Estudio de la aplicabilidad de modelos estándar de propagación electromagnética en la banda de ondas milimétricas para sistemas 5G en Bogotá
dc.contributor.advisor | Araque Quijano, Javier leonardo | |
dc.contributor.author | Chávez Martínez, Juan Sebastian | |
dc.contributor.researchgroup | Grupo de investigación en electrónica de alta frecuencia y telecomunicaciones (CMUN) | spa |
dc.coverage.city | Bogotá | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2023-08-01T17:21:00Z | |
dc.date.available | 2023-08-01T17:21:00Z | |
dc.date.issued | 2023-07 | |
dc.description | ilustraciones, diagramas. fotografías a color | spa |
dc.description.abstract | Los modelos de propagación de ondas electromagnéticas son herramientas esenciales para diseño e implementación de tecnologías de comunicaciones inalámbricas, siendo la banda de ondas milimétricas una candidata potencial para la implementación de comunicaciones de quinta generación (5G). Esto hace necesario contar con un modelo de propagación que otorgue una predicción fiel a la realidad del comportamiento de la propagación de ondas en ésta frecuencia. Diferentes estudios muestran que estas ondas están fuertemente influenciadas por factores de entorno, por lo que su comportamiento podría diferir de un lugar a otro, resultando de gran importancia realizar una validación pertinente de las predicciones otorgadas por el modelo para un entorno en el que se espera implementar una tecnología haciendo uso de esta banda. Este trabajo tiene por propósito desarrollar un banco de pruebas y realizar una campaña de medidas que valide el modelo de pérdidas por trayectoria en esta banda de frecuencias. (Texto tomado de la fuente) | spa |
dc.description.abstract | Electromagnetic wave propagation models are essential tools for the design and implementation of wireless communications technologies, with the millimeter wave band being a potential candidate for the implementation of fifth generation (5G) communications. This makes it necessary to have a propagation model that provides a faithful prediction of the behavior of wave propagation at this frequency. Different studies show that these waves are strongly influenced by environmental factors, so their behavior could differ from one place to another, making it very important to carry out a pertinent validation of the predictions provided by the model for an environment in which it is expected. implement a technology making use of this band. The purpose of this work is to develop a test bench and carry out a measurement campaign that validates the path loss model in this frequency band. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Comunicaciones inalámbricas y propagacíon de ondas electromagnéticas | spa |
dc.format.extent | xv, 56 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84396 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica | spa |
dc.relation.references | 3GPP, “5g; study on channel model for frequencies from 0.5 to 100 ghz (3gpp tr 38.901 version 17.0.0 release 17),” tech. rep., ETSI, 2022. | spa |
dc.relation.references | “Comunicación de ondas milimétricas: una encuesta completa,” Encuestas y tutoriales de comunicaciones IEEE. | spa |
dc.relation.references | T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5g) wireless net- works—with a focus on propagation models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017. | spa |
dc.relation.references | A. Osseiran, J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016. | spa |
dc.relation.references | T. Kim, J. Park, J.-Y. Seol, S. Jeong, J. Cho, and W. Roh, “Tens of gbps support with mmwave beamforming systems for next generation communications,” in 2013 IEEE Global Communications Conference (GLOBECOM), pp. 3685–3690, 2013. | spa |
dc.relation.references | T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013. | spa |
dc.relation.references | 5GCM, “5g channel model for bands up to 100 ghz,” tech. rep., 5GCM, 2016. | spa |
dc.relation.references | METIS, “Metis channel models,” tech. rep., Unión Europea, 2015. | spa |
dc.relation.references | T. S. Rappaport, S. Sun, and M. Shafi, “Investigation and comparison of 3gpp and nyusim channel models for 5g wireless communications,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, 2017. | spa |
dc.relation.references | P. Kyösti, J. Lehtomäki, J. Medbo, and M. Latva-aho, “Map-based channel model for evaluation of 5g wireless communication systems,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6491–6504, 2017. | spa |
dc.relation.references | E. Dahlman, S. Parkvall, and J. Skold, 5G NR The Next Generation WirelessAccess Technology. Elsevier, 2018. | spa |
dc.relation.references | M. Vaezi, Z. Ding, and V. Poor, Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, 2019. | spa |
dc.relation.references | A. Osseiran, J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016. | spa |
dc.relation.references | J. Penttinen, 5G Second Phase Explained The 3GPP Release 16 Enhancements. John Wiley Sons, Ltd., 2021. | spa |
dc.relation.references | T. Rappaport, R. Heath Jr., R. Daniels, and J. Murdock, Millimeter Wave Wireless Communications. Prentice Hall, 2015. | spa |
dc.relation.references | W. Lee, Wireless and Cellular Telecommunications. McGraw H ill, 2010. | spa |
dc.relation.references | A. I. Sulyman, A. T. Nassar, M. K. Samini, R. MacCarthey Jr., T. Rappaport, and A. Alsa-nie, “Radio propagation path loss models for 5g cellular networks in the 28 ghz and 38 ghz millimeter-wave bands,” IEEE Wireless Communications, vol. 52, no. 9, pp. 78–86, 2014. | spa |
dc.relation.references | J. Huang, Y. Liu, C. X. Wang, J. Sun, and H. Xiao, “5g millimeter-wave channel sounders, measurements, and models: Recent developments and future challenges,” IEEE Communications Magazine, vol. 57, no. 1, pp. 138–145, 2019. | spa |
dc.relation.references | Z. Lin, X. Du, H. H. Chen, and D. Wu, “Millimeter-wave propagation modeling and measurements for 5g mobile networks,” IEEE Wireless Communications, vol. 26, no. 1, pp. 72–77, 2019. | spa |
dc.relation.references | M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, K. Karagiannidis, E. Björnson, K. Y. C.-L. I, and A. Ghosh, “Millimeter wave communications for future mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1909–1935, 2017. | spa |
dc.relation.references | J. Järveläinen, K. Haneda, and Y. Karttunen, “Indoor propagation channel simulations at 60 ghz using point cloud data,” IEEE Journal on Selected Areas in Communications, vol. 64, no. 10, pp. 4467–4467, 2016. | spa |
dc.relation.references | X. Wu, A. T. Wang, J. Sun, J. Huang, R. Feng, Y. Yang, and X. Ge, “60-ghz millimeter-wave channel measurements and modeling for indoor office environments,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1912–1924, 2017. | spa |
dc.relation.references | J. Huang, C. X. Wang, J. Sun, W. Zhang, and Y. Yang, “Channel measurements and characterization for 5g wireless communication systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1591–1605, 2017. | spa |
dc.relation.references | T. Rappaport, Y. Xing, G. MacCartney, Jr., A. F. Molish, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5g) wireless networks—with a focus on propagation models,” IEEE Transacctions on Antennas and Propagation, vol. 65, no. 12, pp. 6213–6230, 2017. | spa |
dc.relation.references | 3rd Generation Partnership Project - 3GPP, “Study on channel model for frequency spectrum above 6 ghz,” Jun 2017. 3GPP TR 38.900 version 14.2.0 Release 14. | spa |
dc.relation.references | mmMAGIC, “6–100 ghz channel modelling for 5g: Measurement and modelling plans in mmmagic,” May 2016. 5G PPP mmMAGIC Project Unión Europea. | spa |
dc.relation.references | T. Rappaport, S. Sun, and M. Shafi, “Investigation and Comparison of 3GPP and NYUSIM Channel Models for 5G Wireless Communications,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, 2017. | spa |
dc.relation.references | Fraunhofer Heinrich Hertz Institute, “Quasu deterministic radio channel generator,” technical report, May 2017. | spa |
dc.relation.references | MiWEBA, “Wp5: Propagation, antennas and multi-antenna technique d5.1: Channel modeling and characterization,” May 2014. | spa |
dc.relation.references | G. R. MacCartney and T. S. Rappaport, “Rural macrocell path loss models for millimeter wave wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1663–1677, 2017. | spa |
dc.relation.references | S. Sun, G. R. MacCartney, and T. S. Rappaport, “Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5g systems,” in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2016. | spa |
dc.relation.references | M. K. Elmezughi, T. J. Afullo, and N. O. Oyie, “Performance study of path loss models at 14, 18, and 22 ghz in an indoor corridor environment for wireless communications,” SAIEE Africa Research Journal, vol. 112, no. 1, pp. 32–45, 2021. | spa |
dc.relation.references | F. Erden, O. Ozdemir, and I. Guvenc, “28 ghz mmwave channel measurements and modeling in a library environment,” in 2020 IEEE Radio and Wireless Symposium (RWS), pp. 52–55, 2020. | spa |
dc.relation.references | M. Giordani, T. Shimizu, A. Zanella, T. Higuchi, O. Altintas, and M. Zorzi, “Path loss models for v2v mmwave communication: Performance evaluation and open challenges,” in 2019 IEEE 2nd Connected and Automated Vehicles Symposium (CAVS), pp. 1–5, 2019. | spa |
dc.relation.references | G. R. MacCartney and T. S. Rappaport, “Study on 3gpp rural macrocell path loss models for millimeter wave wireless communications,” in 2017 IEEE International Conference on Communications (ICC), pp. 1–7, 2017. | spa |
dc.relation.references | C. U. Bas, R. Wang, S. Sangodoyin, S. Hur, K. Whang, J. Park, J. Zhang, and A. F. Molisch, “28 ghz microcell measurement campaign for residential environment,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6, 2017. | spa |
dc.relation.references | S. Qiao, X. Zhang, Y. Zhu, H. Sun, and F. Wang, “Study of channel model validation in millimeter wave mimo ota test,” in 2022 16th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, 2022. | spa |
dc.relation.references | R. Zhang, Y. Zhou, X. Lu, C. Cao, and Q. Guo, “Antenna deembedding for mmwave propagation modeling and field measurement validation at 73 ghz,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 3648–3659, 2017. | spa |
dc.relation.references | X. Zhao, S. Li, Q. Wang, M. Wang, S. Sun, and W. Hong, “Channel measurements, modeling, simulation and validation at 32 ghz in outdoor microcells for 5g radio systems,” IEEE Access, vol. 5, pp. 1062–1072, 2017. | spa |
dc.relation.references | A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol. 8, pp. 62367–62414, 2020. | spa |
dc.relation.references | S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith, “Propagation models and performance evaluation for 5g millimeter-wave bands,” IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8422–8439, 2018. | spa |
dc.relation.references | U-Blox, u-blox 8 / u-blox M8 Receiver description, 27 ed., August 2022. | spa |
dc.relation.references | E. Research, “Power level controls: Overview.” https://files.ettus.com/manual/page_power.html. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.lemb | Electromagnetic | eng |
dc.subject.lemb | Electromagnetismp | |
dc.subject.lemb | Ondas electromagnéticas | spa |
dc.subject.lemb | Electromagnetic waves | eng |
dc.subject.lemb | Telecomunicaciones-innovaciones tecnológicas | spa |
dc.subject.lemb | Telecommunication - Technological innovations | eng |
dc.subject.proposal | Ondas milimétricas | spa |
dc.subject.proposal | Modelo de propagación | spa |
dc.subject.proposal | Canal de transmisión | spa |
dc.subject.proposal | Pérdidas por trayectoria | spa |
dc.subject.proposal | Línea de vista | spa |
dc.title | Estudio de la aplicabilidad de modelos estándar de propagación electromagnética en la banda de ondas milimétricas para sistemas 5G en Bogotá | spa |
dc.title.translated | Study of the applicability of standard models of electromagnetic propagation in the millimeter wave band for 5G systems in Bogotá | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022420250.2023.pdf
- Tamaño:
- 8.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Electrónica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: