Estudio de la aplicabilidad de modelos estándar de propagación electromagnética en la banda de ondas milimétricas para sistemas 5G en Bogotá

dc.contributor.advisorAraque Quijano, Javier leonardo
dc.contributor.authorChávez Martínez, Juan Sebastian
dc.contributor.researchgroupGrupo de investigación en electrónica de alta frecuencia y telecomunicaciones (CMUN)spa
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2023-08-01T17:21:00Z
dc.date.available2023-08-01T17:21:00Z
dc.date.issued2023-07
dc.descriptionilustraciones, diagramas. fotografías a colorspa
dc.description.abstractLos modelos de propagación de ondas electromagnéticas son herramientas esenciales para diseño e implementación de tecnologías de comunicaciones inalámbricas, siendo la banda de ondas milimétricas una candidata potencial para la implementación de comunicaciones de quinta generación (5G). Esto hace necesario contar con un modelo de propagación que otorgue una predicción fiel a la realidad del comportamiento de la propagación de ondas en ésta frecuencia. Diferentes estudios muestran que estas ondas están fuertemente influenciadas por factores de entorno, por lo que su comportamiento podría diferir de un lugar a otro, resultando de gran importancia realizar una validación pertinente de las predicciones otorgadas por el modelo para un entorno en el que se espera implementar una tecnología haciendo uso de esta banda. Este trabajo tiene por propósito desarrollar un banco de pruebas y realizar una campaña de medidas que valide el modelo de pérdidas por trayectoria en esta banda de frecuencias. (Texto tomado de la fuente)spa
dc.description.abstractElectromagnetic wave propagation models are essential tools for the design and implementation of wireless communications technologies, with the millimeter wave band being a potential candidate for the implementation of fifth generation (5G) communications. This makes it necessary to have a propagation model that provides a faithful prediction of the behavior of wave propagation at this frequency. Different studies show that these waves are strongly influenced by environmental factors, so their behavior could differ from one place to another, making it very important to carry out a pertinent validation of the predictions provided by the model for an environment in which it is expected. implement a technology making use of this band. The purpose of this work is to develop a test bench and carry out a measurement campaign that validates the path loss model in this frequency band.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaComunicaciones inalámbricas y propagacíon de ondas electromagnéticasspa
dc.format.extentxv, 56 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84396
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónicaspa
dc.relation.references3GPP, “5g; study on channel model for frequencies from 0.5 to 100 ghz (3gpp tr 38.901 version 17.0.0 release 17),” tech. rep., ETSI, 2022.spa
dc.relation.references“Comunicación de ondas milimétricas: una encuesta completa,” Encuestas y tutoriales de comunicaciones IEEE.spa
dc.relation.referencesT. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5g) wireless net- works—with a focus on propagation models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017.spa
dc.relation.referencesA. Osseiran, J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016.spa
dc.relation.referencesT. Kim, J. Park, J.-Y. Seol, S. Jeong, J. Cho, and W. Roh, “Tens of gbps support with mmwave beamforming systems for next generation communications,” in 2013 IEEE Global Communications Conference (GLOBECOM), pp. 3685–3690, 2013.spa
dc.relation.referencesT. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.spa
dc.relation.references5GCM, “5g channel model for bands up to 100 ghz,” tech. rep., 5GCM, 2016.spa
dc.relation.referencesMETIS, “Metis channel models,” tech. rep., Unión Europea, 2015.spa
dc.relation.referencesT. S. Rappaport, S. Sun, and M. Shafi, “Investigation and comparison of 3gpp and nyusim channel models for 5g wireless communications,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, 2017.spa
dc.relation.referencesP. Kyösti, J. Lehtomäki, J. Medbo, and M. Latva-aho, “Map-based channel model for evaluation of 5g wireless communication systems,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6491–6504, 2017.spa
dc.relation.referencesE. Dahlman, S. Parkvall, and J. Skold, 5G NR The Next Generation WirelessAccess Technology. Elsevier, 2018.spa
dc.relation.referencesM. Vaezi, Z. Ding, and V. Poor, Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, 2019.spa
dc.relation.referencesA. Osseiran, J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016.spa
dc.relation.referencesJ. Penttinen, 5G Second Phase Explained The 3GPP Release 16 Enhancements. John Wiley Sons, Ltd., 2021.spa
dc.relation.referencesT. Rappaport, R. Heath Jr., R. Daniels, and J. Murdock, Millimeter Wave Wireless Communications. Prentice Hall, 2015.spa
dc.relation.referencesW. Lee, Wireless and Cellular Telecommunications. McGraw H ill, 2010.spa
dc.relation.referencesA. I. Sulyman, A. T. Nassar, M. K. Samini, R. MacCarthey Jr., T. Rappaport, and A. Alsa-nie, “Radio propagation path loss models for 5g cellular networks in the 28 ghz and 38 ghz millimeter-wave bands,” IEEE Wireless Communications, vol. 52, no. 9, pp. 78–86, 2014.spa
dc.relation.referencesJ. Huang, Y. Liu, C. X. Wang, J. Sun, and H. Xiao, “5g millimeter-wave channel sounders, measurements, and models: Recent developments and future challenges,” IEEE Communications Magazine, vol. 57, no. 1, pp. 138–145, 2019.spa
dc.relation.referencesZ. Lin, X. Du, H. H. Chen, and D. Wu, “Millimeter-wave propagation modeling and measurements for 5g mobile networks,” IEEE Wireless Communications, vol. 26, no. 1, pp. 72–77, 2019.spa
dc.relation.referencesM. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, K. Karagiannidis, E. Björnson, K. Y. C.-L. I, and A. Ghosh, “Millimeter wave communications for future mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1909–1935, 2017.spa
dc.relation.referencesJ. Järveläinen, K. Haneda, and Y. Karttunen, “Indoor propagation channel simulations at 60 ghz using point cloud data,” IEEE Journal on Selected Areas in Communications, vol. 64, no. 10, pp. 4467–4467, 2016.spa
dc.relation.referencesX. Wu, A. T. Wang, J. Sun, J. Huang, R. Feng, Y. Yang, and X. Ge, “60-ghz millimeter-wave channel measurements and modeling for indoor office environments,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1912–1924, 2017.spa
dc.relation.referencesJ. Huang, C. X. Wang, J. Sun, W. Zhang, and Y. Yang, “Channel measurements and characterization for 5g wireless communication systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1591–1605, 2017.spa
dc.relation.referencesT. Rappaport, Y. Xing, G. MacCartney, Jr., A. F. Molish, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5g) wireless networks—with a focus on propagation models,” IEEE Transacctions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017.spa
dc.relation.references3rd Generation Partnership Project - 3GPP, “Study on channel model for frequency spectrum above 6 ghz,” Jun 2017. 3GPP TR 38.900 version 14.2.0 Release 14.spa
dc.relation.referencesmmMAGIC, “6–100 ghz channel modelling for 5g: Measurement and modelling plans in mmmagic,” May 2016. 5G PPP mmMAGIC Project Unión Europea.spa
dc.relation.referencesT. Rappaport, S. Sun, and M. Shafi, “Investigation and Comparison of 3GPP and NYUSIM Channel Models for 5G Wireless Communications,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, 2017.spa
dc.relation.referencesFraunhofer Heinrich Hertz Institute, “Quasu deterministic radio channel generator,” technical report, May 2017.spa
dc.relation.referencesMiWEBA, “Wp5: Propagation, antennas and multi-antenna technique d5.1: Channel modeling and characterization,” May 2014.spa
dc.relation.referencesG. R. MacCartney and T. S. Rappaport, “Rural macrocell path loss models for millimeter wave wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1663–1677, 2017.spa
dc.relation.referencesS. Sun, G. R. MacCartney, and T. S. Rappaport, “Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5g systems,” in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2016.spa
dc.relation.referencesM. K. Elmezughi, T. J. Afullo, and N. O. Oyie, “Performance study of path loss models at 14, 18, and 22 ghz in an indoor corridor environment for wireless communications,” SAIEE Africa Research Journal, vol. 112, no. 1, pp. 32–45, 2021.spa
dc.relation.referencesF. Erden, O. Ozdemir, and I. Guvenc, “28 ghz mmwave channel measurements and modeling in a library environment,” in 2020 IEEE Radio and Wireless Symposium (RWS), pp. 52–55, 2020.spa
dc.relation.referencesM. Giordani, T. Shimizu, A. Zanella, T. Higuchi, O. Altintas, and M. Zorzi, “Path loss models for v2v mmwave communication: Performance evaluation and open challenges,” in 2019 IEEE 2nd Connected and Automated Vehicles Symposium (CAVS), pp. 1–5, 2019.spa
dc.relation.referencesG. R. MacCartney and T. S. Rappaport, “Study on 3gpp rural macrocell path loss models for millimeter wave wireless communications,” in 2017 IEEE International Conference on Communications (ICC), pp. 1–7, 2017.spa
dc.relation.referencesC. U. Bas, R. Wang, S. Sangodoyin, S. Hur, K. Whang, J. Park, J. Zhang, and A. F. Molisch, “28 ghz microcell measurement campaign for residential environment,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6, 2017.spa
dc.relation.referencesS. Qiao, X. Zhang, Y. Zhu, H. Sun, and F. Wang, “Study of channel model validation in millimeter wave mimo ota test,” in 2022 16th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2022.spa
dc.relation.referencesR. Zhang, Y. Zhou, X. Lu, C. Cao, and Q. Guo, “Antenna deembedding for mmwave propagation modeling and field measurement validation at 73 ghz,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 3648–3659, 2017.spa
dc.relation.referencesX. Zhao, S. Li, Q. Wang, M. Wang, S. Sun, and W. Hong, “Channel measurements, modeling, simulation and validation at 32 ghz in outdoor microcells for 5g radio systems,” IEEE Access, vol. 5, pp. 1062–1072, 2017.spa
dc.relation.referencesA. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol. 8, pp. 62367–62414, 2020.spa
dc.relation.referencesS. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith, “Propagation models and performance evaluation for 5g millimeter-wave bands,” IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8422–8439, 2018.spa
dc.relation.referencesU-Blox, u-blox 8 / u-blox M8 Receiver description, 27 ed., August 2022.spa
dc.relation.referencesE. Research, “Power level controls: Overview.” https://files.ettus.com/manual/page_power.html.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembElectromagneticeng
dc.subject.lembElectromagnetismp
dc.subject.lembOndas electromagnéticasspa
dc.subject.lembElectromagnetic waveseng
dc.subject.lembTelecomunicaciones-innovaciones tecnológicasspa
dc.subject.lembTelecommunication - Technological innovationseng
dc.subject.proposalOndas milimétricasspa
dc.subject.proposalModelo de propagaciónspa
dc.subject.proposalCanal de transmisiónspa
dc.subject.proposalPérdidas por trayectoriaspa
dc.subject.proposalLínea de vistaspa
dc.titleEstudio de la aplicabilidad de modelos estándar de propagación electromagnética en la banda de ondas milimétricas para sistemas 5G en Bogotáspa
dc.title.translatedStudy of the applicability of standard models of electromagnetic propagation in the millimeter wave band for 5G systems in Bogotáeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022420250.2023.pdf
Tamaño:
8.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: