2020). Challenges of unculturable bacteria: Environmental perspectives. Reviews in Environmental Science and Biotechnology, 19(1). https://doi.org/10.1007/s11157-020-09522-4spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9spa
dc.relation.referencesBonomo, M. G., Calabrone, L., Scrano, L., Bufo, S. A., di Tomaso, K., Buongarzone, E., & Salzano, G. (2022). Metagenomic monitoring of soil bacterial community after the construction of a crude oil flowline. Environmental Monitoring and Assessment, 194(2), 48. https://doi.org/10.1007/s10661-021-09637-3spa
dc.relation.referencesBorrel, G., Adam, P. S., & Gribaldo, S. (2016). Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. Genome Biology and Evolution, 8(6), 1706. https://doi.org/10.1093/gbe/evw114spa
dc.relation.referencesBrady, A., & Salzberg, S. L. (2009). Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nature Methods, 6(9), 673–676. https://doi.org/10.1038/nmeth.1358spa
dc.relation.referencesBreitwieser, F. P., Baker, D. N., & Salzberg, S. L. (2018). KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biology, 19(1), 198. https://doi.org/10.1186/s13059-018-1568-0spa
dc.relation.referencesBrück, S. A., Torres, B. D. M., & de Moraes Polizeli, M. de L. T. (2023). The Ecuadorian paramo in danger: What we know and what might be learned from northern wetlands. Global Ecology and Conservation, 47, e02639. https://doi.org/10.1016/j.gecco.2023.e02639spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869spa
dc.relation.referencesCaspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., & Karp, P. D. (2020). The MetaCyc database of metabolic pathways and enzymes – a 2019 update. Nucleic Acids Research, 48(D1), D445–D453. https://doi.org/10.1093/nar/gkz862spa
dc.relation.referencesChen, L.-C., Guan, X., Li, H.-M., Wang, Q.-K., Zhang, W.-D., Yang, Q.-P., & Wang, S.-L. (2019). Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. Forest Ecology and Management, 432, 656-666. https://doi.org/10.1016/j.foreco.2018.09.059spa
dc.relation.referencesChen, Z., Luo, X., Hu, R., Wu, M., Wu, J., & Wei, W. (2010). Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 60(4), 850-861. https://doi.org/10.1007/s00248-010-9700-zspa
dc.relation.referencesChukwuneme, C. F., Ayangbenro, A. S., & Babalola, O. O. (2021). Metagenomic analyses of plant growth-promoting and carbon-cycling genes in maize rhizosphere soils with distinct land-use and management histories. Genes, 12(9). https://doi.org/10.3390/genes12091431spa
dc.relation.referencesChurcheward, B., Millet, M., Bihouée, A., Fertin, G., & Chaffron, S. (2022). MAGNETO: An Automated Workflow for Genome-Resolved Metagenomics. Msystems. https://doi.org/10.1128/msystems.00432-22spa
dc.relation.referencesClarridge, J. E. (2004). Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews, 17(4), 840–862. https://doi.org/10.1128/CMR.17.4.840-862.2004spa
dc.relation.referencesConrad, R. (2020). Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms, 8(6), 881. https://doi.org/10.3390/microorganisms8060881spa
dc.relation.referencesCorrea, S. S., Schultz, J., Lauersen, K. J., & Rosado, A. S. (2022). Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of Advanced Research, 47, 75. https://doi.org/10.1016/j.jare.2022.07.011spa
dc.relation.referencesCorrochano-Monsalve, M., Saiz, H., & Maestre, F. T. (2024). Influence of soil copper and zinc levels on the abundance of methanotrophic, nitrifying, and N2O-reducing microorganisms in drylands worldwide. Applied Soil Ecology, 196, 105284. https://doi.org/10.1016/j.apsoil.2024.105284spa
dc.relation.referencesCraig, J. W., Chang, F.-Y., Kim, J. H., Obiajulu, S. C., & Brady, S. F. (2010). Expanding Small-Molecule Functional Metagenomics through Parallel Screening of Broad-Host-Range Cosmid Environmental DNA Libraries in Diverse Proteobacteria. Applied and Environmental Microbiology, 76(5), 1633–1641. https://doi.org/10.1128/AEM.02169-09spa
dc.relation.referencesCresso, M., Clerici, N., Sanchez, A., & Jaramillo, F. (2020). Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability, 12(20), Article 20. https://doi.org/10.3390/su12208373spa
dc.relation.referencesDai, W., Liu, R., Yang, F., He, G., & Wei, C. (2023). Denitrifying bacteria agent together with composite materials enhanced soil chemical properties and denitrifying functions in rare earth tailings: A field study. Journal of Hazardous Materials, 448, 130913. https://doi.org/10.1016/j.jhazmat.2023.130913spa
dc.relation.referencesDanecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008spa
dc.relation.referencesDeiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental <scp>DNA</scp> metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350spa
dc.relation.referencesDelmont, T. O., Simonet, P., & Vogel, T. M. (2012). Describing microbial communities and performing global comparisons in the ‘omic era. The ISME Journal, 6(9), 1625–1628. https://doi.org/10.1038/ismej.2012.55spa
dc.relation.referencesDentinger, B. T. M., Didukh, M. Y., & Moncalvo, J.-M. (2011). Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina). PloS ONE, 6(9), e25081. https://doi.org/10.1371/journal.pone.0025081spa
dc.relation.referencesDiaz, N. N., Krause, L., Goesmann, A., Niehaus, K., & Nattkemper, T. W. (2009). TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics, 10(1), 56. https://doi.org/10.1186/1471-2105-10-56spa
dc.relation.referencesDong, X., Li, F., Lin, Z., Harrison, S. P., Chen, Y., & Kug, J.-S. (2021). Climate influence on the 2019 fires in Amazonia. Science of The Total Environment, 794, 148718. https://doi.org/10.1016/j.scitotenv.2021.148718spa
dc.relation.referencesDröge, J., Gregor, I., & McHardy, A. C. (2015). Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. Bioinformatics, 31(6), 817–824. https://doi.org/10.1093/bioinformatics/btu745spa
dc.relation.referencesDu, T., Hu, Q., Mao, W., Yang, Z., Chen, H., Sun, L., & Zhai, M. (2023). Metagenomics insights into the functional profiles of soil carbon, nitrogen, and phosphorus cycles in a walnut orchard under various regimes of long-term fertilisation. European Journal of Agronomy, 148, 126887. https://doi.org/10.1016/j.eja.2023.126887spa
dc.relation.referencesDutta, A., Connors, E., Trinh, R., Erazo, N., Dasarathy, S., Ducklow, H. W., Steinberg, D. K., Schofield, O. M., & Bowman, J. S. (2023). Depth drives the distribution of microbial ecological functions in the coastal western Antarctic Peninsula. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1168507spa
dc.relation.referencesEspinoza, J.-C., Marengo, J. A., Schongart, J., & Jimenez, J. C. (2022). The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: Atmospheric features in the context of the intensification of floods. Weather and Climate Extremes, 35, 100406. https://doi.org/10.1016/j.wace.2021.100406spa
dc.relation.referencesEtter, A., & Villa, L. A. (2000). Andean Forests and Farming Systems in part of the Eastern Cordillera (Colombia). Mountain Research and Development, 20(3), 236-245. https://doi.org/10.1659/0276-4741(2000)020[0236:afafsi]2.0.co;2spa
dc.relation.referencesEvans, B. R., & Leighton, F. A. (2014). A history of One Health. Revue Scientifique et Technique de l’OIE, 33(2), 413–420. https://doi.org/10.20506/rst.33.2.2298spa
dc.relation.referencesEzeokoli, O. T., Bezuidenhout, C. C., Maboeta, M. S., Khasa, D. P., & Adeleke, R. A. (2020). Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58576-5spa
dc.relation.referencesFazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., Percy, D. M., Hajibabaei, M., & Barrett, S. C. H. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PloS ONE, 3(7), e2802. https://doi.org/10.1371/journal.pone.0002802spa
dc.relation.referencesFeng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., & Zhao, Y. (2018). Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology, 18(1), 1–13. https://doi.org/10.1186/s12866-018-1152-5spa
dc.relation.referencesFerrer, M., Beloqui, A., Timmis, K. N., & Golyshin, P. N. (2009). Metagenomics for Mining New Genetic Resources of Microbial Communities. Journal of Molecular Microbiology and Biotechnology, 16(1-2), 109-123. https://doi.org/10.1159/000142898spa
dc.relation.referencesFierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87spa
dc.relation.referencesFierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631. https://doi.org/10.1073/pnas.0507535103spa
dc.relation.referencesFrąc, M., Hannula, E. S., Bełka, M., Salles, J. F., & Jedryczka, M. (2022). Soil mycobiome in sustainable agriculture. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1033824spa
dc.relation.referencesFrąc, M., Hannula, S. E., Belka, M., & Jȩdryczka, M. (2018). Fungal biodiversity and their role in soil health. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00707spa
dc.relation.referencesGayathri, R., Mahboob, S., Govindarajan, M., Al-Ghanim, K. A., Ahmed, Z., Al-Mulhm, N., Vodovnik, M., & Vijayalakshmi, S. (2021). A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks. Journal of King Saud University - Science, 33(2), 101282. https://doi.org/10.1016/j.jksus.2020.101282spa
dc.relation.referencesGerner-Smidt, P., Besser, J., Concepción-Acevedo, J., Folster, J. P., Huffman, J., Joseph, L. A., Kucerova, Z., Nichols, M. C., Schwensohn, C. A., & Tolar, B. (2019). Whole Genome Sequencing: Bridging One-Health Surveillance of Foodborne Diseases. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00172spa
dc.relation.referencesGilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biology, 12(1), 69. https://doi.org/10.1186/s12915-014-0069-1spa
dc.relation.referencesGilbert, J. A., Meyer, F., Antonopoulos, D., Balaji, P., Brown, C. T., Brown, C. T., Desai, N., Eisen, J. A., Evers, D., Field, D., Feng, W., Huson, D., Jansson, J., Knight, R., Knight, J., Kolker, E., Konstantindis, K., Kostka, J., Kyrpides, N., … Stevens, R. (2010). Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards in Genomic Sciences, 3(3), 243–248. https://doi.org/10.4056/sigs.1433550spa
dc.relation.referencesGlass, J. B., & Orphan, V. J. (2012). Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide. Frontiers in Microbiology, 3, 61. https://doi.org/10.3389/fmicb.2012.00061spa
dc.relation.referencesGreninger, A. L., Chen, E. C., Sittler, T., Scheinerman, A., Roubinian, N., Yu, G., Kim, E., Pillai, D. R., Guyard, C., Mazzulli, T., Isa, P., Arias, C. F., Hackett, J., Schochetman, G., Miller, S., Tang, P., & Chiu, C. Y. (2010). A Metagenomic Analysis of Pandemic Influenza A (2009 H1N1) Infection in Patients from North America. PloS ONE, 5(10), e13381. https://doi.org/10.1371/journal.pone.0013381spa
dc.relation.referencesGrosso, F., Iovieno, P., Alfani, A., & De Nicola, F. (2018). Structure and activity of soil microbial communities in three Mediterranean forests. Applied Soil Ecology, 130, 280-287. https://doi.org/10.1016/j.apsoil.2018.07.007spa
dc.relation.referencesHandelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9spa
dc.relation.referencesHatten, J., & Liles, G. (2019). A ‘healthy’ balance – The role of physical and chemical properties in maintaining forest soil function in a changing world (pp. 373–396). https://doi.org/10.1016/B978-0-444-63998-1.00015-Xspa
dc.relation.referencesHaygarth, P. M., & Ritz, K. (2009). The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. Land Use Policy, 26(SUPPL. 1), 187–197. https://doi.org/10.1016/j.landusepol.2009.09.016spa
dc.relation.referencesHebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218spa
dc.relation.referencesHollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and Using a Plant DNA Barcode. PloS ONE, 6(5), e19254. https://doi.org/10.1371/journal.pone.0019254spa
dc.relation.referencesHügler, M., Huber, H., Molyneaux, S. J., Vetriani, C., & Sievert, S. M. (2007). Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: Evidence for two ways of citrate cleavage. Environmental Microbiology, 9(1), 81-92. https://doi.org/10.1111/j.1462-2920.2006.01118.xspa
dc.relation.referencesHuman Microbiome Project. (2019). The Integrative Human Microbiome Project. Nature, 569(7758), 641–648. https://doi.org/10.1038/s41586-019-1238-8spa
dc.relation.referencesHuson, D. H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.-J., & Tappu, R. (2016). MEGAN Community Edition – Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLOS Computational Biology, 12(6), e1004957. https://doi.org/10.1371/journal.pcbi.1004957spa
dc.relation.referencesIsobe, K., Ise, Y., Kato, H., Oda, T., Vincenot, C. E., Koba, K., Tateno, R., Senoo, K., & Ohte, N. (2020). Consequences of microbial diversity in forest nitrogen cycling: Diverse ammonifiers and specialized ammonia oxidizers. The ISME Journal, 14(1), 12-25. https://doi.org/10.1038/s41396-019-0500-2spa
dc.relation.referencesJiao, J. Y., Liu, L., Hua, Z. S., Fang, B. Z., Zhou, E. M., Salam, N., Hedlund, B. P., & Li, W. J. (2021). Microbial dark matter coming to light: Challenges and opportunities. In National Science Review (Vol. 8, Issue 3). Oxford University Press. https://doi.org/10.1093/nsr/nwaa280spa
dc.relation.referencesKačergius, A., Sivojienė, D., Gudiukaitė, R., Bakšienė, E., Masevičienė, A., & Žičkienė, L. (2023). Comparison of the Structure of Soil Microbial Communities of Different Ecosystems Using the Microbiome Sequencing Approach. Soil Systems, 7(3), Article 3. https://doi.org/10.3390/soilsystems7030070spa
dc.relation.referencesKanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28(11), 1947-1951. https://doi.org/10.1002/pro.3715spa
dc.relation.referencesKanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27spa
dc.relation.referencesKanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587-D592. https://doi.org/10.1093/nar/gkac963spa
dc.relation.referencesKanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(Database issue), D457-D462. https://doi.org/10.1093/nar/gkv1070spa
dc.relation.referencesKatz, K., Shutov, O., Lapoint, R., Kimelman, M., Brister, J. R., & O’Sullivan, C. (2022). The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Research, 50(D1), D387–D390. https://doi.org/10.1093/nar/gkab1053spa
dc.relation.referencesKaushik, P., Singh Sandhu, O., Singh Brar, N., Kumar, V., Singh Malhi, G., Kesh, H., & Saini, I. (2021). Soil Metagenomics: Prospects and Challenges. In Mycorrhizal Fungi – Utilization in Agriculture and Industry. IntechOpen. https://doi.org/10.5772/intechopen.93306spa
dc.relation.referencesKeegan, K. P., Glass, E. M., & Meyer, F. (2016). MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function (pp. 207–233). https://doi.org/10.1007/978-1-4939-3369-3_13spa
dc.relation.referencesKotsyurbenko, O. R., Glagolev, M. V., Merkel, A. Y., Sabrekov, A. F., & Terentieva, I. E. (2019). Methanogenesis in Soils, Wetlands, and Peat. En A. J. M. Stams & D. Z. Sousa (Eds.), Biogenesis of Hydrocarbons (pp. 211-228). Springer International Publishing. https://doi.org/10.1007/978-3-319-78108-2_9spa
dc.relation.referencesKuang, B., Xiao, R., Hu, Y., Wang, Y., Zhang, L., Wei, Z., Bai, J., Zhang, K., Acuña, J. J., Jorquera, M. A., & Pan, W. (2023). Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Frontiers in Microbiology, 13, 1112669. https://doi.org/10.3389/fmicb.2022.1112669spa
dc.relation.referencesKultima, J. R., Coelho, L. P., Forslund, K., Huerta-Cepas, J., Li, S. S., Driessen, M., Voigt, A. Y., Zeller, G., Sunagawa, S., & Bork, P. (2016). MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics, 32(16), 2520–2523. https://doi.org/10.1093/bioinformatics/btw183spa
dc.relation.referencesKuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263-276. https://doi.org/10.1038/nrmicro.2018.9spa
dc.relation.referencesLangille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676spa
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923spa
dc.relation.referencesLannes, R., Olsson-Francis, K., Lopez, P., & Bapteste, E. (2019). Carbon Fixation by Marine Ultrasmall Prokaryotes. Genome Biology and Evolution, 11(4), 1166-1177. https://doi.org/10.1093/gbe/evz050spa
dc.relation.referencesLeite, M. F. A., van den Broek, S. W. E. B., & Kuramae, E. E. (2022). Current Challenges and Pitfalls in Soil Metagenomics. Microorganisms, 10(10). https://doi.org/10.3390/microorganisms10101900spa
dc.relation.referencesLi, A. M. L. (2017). Ecological determinants of health: food and environment on human health. Environmental Science and Pollution Research, 24(10), 9002–9015. https://doi.org/10.1007/s11356-015-5707-9spa
dc.relation.referencesLi, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033spa
dc.relation.referencesLi, F., Zi, H., Sonne, C., & Li, X. (2023). Microbiome sustains forest ecosystem functions across hierarchical scales. Eco-Environment & Health, 2(1), 24-31. https://doi.org/10.1016/j.eehl.2023.03.001spa
dc.relation.referencesLi, X., Qu, Z., Zhang, Y., Ge, Y., & Sun, H. (2022). Soil Fungal Community and Potential Function in Different Forest Ecosystems. Diversity, 14(7), Article 7. https://doi.org/10.3390/d14070520spa
dc.relation.referencesLiu, B., Gibbons, T., Ghodsi, M., & Pop, M. (2010). MetaPhyler: Taxonomic profiling for metagenomic sequences. 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 95–100. https://doi.org/10.1109/BIBM.2010.5706544spa
dc.relation.referencesLiu, R., Wang, Z., Wang, L., Li, Z., Fang, J., Wei, X., Wei, W., Cao, J., Wei, Y., & Xie, Z. (2020). Bulk and Active Sediment Prokaryotic Communities in the Mariana and Mussau Trenches. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01521spa
dc.relation.referencesLiu, S., Moon, C. D., Zheng, N., Huws, S., Zhao, S., & Wang, J. (2022). Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome, 10(1), 76. https://doi.org/10.1186/s40168-022-01272-5spa
dc.relation.referencesLomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Research, 28(7), 1079–1089. https://doi.org/10.1101/gr.230615.117spa
dc.relation.referencesLong, P. E., Williams, K. H., Hubbard, S. S., & Banfield, J. F. (2016). Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes. Trends in Microbiology, 24(8), 600–610. https://doi.org/10.1016/j.tim.2016.04.006spa
dc.relation.referencesLouca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272–1277. https://doi.org/10.1126/science.aaf4507spa
dc.relation.referencesLuo, S., He, B., Zeng, Q., Li, N., & Yang, L. (2020). Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. Journal of Mountain Science, 17(6), 1398-1409. https://doi.org/10.1007/s11629-019-5825-9spa
dc.relation.referencesLuo, X., Wang, M. K., Hu, G., & Weng, B. (2019). Seasonal Change in Microbial Diversity and Its Relationship with Soil Chemical Properties in an Orchard. PLOS ONE, 14(12), e0215556. https://doi.org/10.1371/journal.pone.0215556spa
dc.relation.referencesMa, B., Stirling, E., Liu, Y., Zhao, K., Zhou, J., Singh, B. K., Tang, C., Dahlgren, R. A., & Xu, J. (2021). Soil Biogeochemical Cycle Couplings Inferred from a Function-Taxon Network. Research, 2021, 7102769. https://doi.org/10.34133/2021/7102769spa
dc.relation.referencesMa, N., Ji, Y., Dong, H., Zhu, J., Peng, Y., Yue, K., Zhang, H., Ma, Y., Zheng, T., Wu, Q., & Li, Y. (2024). Effects of seasonal precipitation regimes on microbial biomass and extracellular enzyme activity during shrub foliar litter decomposition in a subtropical forest. Science of The Total Environment, 932, 173098. https://doi.org/10.1016/j.scitotenv.2024.173098spa
dc.relation.referencesMadden, T. (2002). The BLAST Sequence Analysis Tool. In The NCBI Handbook .spa
dc.relation.referencesMartin, T., Wade, J., Singh, P., & Sprunger, C. D. (2022). The integration of nematode communities into the soil biological health framework by factor analysis. Ecological Indicators, 136, 108676. https://doi.org/10.1016/j.ecolind.2022.108676spa
dc.relation.referencesMcMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217spa
dc.relation.referencesMenta, C., & Remelli, S. (2020). Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054spa
dc.relation.referencesMikheenko, A., Saveliev, V., & Gurevich, A. (2016). MetaQUAST: evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–1090. https://doi.org/10.1093/bioinformatics/btv697spa
dc.relation.referencesMistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913spa
dc.relation.referencesMitchell, G., Wilson, P. J., Manseau, M., Redquest, B., Patterson, B. R., & Rutledge, L. Y. (2022). DNA metabarcoding of faecal pellets reveals high consumption of yew ( Taxus spp.) by caribou ( Rangifer tarandus ) in a lichen-poor environment. FACETS, 7, 701–717. https://doi.org/10.1139/facets-2021-0071spa
dc.relation.referencesMoreira, F. M. S., Huising, J. E., & Bignell, D. E. (2012). Manual de biología de suelos tropicales. Muestreo y caracterización de la biodiversidad bajo suelo. Instituto Nacional de Ecologia INE.spa
dc.relation.referencesMukhtar, H., Wunderlich, R. F., Muzaffar, A., Ansari, A., Shipin, O. V., Cao, T. N.-D., & Lin, Y.-P. (2023). Soil microbiome feedback to climate change and options for mitigation. Science of The Total Environment, 882, 163412. https://doi.org/10.1016/j.scitotenv.2023.163412spa
dc.relation.referencesN. Sabale, S., P. Suryawanshi, P., & Krishnaraj, P. U. (2020). Soil Metagenomics: Concepts and Applications. En Metagenomics—Basics, Methods and Applications (pp. 1-27). IntechOpen. https://doi.org/10.5772/intechopen.88958spa
dc.relation.referencesNacke, H., Will, C., Herzog, S., Nowka, B., Engelhaupt, M., & Daniel, R. (2011). Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiology Ecology, 78(1), 188–201. https://doi.org/10.1111/j.1574-6941.2011.01088.xspa
dc.relation.referencesNagarajan, N., & Pop, M. (2013). Sequence assembly demystified. Nature Reviews Genetics, 14(3), 157–167. https://doi.org/10.1038/nrg3367spa
dc.relation.referencesNamiki, T., Hachiya, T., Tanaka, H., & Sakakibara, Y. (2012). MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research, 40(20), e155–e155. https://doi.org/10.1093/nar/gks678spa
dc.relation.referencesNannipieri, P. (2014). Soil as a biological system and omics approaches. International Journal of Environmental Quality, 13, 61-66. https://doi.org/10.6092/issn.2281-4485/4541spa
dc.relation.referencesNannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.xspa
dc.relation.referencesNannipieri, P., Pietramellara, G., & Renella, G. (2014). Omics in Soil Science.spa
dc.relation.referencesNatural Resources Conservation Services. (2012). Soil Health.spa
dc.relation.referencesNavarrete, A. A., Aburto, F., González-Rocha, G., Guzmán, C. M., Schmidt, R., & Scow, K. (2023). Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. Science of the Total Environment, 854. https://doi.org/10.1016/j.scitotenv.2022.158508spa
dc.relation.referencesNearing, J. T., Douglas, G. M., Comeau, A. M., & Langille, M. G. I. (2018). Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches. PeerJ, 6, e5364. https://doi.org/10.7717/peerj.5364spa
dc.relation.referencesNesme, J., Achouak, W., Agathos, S. N., Bailey, M., Baldrian, P., Brunel, D., Frostegård, Å., Heulin, T., Jansson, J. K., Jurkevitch, E., Kruus, K. L., Kowalchuk, G. A., Lagares, A., Lappin-Scott, H. M., Lemanceau, P., le Paslier, D., Mandic-Mulec, I., Murrell, J. C., Myrold, D. D., … Simonet, P. (2016). Back to the future of soil metagenomics. Frontiers in Microbiology, 7(FEB), 1–5. https://doi.org/10.3389/fmicb.2016.00073spa
dc.relation.referencesNguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006spa
dc.relation.referencesNurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824-834. https://doi.org/10.1101/gr.213959.116spa
dc.relation.referencesPajares, S., Campo, J., Bohannan, B. J. M., & Etchevers, J. D. (2018). Environmental controls on soil microbial communities in a seasonally dry tropical forest. Applied and Environmental Microbiology, 84(17). https://doi.org/10.1128/AEM.00342-18spa
dc.relation.referencesPal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., & Larsson, D. G. J. (2014). BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42(D1), D737–D743. https://doi.org/10.1093/nar/gkt1252spa
dc.relation.referencesParks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043–1055. https://doi.org/10.1101/gr.186072.114spa
dc.relation.referencesPearman, W. S., Freed, N. E., & Silander, O. K. (2020). Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads. BMC Bioinformatics, 21(1), 220. https://doi.org/10.1186/s12859-020-3528-4spa
dc.relation.referencesPérez-Cobas, A. E., Gomez-Valero, L., & Buchrieser, C. (2020). Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses. Microbial Genomics, 6(8), 1–22. https://doi.org/10.1099/mgen.0.000409spa
dc.relation.referencesPizano, C., González-M., R., López, R., Jurado, R. D., Cuadros, H., Castaño-Naranjo, A., Rojas, A., Peréz, K., Vergara-Varela, H., Idárraga, Á., Isaacs, P., & García, H. (2016). El bosque seco tropical en Colombia. En Biodiversidad 2015. Estado y tendencias de la biodiversidad continental de Colombia (Número May, pp. 21-22). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/B001.2015.202spa
dc.relation.referencesPoghosyan, L., & Lehtovirta-Morley, L. E. (2024). Investigating microbial and environmental drivers of nitrification in alkaline forest soil. ISME Communications, 4(1), ycae093. https://doi.org/10.1093/ismeco/ycae093spa
dc.relation.referencesQuintero-Vallejo, E., Benavides, A. M., Moreno, N., & González-Caro, S. (2018). Estado de los bosques de Antioquia entre 1990-2015. En Fundación Jardín Botánico de Medellín Joaquín Antonio UribePrograma Bosques Andinos (COSUDE).spa
dc.relation.referencesReyes-Ardila, W. L., Vélez-Martínez, G. A., Duque-Zapata, J. D., Rugeles-Silva, P. A., Muñoz Flórez, J. E., & López-Álvarez, D. (2024). Exploring Soil Bacterial and Fungal Communities in Colombian Terrestrial Ecosystems Modulated by Altitude-Influenced Factors. PLOS ONE.spa
dc.relation.referencesRodrigues, J. I. de M., Martins, W. B. R., de Oliveira, V. P., Wanzerley, M. S. da S., dos Santos Júnior, H. B., & Oliveira, F. de A. (2023). ENSO impacts on litter stocks and water holding capacity in secondary forests in eastern Amazonia. Journal of Forestry Research, 35(1), 8. https://doi.org/10.1007/s11676-023-01665-8spa
dc.relation.referencesRodríguez, V., Bartholomäus, A., Witzgall, K., Riveras-Muñoz, N., Oses, R., Liebner, S., Kallmeyer, J., Rach, O., Mueller, C. W., Seguel, O., Scholten, T., & Wagner, D. (2024). Microbial impact on initial soil formation in arid and semiarid environments under simulated climate change. Frontiers in Microbiology, 15, 1319997. https://doi.org/10.3389/fmicb.2024.1319997spa
dc.relation.referencesSalazar Zarzosa, P., Palacios Mc Cubbin, E., Curiel Yuste, J., Muenchow, J., Cruz, G., & Rodriguez, R. (2020). Tree influence exacerbates the El Niño effects over soil CO2 emissions and its microclimatic controls. Applied Soil Ecology, 147, 103379. https://doi.org/10.1016/j.apsoil.2019.103379spa
dc.relation.referencesSchloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soils, 54(1), 1–10. https://doi.org/10.1007/s00374-017-1248-3spa
dc.relation.referencesSenn, S., Pangell, K., & Bowerman, A. L. (2022). Metagenomic Insights into the Composition and Function of Microbes Associated with the Rootzone of Datura inoxia. BioTech, 11(1). https://doi.org/10.3390/BIOTECH11010001spa
dc.relation.referencesSepp, S.-K., Vasar, M., Davison, J., Oja, J., Anslan, S., Al-Quraishy, S., Bahram, M., Bueno, C. G., Cantero, J. J., Fabiano, E. C., Decocq, G., Drenkhan, R., Fraser, L., Garibay Oriel, R., Hiiesalu, I., Koorem, K., Kõljalg, U., Moora, M., Mucina, L., … Zobel, M. (2023). Global diversity and distribution of nitrogen-fixing bacteria in the soil. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1100235spa
dc.relation.referencesSheng, M., Hu, W., Liu, C.-Q., Niu, M., Jin, R., Deng, J., Wu, L., Li, P., Yan, Z., Zhu, Y.-G., & Fu, P. (2024). Characteristics and assembly mechanisms of bacterial and fungal communities in soils from Chinese forests across different climatic zones. CATENA, 245, 108306. https://doi.org/10.1016/j.catena.2024.108306spa
dc.relation.referencesShi, Y., Su, C., Wang, M., Liu, X., Liang, C., Zhao, L., Zhang, X., Minggagud, H., Feng, G., & Ma, W. (2020). Modern Climate and Soil Properties Explain Functional Structure Better Than Phylogenetic Structure of Plant Communities in Northern China. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.531947spa
dc.relation.referencesShigyo, N., Umeki, K., & Hirao, T. (2019). Seasonal Dynamics of Soil Fungal and Bacterial Communities in Cool-Temperate Montane Forests. Frontiers in Microbiology, 10, 1944. https://doi.org/10.3389/fmicb.2019.01944spa
dc.relation.referencesShumo, M., Khamis, F. M., Ombura, F. L., Tanga, C. M., Fiaboe, K. K. M., Subramanian, S., Ekesi, S., Schlüter, O. K., van Huis, A., & Borgemeister, C. (2021). A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae (Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.687103spa
dc.relation.referencesSieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1spa
dc.relation.referencesSimão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. v., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351spa
dc.relation.referencesSingh, R., Chirag, C., Neeta, C., & Sharma, R. (2020). Metagenomics: Techniques, Applications, Challenges and Opportunities (R. S. Chopra, C. Chopra, & N. R. Sharma, Eds.). Springer Singapore. https://doi.org/10.1007/978-981-15-6529-8spa
dc.relation.referencesSolden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: Lessons learned from the uncultivated majority. In Current Opinion in Microbiology (Vol. 31, pp. 217–226). Elsevier Ltd. https://doi.org/10.1016/j.mib.2016.04.020spa
dc.relation.referencesStrous, M., Kraft, B., Bisdorf, R., & Tegetmeyer, H. E. (2012). The Binning of Metagenomic Contigs for Microbial Physiology of Mixed Cultures. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00410spa
dc.relation.referencesSu, P., Wicaksono, W. A., Li, C., Michl, K., Berg, G., Wang, D., Xiao, Y., Huang, R., Kang, H., Zhang, D., Cernava, T., & Liu, Y. (2022). Recovery of metagenome-assembled genomes from the phyllosphere of 110 rice genotypes. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01320-7spa
dc.relation.referencesTang, L. (2019). Culturing uncultivated bacteria. Nature Methods, 16(11), 1078–1078. https://doi.org/10.1038/s41592-019-0634-1spa
dc.relation.referencesTechtmann, S. M., & Hazen, T. C. (2016). Metagenomic applications in environmental monitoring and bioremediation. Journal of Industrial Microbiology and Biotechnology, 43(10), 1345–1354. https://doi.org/10.1007/s10295-016-1809-8spa
dc.relation.referencesThompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Xu, Z. Z., Jiang, L., … Zhao, H. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681), 457–463. https://doi.org/10.1038/nature24621spa
dc.relation.referencesTorres, G. G., Figueroa-Galvis, I., Muñoz-García, A., Polanía, J., & Vanegas, J. (2019). Potential bacterial bioindicators of urban pollution in mangroves. Environmental Pollution, 255, 113293. https://doi.org/10.1016/j.envpol.2019.113293spa
dc.relation.referencesTreangen, T. J., Koren, S., Sommer, D. D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A. E., Phillippy, A. M., & Pop, M. (2013). MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biology, 14(1), R2. https://doi.org/10.1186/gb-2013-14-1-r2spa
dc.relation.referencesUngerer, M. C., Johnson, L. C., & Herman, M. A. (2008). Ecological genomics: understanding gene and genome function in the natural environment. Heredity, 100(2), 178–183. https://doi.org/10.1038/sj.hdy.6800992spa
dc.relation.referencesUroz, S., Buée, M., Deveau, A., Mieszkin, S., & Martin, F. (2016). Ecology of the forest microbiome: Highlights of temperate and boreal ecosystems. Soil Biology and Biochemistry, 103, 471-488. https://doi.org/10.1016/j.soilbio.2016.09.006spa
dc.relation.referencesUSDA, N. R. C. S. (2022). What is Soil Health? Https://Www.Nrcs.Usda.Gov/Wps/Portal/Nrcs/Main/Soils/Health/.spa
dc.relation.referencesVeerasamy, V., Jagannathan, U. M., Arakkala, S. D., Shafee, W. A., & Kaliannan, T. (2023). Exploring the bacterial genetic diversity and community structure of crude oil contaminated soils using microbiomics. Environmental Research, 236, 116779. https://doi.org/10.1016/j.envres.2023.116779spa
dc.relation.referencesViso, N. P., Ortiz, J., Maury, M., Frene, J. P., Iocoli, G. A., Lorenzon, C., Rivarola, M., García, F. O., Gudelj, V., & Faggioli, V. S. (2024). Long-term maintenance rate fertilisation increases soil bacterial-archaeal community diversity in the subsoil and N-cycling potentials in a humid crop season. Applied Soil Ecology, 193, 105149. https://doi.org/10.1016/j.apsoil.2023.105149spa
dc.relation.referencesVogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., Bailey, M. J., Nalin, R., & Philippot, L. (2009). TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 7(4), 252–252. https://doi.org/10.1038/nrmicro2119spa
dc.relation.referencesWang, J., Lv, L., Hu, R., Ma, H., Liu, B., Zhang, W., & Wu, L. (2024). Patterns and determinants of nitrification and denitrification potentials across 24 rice paddy soils in subtropical China. Agriculture, Ecosystems & Environment, 361, 108799. https://doi.org/10.1016/j.agee.2023.108799spa
dc.relation.referencesWang, M., Garrido-Sanz, D., Sansegundo-Lobato, P., Redondo-Nieto, M., Conlon, R., Martin, M., Mali, R., Liu, X., Dowling, D. N., Rivilla, R., & Germaine, K. J. (2021). Soil Microbiome Structure and Function in Ecopiles Used to Remediate Petroleum-Contaminated Soil. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.624070spa
dc.relation.referencesWang, S., Yan, Z., Wang, P., Zheng, X., & Fan, J. (2020). Comparative metagenomics reveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of Qinhuangdao mariculture area. PLOS ONE, 15(6), e0234128. https://doi.org/10.1371/journal.pone.0234128spa
dc.relation.referencesWang, X., Li, Y., Ciampitti, I. A., He, P., Xu, X., Qiu, S., & Zhao, S. (2022). Response of soil denitrification potential and community composition of denitrifying bacterial to different rates of straw return in north-central China. Applied Soil Ecology, 170, 104312. https://doi.org/10.1016/j.apsoil.2021.104312spa
dc.relation.referencesWang, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics, 28(18), i356–i362. https://doi.org/10.1093/bioinformatics/bts397spa
dc.relation.referencesWhitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. https://doi.org/10.1073/pnas.95.12.6578spa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.spa
dc.relation.referencesWood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46spa
dc.relation.referencesWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0spa
dc.relation.referencesWright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R. V., Jacobs, B. F., Kooyman, R., Law, E. A., Leishman, M. R., Niinemets, Ü., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357(6354), 917-921. https://doi.org/10.1126/science.aal4760spa
dc.relation.referencesWu, D., Zhao, C., Bai, H., Feng, F., Sui, X., & Sun, G. (2021). Characteristics and metabolic patterns of soil methanogenic archaea communities in the high‐latitude natural forested wetlands of China. Ecology and Evolution, 11(15), 10396. https://doi.org/10.1002/ece3.7842spa
dc.relation.referencesWu, Y.-W., & Ye, Y. (2011). A Novel Abundance-Based Algorithm for Binning Metagenomic Sequences Using l -tuples. Journal of Computational Biology, 18(3), 523–534. https://doi.org/10.1089/cmb.2010.0245spa
dc.relation.referencesWu, Y.-W., Simmons, B. A., & Singer, S. W. (2016). MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638spa
dc.relation.referencesWurtzel, O., Sesto, N., Mellin, J. R., Karunker, I., Edelheit, S., Bécavin, C., Archambaud, C., Cossart, P., & Sorek, R. (2012). Comparative transcriptomics of pathogenic and non‐pathogenic Listeria species. Molecular Systems Biology, 8(1), 583. https://doi.org/10.1038/msb.2012.11spa
dc.relation.referencesXu, A., Li, L., Xie, J., Zhang, R., Luo, Z., Cai, L., Liu, C., Wang, L., Anwar, S., & Jiang, Y. (2022). Bacterial Diversity and Potential Functions in Response to Long-Term Nitrogen Fertilizer on the Semiarid Loess Plateau. Microorganisms, 10(8), 1579. https://doi.org/10.3390/microorganisms10081579spa
dc.relation.referencesXu, B., Wang, J., Wu, N., Wu, Y., & Shi, F. (2018). Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai–Tibet Plateau, China. Biogeosciences, 15(2), 567-579. https://doi.org/10.5194/bg-15-567-2018spa
dc.relation.referencesXu, T., Shen, Y., Ding, Z., & Zhu, B. (2023). Seasonal dynamics of microbial communities in rhizosphere and bulk soils of two temperate forests. Rhizosphere, 25, 100673. https://doi.org/10.1016/j.rhisph.2023.100673spa
dc.relation.referencesXu, Y., Liu, K., Yao, S., Zhang, Y., Zhang, X., He, H., Feng, W., Ndzana, G. M., Chenu, C., Olk, D. C., Mao, J., & Zhang, B. (2022). Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality. Geoderma, 412, 115727. https://doi.org/10.1016/j.geoderma.2022.115727spa
dc.relation.referencesXue, C.-X., Lin, H., Zhu, X.-Y., Liu, J., Zhang, Y., Rowley, G., Todd, J. D., Li, M., & Zhang, X.-H. (2021). DiTing: A Pipeline to Infer and Compare Biogeochemical Pathways From Metagenomic and Metatranscriptomic Data. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.698286spa
dc.relation.referencesYang, C., Mai, J., Cao, X., Burberry, A., Cominelli, F., & Zhang, L. (2023). ggpicrust2: An R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics, 39(8), btad470. https://doi.org/10.1093/bioinformatics/btad470spa
dc.relation.referencesZaghloul, A., Saber, M., Gadow, S., & Awad, F. (2020). Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bulletin of the National Research Centre, 44(1), 127. https://doi.org/10.1186/s42269-020-00385-xspa
dc.relation.referencesZhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614–620. https://doi.org/10.1093/bioinformatics/btt59spa
dc.relation.referencesZhang, J., Liang, M., Tong, S., Qiao, X., Li, B., Yang, Q., Chen, T., Hu, P., & Yu, S. (2023). Response of leaf functional traits to soil nutrients in the wet and dry seasons in a subtropical forest on an island. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1236607spa
dc.relation.referencesZhang, K., Delgado-Baquerizo, M., Zhu, Y.-G., & Chu, H. (2020). Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. mSystems. https://doi.org/10.1128/msystems.00783-19spa
dc.relation.referencesZhang, X. H., Ahmad, W., Zhu, X. Y., Chen, J., & Austin, B. (2021). Viable but nonculturable bacteria and their resuscitation: Implications for cultivating uncultured marine microorganisms. Marine Life Science and Technology, 3(2), 189-203. https://doi.org/10.1007/s42995-020-00041-3spa
dc.relation.referencesZhang, X., Zeng, H., & Wang, W. (2018). Two contrasting seasonal patterns in microbial nitrogen immobilization from temperate ecosystems. Ecological Indicators, 93, 164-172. https://doi.org/10.1016/j.ecolind.2018.04.078spa
dc.relation.referencesZhang, Z.-Y., Qiang, F.-F., Liu, G.-Q., Liu, C.-H., & Ai, N. (2023). Distribution characteristics of soil microbial communities and their responses to environmental factors in the sea buckthorn forest in the water-wind erosion crisscross region. Frontiers in Microbiology, 13, 1098952. https://doi.org/10.3389/fmicb.2022.1098952spa
dc.relation.referencesZhao, A., Lu, Y., Li, Q., Li, T., & Zhao, J. (2023). Metagenomics reveals the diversity and role of surface-water microbes in biogeochemical cycles in lakes at different terrain ladders. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1121775spa
dc.relation.referencesZhu, B., Karwautz, C., Andrei, S., Klingl, A., Pernthaler, J., & Lueders, T. (2022). A novel Methylomirabilota methanotroph potentially couples methane oxidation to iodate reduction. mLife, 1(3), 323-328. https://doi.org/10.1002/mlf2.12033spa
dc.relation.referencesZhu, H.-Z., Jiang, C.-Y., & Liu, S.-J. (2022). Microbial roles in cave biogeochemical cycling. Frontiers in Microbiology, 13, 950005. https://doi.org/10.3389/fmicb.2022.950005spa
dc.relation.referencesZhuang, J., & Tian, Y. (2023). Effects of Precipitation on ForestrySoil Microorganisms. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/169456spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocServicio de los ecosistemas
dc.subject.agrovocEcosystem services
dc.subject.agrovocMicroorganismo del suelo
dc.subject.agrovocSoil microorganisms
dc.subject.agrovocDiversidad microbiana
dc.subject.agrovocMicrobial diversity
dc.subject.agrovocDiversidad genética
dc.subject.agrovocGenetic diversity
dc.subject.agrovocBosque seco
dc.subject.agrovocDry forests
dc.subject.agrovocBosque tropical
dc.subject.agrovocTropical forests
dc.subject.agrovocVariabilidad del clima
dc.subject.agrovocClimate variability
dc.subject.agrovocClima tropical
dc.subject.agrovocTropical climate
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalCiencias omicasspa
dc.subject.proposalEcología microbianaspa
dc.subject.proposalMicroorganismos no cultivablesspa
dc.subject.proposalPerfiles funcionalesspa
dc.subject.proposalSuelos forestalesspa
dc.subject.proposalForest soilseng
dc.subject.proposalFunctional profileseng
dc.subject.proposalMicrobial ecologyeng
dc.subject.proposalNon-culturable microorganismseng
dc.subject.proposalOmics scienceseng
dc.titleDiversidad de las comunidades microbianas del suelo asociadas a bosque andino y seco tropical bajo temporada seca y lluviosa empleando Metagenómicaspa
dc.title.translatedDiversity of Soil Microbial Communities Associated with Andean and Tropical Dry Forests Under Dry and Rainy Seasons Using Metagenomicseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleRelaciones multiescalares de la biodiversidad en gradientes altitudinales del bosque tropical. Cod 1106-852-70306 Contrato 491-2020spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026282360.2025.pdf
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia_Juan Diego Duque.pdf
Tamaño:
293.51 KB
Formato:
Adobe Portable Document Format
Descripción: