Evaluación agroecológica del uso y destino ambiental de plaguicidas en sistemas de producción de tomate de Boyacá y Santander en Colombia

dc.contributor.advisorBojacá Aldana, Carlos Ricardospa
dc.contributor.advisorArguello Arias, Heliodorospa
dc.contributor.authorArias Rodríguez, Luis Alejandrospa
dc.coverage.regionBoyacáspa
dc.coverage.regionSantanderspa
dc.date.accessioned2020-07-29T23:06:28Zspa
dc.date.available2020-07-29T23:06:28Zspa
dc.date.issued2020-06-09spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl tomate es una hortaliza de alto consumo a nivel mundial que hace parte de la canasta básica de los colombianos. Los sistemas productivos predominantes son convencionales a campo abierto o bajo invernadero, con manejo fitosanitario basado en plaguicidas de síntesis química. El objetivo del trabajo fue evaluar el uso y destino ambiental de plaguicidas en dos regiones productoras de tomate, con el fin de estimar los riesgos asociados bajo un enfoque agroecológico. Las zonas de estudio fueron regiones de Santander y Boyacá, productoras a campo abierto y bajo invernadero, respectivamente. Mediante 252 encuestas semi-estructuradas se caracterizó cada sistema de producción icluyendo aspectos socioeconómicos y fitosanitarios; por medio de 392 muestras compuestas se determinó el destino ambiental de plaguicidas; se evaluó el riesgo ambiental incluyendo el riesgo ecológico y el riesgo de consumo, este último con 696 muestras de frutos de las regiones de estudio y Bogotá, además se integró la percepción de los actores mediante 134 encuestas semi-estructuradas y se propusieron soluciones alternativas desde la agroecología. Como resultado, se determinó un manejo químico predominante con uso excesivo e inadecuado con 129 principios activos diferentes, principalmente insecticidas y fungicidas. Se detectaron residuos de 22 plaguicidas en frutos, hojas y suelo, siendo comunes en compartimientos y regiones dimetomorf, metomilo y tiociclam, no hubo detecciones en aguas ni sedimentos. Existe riesgo ecológico sobre especies terrestres y acuáticas, afectando servicios ecosistémicos. También se evidenció riesgo en la salud humana por ingesta de tomate con carbofuran, indoxacarb, difenoconazol y hexaconazol. Se superaron los Límites Máximos de Residuos-LMR en frutos. Los actores no perciben claramente el riesgo generado y su exposición. Este estudio bajo la perspectiva agroecológica vislumbró el panorama general de contaminación y riesgo ambiental por plaguicidas en sistemas productivos convencionales de tomate, proponiendo un proceso de disminución de su uso y conversión hacia sistemas de producción agroecológicos. (Texto tomado de la fuente).spa
dc.description.abstractWorldwide tomato is a high consumption vegetable, as part of Colombians staple food. The predominant productive systems are conventionals in open field or greenhouse, with pest management based on chemical pesticides. The main goal of this work was to evaluate the use and environmental fate of pesticides in two tomato producing regions, in order to estimate the associated risks under an agroecological approach. The study areas were some regions of Santander and Boyacá, open field and greenhouse producers, respectively. Each production system was characterized included socioeconomic and pest management aspects, through 252 semi-structured surveys. The environmental fate of pesticides was determined, through 392 composite samples. An Environmental Risk Assesment was implemented, including ecological risk and consumption risk, the latter, with 692 tomato samples from the study regions and Bogotá; also, the perception of the actors was integrated in the analysis through 134 semi-structured surveys in order to propose solutions from agroecology. As a result, a predominant chemical pest management was determined with excessive and inadequate use of 129 different active components, mainly insecticides and fungicides. Residues of 22 pesticides were detected in fruits, leaves and soil. Dimetomorph, methomyl and thiocyclam pesticides were common in compartments and regions. There is an ecological risk on terrestrial and aquatic species, affecting ecosystem services. There is also a risk to human health due to tomato intake of carbofuran, indoxacarb, difenoconazole and hexaconazole. Maximum Residues Limits-MRLs were exceeded in fruits. The risk generated and their exposures are not clearly perceived by the actors. This study under agroecological perspective glimpsed the big picture of contamination and environmental risk by pesticides in conventional tomato production systems, proposing a process to reduce their use and conversion to agroecological production systems.eng
dc.description.curricularareaDesarrollo Ruralspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Agroecologíaspa
dc.description.researchareaAgricultura y medio ambientespa
dc.format.extentx, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77882
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Agroecologíaspa
dc.relation.referencesArias, L.A., Bojacá, C.R., Ahumada, D.A., Schrevens, E. 2014. Monitoring of pesticide residues in tomato marketed in Bogota. Food Control. 35: 213 - 217.spa
dc.relation.referencesAhumada, D.A., Arias, L.A., Bojacá, C.R. 2013. Multiresidue determination and uncertainty analysis of pesticides in soil by ultrafast liquid chromatography coupled to mass spectrometry. Journal of the Brazilian Chemical Society 24(7): 1188-1197.spa
dc.relation.referencesBojacá, C.R., Arias, L.A. Ahumada, D.A., Casilimas, H.A., Schrevens, E. 2013. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control. 30: 400- 403.spa
dc.relation.referencesBojacá, C.R., Gil, R., Casilimas, H., Arias, L.A., Schrevens, E. 2012. Modelling the environmental impact of pesticides sprayed on greenhouse tomatoes: a regional case study in Colombia. Acta Horticulturae (ISHS) 957:61-68.spa
dc.relation.referencesSerrato, N.A. 2018. Evaluación de Riesgo Ambiental de plaguicidas en agroecosistemas de tomate bajo invernadero y libre exposición de colombia. Director: Arias L.A. Maestría en Ciencias Ambientales, Universidad Jorge Tadeo Lozano. 28 p.spa
dc.relation.referencesSaénz, M.Y., Rosso, M. 2017. Efecto de cuatro plaguicidas sobre la nodulación de trébol rojo (Trifolium pratense) de Santa Sofía (Boyacá). Director: Arias L.A. Maestría en Ciencias Ambientales, Universidad Jorge Tadeo Lozano. 30 p.spa
dc.relation.referencesRodríguez, F.A. 2017. Efecto de plaguicidas sobre la polinización de tomate bajo invernadero por Apis mellifera (Hymenoptera: Apidae). Director: Arias L.A. Codirectora: Garzón, A. Biología Ambiental, Universidad Jorge Tadeo Lozano. 38 p.spa
dc.relation.referencesAux, S.M. 2016. Evaluación de residuos de plaguicidas y condiciones fisicoquímicas en aguas de ríos aledaños a sistemas agrícolas de la región del Ricaurte Alto, Boyacá, Colombia. Director: Arias L.A. Maestría en Ciencias Ambientales, Universidad Jorge Tadeo Lozano. 45 p.spa
dc.relation.referencesGarzón, A. 2014. Determinación de residuos de plaguicidas en hojas, frutos y suelo de sistemas productivos de tomate bajo invernadero y libre exposición en Colombia. Director: Arias L.A. Codirector: Bojacá, C.R. Biología Ambiental, Universidad Jorge Tadeo Lozano. 80 p.spa
dc.relation.referencesAyarza, A. 2014. Evaluación de residuos de plaguicidas en tejidos cuticulares y subcuticulares de frutos de tomate cultivados bajo invernadero y libre exposición en Colombia. Director: Arias L.A. Codirector: Bojacá, C.R. Biología Ambiental, Universidad Jorge Tadeo Lozano. 65 p.spa
dc.relation.referencesAbou-Arab, A.A.K. 1999.Behavior of pesticides in tomatoes during commercial and home preparation.Food Chemistry. 65: 509-514 p.spa
dc.relation.referencesAdeola, R.G. 2012. Perceptions of environmental effects of pesticides use in vegetable production by farmers in Ogbomoso, Nigeria. Global Journal of Science Frontier Research Agriculture & Biology. 12(4).1-8.spa
dc.relation.referencesAgronet, 2019. Área cosechada, producción y rendimiento de tomate en Colombia 2006-2018. En: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Consulta Julio de 2019.spa
dc.relation.referencesAhumada, D. Zamudio, A. 2011. Análisis de residuos de plaguicidas en tomate mediante el uso de QuEChERS y cromatografía líquida ultrarrápida acoplada a espectrometría de masas. Revista Colombiana de Química. 40(2): 227-246.spa
dc.relation.referencesAhumada, D. Guerrero, J. 2010. Estudio del efecto matriz en el análisis de plaguicidas por cromatografía de gases. Vitae. 17 (1): 51-58.spa
dc.relation.referencesAktar, W. Sengupta, D. Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisc toxicol. 2 (1): 1-12.spa
dc.relation.referencesAltieri, M. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, ecosystems & environment, 74(1):19-31.spa
dc.relation.referencesAltieri, M. 2002. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, ecosystems & environment, 93(1): 1-24.spa
dc.relation.referencesAltieri, M., Nicholls, C. 2012. Agroecology scaling up for food sovereignty and resiliency. In Sustainable agriculture reviews. Springer Netherlands. Agroecología, 7(2): 65-83.spa
dc.relation.referencesAlza, W. Chaparro, S. García, J.2016. Estimación del riesgo de contaminación de fuentes hídricas de pesticidas (Mancozeb, Carbofuran) en Ventaquemada, Boyacá Colombia. Universidad Pedagógica y Tecnológica de Tunja. Boyacá Colombia Revista Biodiversidad y servicios ecosistemicos. Acta agronómica 65 (4), 68-374.spa
dc.relation.referencesAndow, D. 1991. Vegetational diversity and arthropod population response. Annual Review of Entomology 36: 561-586.spa
dc.relation.referencesAparicio, C. Barbaro, S. De Gerónimo, E. Portocarrero, R. 2014. Presence of pesticides in surface water from four sub-basins in Argentina. Chemosfere 107, 423-431.spa
dc.relation.referencesArtz D.R., Nault, B. 2011. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104(4):1153–1161.spa
dc.relation.referencesÁvila-Orozco, F.D., León-Gallón, L.M., Pinzón-Fandiño, M.I., Londoño-Orozco, A., Gutiérrez-Cifuentes, J.A. 2017. Residualidad de fitosanitarios en tomate y uchuva cultivados en Quindío (Colombia). Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 18(3): 571-582.spa
dc.relation.referencesBarnat, S., Boisset, M., Casse, F., Catteau, M., Lecerf, J-M., Veschambre, D., Periquet, A. 2010. Pesticide residues intake of French adults under increased consumption of fresh fruits and vegetables – A theorical study. Journal of Environmental Science and Health, Part B. 45(2): 102-107.spa
dc.relation.referencesBeddington, J., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Scholes, R. 2011. Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. Denmark, CGIAR, CCAFS.spa
dc.relation.referencesBerlinger, M.J. Watterson, J.C., Lange, A.H., Fisher, B.B., Ashton, F.F. 1986. Chapters: 10: Pest, 11: Diseases, Weed Control. In The Tomato Crop, A scientific basis for improvement. Atherton, J.G, Rudich, J., Roberts, E.H. (Eds.), Chapman and Hall Ltd. pp 391-509.spa
dc.relation.referencesBhandari, G., Zomer, P., Atreya, K., Mol, H.G.L., Yang, X., Geissen, V. 2019. Pesticide residues in Nepalese vegetables and potential health risks. Environmental Research. 172 (2019): 511–521.spa
dc.relation.referencesBlazquez, C. 1973. Residue determination of ethylenethiourea (2-imidazolidinethione) from tomato foliage, soil, and water. J,Agric. Food Chem. 21 (3): 330-332.spa
dc.relation.referencesBoivin, A., Poulsen, V. 2017. Environmental risk assessment of pesticides: state of the art and prospective improvement from science, Environmental Science and Pollution Research, 24(8), 6889-6894.spa
dc.relation.referencesBojacá, C.R., Wyckhuys, K.A., Schrevens, E., 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod. 69: 26–33.spa
dc.relation.referencesBonmatin, J. M., Moineau, I., Charvet, Colin, R.M.E., Fleche, C., Bengsch, E.R. 2005. Behaviour of Imidacloprid in Fields Toxicity for Honey Bees. In: Environmental Chemistry - Green chemistry and pollutants in ecosystems, Lichtfouse, E., Schwarzbauer, J. Robert, D. (Eds). Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 483–94.spa
dc.relation.referencesBoudreau, M.A. 2013. Diseases in intercropping systems. Annu Rev Phytopathol 51: 499-519.spa
dc.relation.referencesBrandt, A., Gorenflo, R. S., Meixner, R. B. 2016. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the inmunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology. 86: 40-47.spa
dc.relation.referencesBunemann, E., Schwenke, G., Van Zwieten, L. 2006. Impact of agricultural inputs on soil organisms - a review. J. Soil Res. 44: 379- 406.spa
dc.relation.referencesCanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., Barceló, D. 2016. Pesticides in the Ebro River basin: occurrence and risk assessment. Environmental Pollution. 211: 414-424.spa
dc.relation.referencesCarazo-Rojas, E., Perez-Rojas, G., Perez-Villanueva, M., Chinchilla-Soto, C., Chin-Pampillo, J.S., Aguilar-Mora, P., Alpízar-Marín, M., Masís-Mora, M., Rodríguez-Rodríguez, C.E., Vryzas, Z. 2018. Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environmental Pollution. 241(2018): 800-809.spa
dc.relation.referencesCárdenas, O. Silva, E. Ortiz, J. 2010. Uso de plaguicidas inhibidores de la acetilcolinesterasa en once entidades territoriales de salud en Colombia, 2002-2005. Biomédica. 30(1): 95-106.spa
dc.relation.referencesCarriquiriborde, P, Mirabella, P., Waichman, A., Solomon, K., Van den Brink, P., Maund, S. 2014. Aquatic risk assessment of pesticides in Latin America. Integrated Environmental Assessment and Management. 10(4): 539-542.spa
dc.relation.referencesCastro, P., Ramos, J., Estévez, S., Andrea, R. 2004. Residuos de Plaguicidas Organofosforados en muestras de tomate. Revista de Ingeniería, 20: 14-22spa
dc.relation.referencesCengiz, M.F., Certel, M., Karakas, B., Gocmen, H. 2007.Residue contents of captan and procymidone applied on tomatoes grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chemistry. 100: 1611-1619.spa
dc.relation.referencesClaeys, W.L., Schmit, J-F., Bragard, C., Maghuin-Rogister, G., Pussemier, L., Schiffers, B. 2011.Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Control. 22: 508-516.spa
dc.relation.referencesCohen, M. A. 2017. Riesgo Ambiental: La aportación de Ulrich Beck. Acta Sociológica. 73: 171-194.spa
dc.relation.referencesCook, S.M., Zeyaur, R.K., Pickett, J.A. 2007. The Use of Push-Pull Strategies in Integrated Pest Management. Annu. Rev. Entomol. 52: 375–400.spa
dc.relation.referencesCooper, J. Dobson, H. 2007. The benefits of pesticides to mankind and the environment. Crop Protection. 26: 1337-1348.spa
dc.relation.referencesCortés, A. 2004. Suelos colombianos: Una mirada desde la academia. Universidad Jorge Tadeo Lozano. Bogotá. 126 p.spa
dc.relation.referencesCossettini, O. 2006. Guía de interpretación placas Petrifilm 3M. Buenos Aires. Argentina.spa
dc.relation.referencesCosta, E.M., Araujo, E.L., Maia, A. V. P., Silva, F. E. L., Bezerra, C. E. S., Silva, J. G. 2014. Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie. 45 (1):34–44.spa
dc.relation.referencesDarko, G., Akoto, O. 2008. Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food and Chemical Toxicology. 46: 3703-3706.spa
dc.relation.referencesDe Ponti, T., Rijk, B., van Ittersum, M.K., 2012. The crop yield gap between organic and conventional agriculture.Agricultural systems. 108: 1-9.spa
dc.relation.referencesDey, 2010. Use of pesticides in vegetable farms and its impact on health of farmers and environment. Environmental science and technology. 2019(2): 134-140.spa
dc.relation.referencesDíaz, S. M., Sánchez, F., Varona, M., Eljach, V., Muñoz G.M.N. 2017. Niveles de colinesterasa en cultivadores de papa expuestos ocupacionalmente a plaguicidas, Totoró, Cauca, Revista de la Universidad Industrial de Santander, Salud, 49(1), 85-92.spa
dc.relation.referencesDorais, M., Ehret, D.L., Papadopoulos, A.P. 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev. 7: 231-250. Editorial Limusa. México.spa
dc.relation.referencesDurovic, R. Gajic, J. Dordevic, T. 2009. Effects of organic matter and clay content in soil on pesticide adsorption processes. Pestic.Phytomed. 24: 51- 57.spa
dc.relation.referencesEdwards, C. 1993. The impact of pesticides on the environment. Capítulo 2: 13-47. Pimentel, D. Lehman, H (eds.).1993. The Pesticide Question: Environment, Economics, and Ethics. Springer. New York, Estados Unidos. 441 p.spa
dc.relation.referencesEFSA, 2013. Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J.11, 3293.spa
dc.relation.referencesEkström, G., Ekbom, B. 2012. Pest Control in Agro-ecosystems: An Ecological Approach. Critical Reviews in Plant Sciences, 30:1-2, 74-94.spa
dc.relation.referencesEl-Shahawi, M.S. 1997. Retention profiles of some comercial pesticides, pyrethroid and acaricide residues and their application to tomato and parsley plants. Journal of Chromatography. 760: 179-192.spa
dc.relation.referencesEncuesta Nacional de Situación Nutricional (ENSIN). 2015. Instituto Colombiano de Bienestar Familiar (ICBF), Ministerio de Salud y Protección Social, Instituto Nacional de Salud (INS). En: https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion-nutricional. Consulta Julio de 2019.spa
dc.relation.referencesEnvironmental Protection Agency (EPA). 1998. Fate, Transport and transformation test guidelines. OPPTS 835.5154. Anaerobic biodegradation in the subsurface. Prevention, Pesticides and Toxic Substances. EPA. United States. 10 pp.spa
dc.relation.referencesEPA. 2011. 2006-2007 Pesticide Market Estimates: Sales and Usage. Washington, USA. 41 p.spa
dc.relation.referencesEPA. 2019. Integrated Risk Information System (IRIS). En: https://www.epa.gov/iris. Consulta Julio de 2019.spa
dc.relation.referencesEPA. 2019. Risk Assessment: Ecological Risk Assessment, Human Health Risk Assessment. En: https://www.epa.gov/risk/ecological-risk-assessment. Consulta Enero de 2019.spa
dc.relation.referencesEscobar, H., Lee, R. (Eds.) 2009. Manual de producción de tomate bajo invernadero. Segunda Edición. Universidad de Bogotá Jorge Tadeo Lozano. Bogotá. 167 p.spa
dc.relation.referencesEtchegoyen, M. A., Ronco, A. E., Almada, P., Abelando, M., Marino, D. J. 2017. Occurrence and fate of pesticides in the Argentine stretch of the Paraguay-Paraná basin. Environmental Monitoring and Assessment. 189(2): 63.spa
dc.relation.referencesEU Pesticide database (CEE). 2019. Commission Amending Regulation, European Commission, Regulation 1107/2009 (91/414). En: https://ec.europa.eu/food/plant/pesticides/max_residue_levels /eu_rules_en. Consulta Julio de 2019.spa
dc.relation.referencesFarias, D.M., Guerrero, J.A., Lozano, A., Piedrahita, W. 2004. Estudio de residuos de permetrina en un cultivo de tomate. Agronomía Colombiana, 22(1): 74-80.spa
dc.relation.referencesFenik, J., Tankiewicz, M., Biziuk, M. 2011. Properties and determination of pesticides in fruits and vegetables. Trends in Analytical Chemestry, 30 (6): 814-826.spa
dc.relation.referencesFenoll, J., Hellín, P., Martínez, C.M., Miguel, M., Flores, P. 2007. Multiresidue method for analysis of pesticides in pepper and tomato by gas chromatography with nitrogen-phosphorus detection.Food Chemistry. 105: 711-719.spa
dc.relation.referencesFeola, G., Binder, C.R. 2010. Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyaca, Colombia. Crop Protection. 29: 612-622.spa
dc.relation.referencesFierro, H., Téllez, J. 1997. Motivaciones y uso de plaguicidas en el cultivo de la papa, Corpoica, Tibaitatá. pp : 1-48spa
dc.relation.referencesFife, J. Nokes, S. 2002. Evaluation of the effect of rainfall intensity and duration on the persistence of chlorothalonil on processing tomato foliage. Crop Protection. 21: 733-740.spa
dc.relation.referencesFinizio, A., Villa, S. 2002. Environmental risk assessment for pesticides: A tool for decision making, Environmental Impact Assessment Review, 22(3): 235-248.spa
dc.relation.referencesFisher D., Hayes A. 1982. Effects of some systemic imidazole and triazole fungicides on white clover and symbiotic nitrogen fixation by Rhizobium trifolii. Ann. Appl. Biol. 101: 19-24.spa
dc.relation.referencesFlores-Pacheco, J. A. Mairena, A., Espluga, J. 2013. Evaluación de riesgos en sistemas agrícolas asociados a la utilización de plaguicidas en el Municipio de Kukra Hill, Nicaragua, Centroamérica. Nexo Revista Científica. 26(1): 34-44.spa
dc.relation.referencesFood and Agriculture organization of the Nations – FAO. 2017. Food and agriculture data-FAOSTAT. Tomatoes. En: http://www.fao.org/faostat/en/#home. Consulta Julio de 2019.spa
dc.relation.referencesFAO. 1999. Recommended methods of sampling for the determination of pesticide residues for compliance with MRLS CAC/GL 33-1999. 18 p.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations / World Health Organization (FAO/WHO). 2019. Codex Pesticides Residues in Food Online Database. Pesticide residues in food and feed. Codex Alimentarius, VO-0048-Tomato. EN: http://www.codexalimentarius.net/pestres/data/ commodities/ details.html?id=320. Consulta Julio de 2019.spa
dc.relation.referencesFAO/WHO. 2011. Pesticide residues in food 2010, Joint FAO/WHO Meeting on Pesticides Residues, FAO plant production and protection paper 200. Rome. 55 p.spa
dc.relation.referencesFAO, 2016. Asistencia técnica y extensión rural participativa en América Latina. Lima. 52 p.spa
dc.relation.referencesFood and Drug Administration United States (FDA). 2018. Pesticide Analytical Manual (PAM) Sec 302.spa
dc.relation.referencesFuentes, L.S., Niño, N.E., Casilimas, H.A., Bojacá, C.R. 2014. Plagas y enfermedades del cultivo de tomate guía técnica de campo. Universidad Jorge Tadeo Lozano. 72 p.spa
dc.relation.referencesFytolab, 2015. Manual interno de procesos, basado en Standard Methods, 2005.spa
dc.relation.referencesGallego, A.G.H. 1973. Residuos de plaguicidas Organoclorados en productos agrícolas de consumo humano en Cali. Tesis de Ingeniería sanitaria. Universidad del Valle. 48 p.spa
dc.relation.referencesGambacorta, G., Faccia, M., Lambacchia, C., Di Luccia, A., La Notte, E. 2005. Pesticide residues in tomato grown in open field. Food Control.16: 629-632.spa
dc.relation.referencesGarrido, A., Martínez, J.L., López., Cortés S., Martínez, I. 2004. Monitoring multi-class pesticide residues in fresh fruits and vegetables by liquid chromatography with tandem mass spectrometry. Journal of Chromatography A, 1048: 199-206.spa
dc.relation.referencesGarzón, A., Manejo sostenible de mosca blanca (Trialeurodes vaporariorum) en tomate (Solanum lycopersicum) mediante estrategias basadas en agentes de control biológico. Tesis Maestría en Ciencias Ambientales. Universidad Jorge Tadeo Lozano. 24 p.spa
dc.relation.referencesGevao, B. Semple, K. Jones, K. 2000. Bound pesticide residues in soils: a review. Environmental pollution. 108: 3-14.spa
dc.relation.referencesGil, R., Bojacá, C.R., Schrevens, E. 2019. Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences. 88(2019):1-9.spa
dc.relation.referencesGil, R., Bojacá, C.R., Schrevens, E., 2017. Uncertainty of the agricultural grey water footprint based on high resolution primary data. Water Resour. Manag. 31 (11), 3389–3400.spa
dc.relation.referencesGliessman, S. 2015. Agroecology: The ecology of sustainable food systems, Third ed., 371. Nueva York: Taylor y Francis. 406 p.spa
dc.relation.referencesGoss, D & Wauchope RD (1990) The SCR/ARS/CES Pesticide Properties Database. II using it with Soils data in a screening Procedure. In D.L. Weigmann Ed., Pesticides in the next decade: the challenge ahead, Virginia Resources Research Centre, Blacksburg, VA, USA pp471-493.spa
dc.relation.referencesGuaitero, L.B. 2010. Propuesta metodológica para la evaluación de riesgo ambiental causado por el uso de plaguicidas en sistemas hortofrutícolas de la Sabana de Bogotá. Tesis de Maestría en Ciencias Agrarias. Facultad de Agronomía. Universidad Nacional de Colombia. 180 p.spa
dc.relation.referencesGuerrero, J. 2003. Estudio de residuos de plaguicidas en frutas y hortalizas en áreas específicas de Colombia. Agronomía Colombiana, 21(3): 198-209.spa
dc.relation.referencesGutiérrez, J.A. & Londoño, A. 2009. Determinación de plaguicidas Organoclorados y Organofosforados en tomates de cadena en las ciudades de Pereira y Armenia, Colombia. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 8(3): 165-171.spa
dc.relation.referencesHatt, S., Artru, S., Brédart, D., Lassois, L., Francis, F., Haubruge, E. Stassart, P., Dufrene, M., Munty, A., Boeraeve, F. 2016.Towards sustainable food systems: the concept of agroecology and how it questions current research practices. A review. Biotechnol. Agron. Soc. Environ. 20(S1):215-224.spa
dc.relation.referencesHarari, R, Harari, H. 2006. Children's environment and health in Latin America: the Ecuatorian case, Annals of the New York Academy of Sciences, 1076(1): 660-677.spa
dc.relation.referencesHernández, L., Guerrero, E., Cubillos, F., Salazar, F. 1986. Niveles sanguíneos de insecticidas Organoclorados en varios grupos de población colombiana. Revista Colombiana de Ciencias Químicas y farmacológicas. 45(1): 49-58.spa
dc.relation.referencesHernández, F. Beltrán, J. 1995. Análisis de residuos de plaguicidas en aguas. Grupo de investigación de medio ambiente y recursos naturales. Departamento de Ciencias Experimentales. Universidad Jaime L. Castellón. pp: 321-355.spa
dc.relation.referencesHerridge D., Peoples, M., Boddey R. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311: 1-18.spa
dc.relation.referencesHock, W. 1994. Effect of pH on pesticide stability and efficacy. Perential Plants 2(2) 1-2.spa
dc.relation.referencesIdrovo, A. 2000. Vigilancia de las Intoxicaciones con Plaguicidas en Colombia. Rev. Salud Pública. 2 (1): 36-46.spa
dc.relation.referencesImfeld, G. Vuilleumier, S. 2012. Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of soil biology. 49: 22-30.spa
dc.relation.referencesInstituto Colombiano Agropecuario (ICA). 2019. Registros de venta de plaguicidas químicos de uso agrícola - y bioinsumos. Julio de 2019. En: https://www.ica.gov.co/. Consulta Julio de 2019.spa
dc.relation.referencesIwata, Y. Spear, R. Knaak, J. Foster, R. 1977. Worker reentry into pesticide-treated crops, I, Procedure for the determination of dislodgable pesticide residues on foliage. Bulletin of Environmental Contamination and Toxicology. 18 (6): 649-655.spa
dc.relation.referencesJaramillo, J. Rodríguez, V. Guzmán, M. Zapata, M. 2006. El cultivo de tomate bajo invernadero (Lycopersicon esculentum. mill). Boletín técnico 21. Corpoica. Antioquia, Colombia. 48 p.spa
dc.relation.referencesJardim, A., Caldas, E., 2012. Brazilian monitoring programs for pesticide residues in food e Results from 2001 to 2010. Food Control, 25: 607-616.spa
dc.relation.referencesJenkins, D.; Snoesyink, V.; Ferguson, J.; Leckie, J. 1983. Química del Agua: manual de laboratorio.spa
dc.relation.referencesJuraske, R., Antón, A., Castells, F., Huijbregts, M.A.J. 2007. Human intake fractions of pesticides via greenhouse tomato consumption: Comparring model estimates with measurements for Captan. Chemosphere. 67: 1102-1107.spa
dc.relation.referencesJuraske, R., Mosquera, C.S., Erazo, A., García, G., Berdugo, M.B., Díaz, J., Binder, C.R., Hellweg, S., Guerrero, J.A. 2011. Pesticide uptake in potatoes: model and field experiments. Environmental Science & Technology. 45 (2) : 651-657.spa
dc.relation.referencesKah, M. 2007. Behavior of ionisable pesticides in soils. PhD Thesis. Environmental Department. University of York. 229 p.spa
dc.relation.referencesKatz. J.M., Winter, C.K. 2009. Comparision of pesticide exposure from consumption of domestic imported fruits and vegetables.Food and Chemical Toxicology. 47: 335-338.spa
dc.relation.referencesKaushik, G., Satya, S. Naik, S.N. 2009. Food processing a tool to pesticide dissipation – A review.Food Research International. 42: 26-40.spa
dc.relation.referencesKimura, S. Sinha, N. 2008. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop, Cold Spring Harb Protoc. EN: http:// cshprotocols.cshlp.org/ content/2008/11/pdb. emo105.full.pdf+html. Consulta Octubre 2013.spa
dc.relation.referencesKolankaya, D. Ogus, A. Ayas, Z. Akay, M. 1989, Manganese ethylenebisdithiocarbamate (Maneb) and ethylenethiourea (ETU) residues in different parts of tomato plant and soil, Food Chemestry, 34 (3):181-186.spa
dc.relation.referencesKong, Z., Dong, F., Xu, J., Liu, X., Zhang, Ch. Li, J., Li, Y., Chen, X., Shan, W., Zheng, Y. 2012.Determination of difeconazole residue in tomato during home canning by UPLC-MS/MS. Food Control. 23: 542-546.spa
dc.relation.referencesKontou, S., Tsipi, D., Tzia, C. (2004). Stability of the dithiocarbamate pesticide maneb in tomato homogenates during cold storage and thermal processing. Food Additives and Contaminants. 21(11): 1083–1089.spa
dc.relation.referencesLehmann, E., Turrero, N., Kolia, M., Konate, Y., de Alencastro, L.F., 2017. Dietary risk assessment of pesticides from vegetables and drinking water in gardening areas in Burkina Faso. Sci. Total Environ. 601(602)1208–1216.spa
dc.relation.referencesLeiva, F.R., Fuentes, C.L., Guaitero, B. 2012. Metodología para la evaluación del riesgo ambiental causado por el uso de plaguicidas en sistemas hortofrutícolas en el departamento de Cundinamarca. Avances de la Investigación Agronómica II, Universidad Nacional de Colombia, Facultad de Agronomía, pp 99-110.spa
dc.relation.referencesLetourneau, D., Armbrecht, I., Salguero, B., Montoya, J., Jiménez E., Daza, M., Escobar, S., Galindo, V., Gutiérrez, C., Duque, S., López, J., Acosta, A., Herrera, J., Rivera, L., Saavedra, C., Torres, A., Reyes, A. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21: 9-21.spa
dc.relation.referencesLi, H., Wei, Y., Lydy, M. J., You, J. 2014. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment. Environmental Pollution. 190: 19-26.spa
dc.relation.referencesLi. L, Jiang, G., Liu, C., Liang, H., Sun, D., Li, W. 2012. Clothianidin dissipation in tomato and soil, and distribution in tomato peel and flesh.Food Control. 25: 265-269.spa
dc.relation.referencesLloret L., Martínez, R. E. 2005. Evolución y filogenia de Rhizobium. Rev. Latinoam. Microbiol. 47: 43-6.spa
dc.relation.referencesLobatón J., Cure J., Almanza M. 2012. Fenología y Oferta Floral de Trébol Rojo Trifolium pratense (Fabales: Fabaceae) en Praderas de Kikuyo Penissetum clandestinum (Poales: Poaceae), como Fuente Alimento para Bombus atratus (Hymnoptera, Apoidea) en Cajicá, Colombia. Revista de Ciencias Básicas. Universidad Militar Nueva Granada, 8(1) ,18-27.spa
dc.relation.referencesLondoño, R., Barreto, J.R. 1982. Muestreo y manejo de muestras de productos agrícolas para análisis de residuos de plaguicidas. Instituto Colombiano Agropecuario. Bogotá (Colombia). 30 p.spa
dc.relation.referencesLotter, D.W. 2003. Organic agriculture. J Sustainable Agric 21: 37-51.spa
dc.relation.referencesLyon, A., Bell, M., Gratton, C., Jackson, R. 2011. Farming without a recipe: Wisconsin graziers and new directions for agricultural science. Journal of Rural Studies. 27(4): 384-393.spa
dc.relation.referencesMacias‐Macias, O., Chuc, J., Ancona‐Xiu, P., Cauich, O., Quezada‐Euán, J. J. G. 2009. Contribution of native bees and Africanized honey bees (Hymenoptera: Apoidea) to Solanaceae crop pollination in tropical México. J. Appl. Entomol. 133(6):456–465.spa
dc.relation.referencesMacLachlan, D.J., Hamilton, D. 2010. Estimation methods for maximum residue limits for pesticides.Regulatory Toxicology and Pharmacology. 58: 208-218.spa
dc.relation.referencesMahugija, J. Kishimba, M. 2007. Organochlorine pesticides and metabolites in young leaves of Mangifera indica from sites near a point source in Coast region, Tanzania. Chemosphere. 68: 832-837.spa
dc.relation.referencesMarrugo-Negrete, J. L., Navarro-Frómeta, A. E., Urango-Cardenas, I. D. 2014. Organochlorine pesticides in soils from the middle and lower Sinú River Basin (Córdoba, Colombia), Water, Air, & Soil Pollution, 225(8): 2053.spa
dc.relation.referencesMartínez, R. Balaguera, J. Arias, H. Velásquez, M. Ruiz, F. Janeth, A. 2012. Plan de Desarrollo Municipal: Municipio Valle de San José, Colombia. 235 p.spa
dc.relation.referencesMcRae RJ, Hill SB, Mehuys FR, Henning J. 1990. Farm scale agronomic and economic conversion from conventional to sustainable agriculture. Advances in Agronomy 43: 155-198.spa
dc.relation.referencesMedina, D. Abreu, de V. Buscema, A. Ettiene, G. & Prieto A. (1999). Persistence of Organophosphorus Pesticide Residues in Limón River Waters. Environmental Contamination and Toxicology. 63, 39-44.spa
dc.relation.referencesMejías, J., Jerez, J. 2006. Guía para la toma de muestras de residuos de plaguicidas Agua, sedimento y suelo. Ministerio de Agricultura. Gobierno de Chile.spa
dc.relation.referencesMiranda, D., Fischer, G., Barrientos, J.C., Carranza, C., Rodriguez, M., Lanchero, O. 2009. Caracterization of productive systems of tomato (Solanum lycopersicum L.) in producing zones of Colombia. Acta horticulturae, 821: 35-45.spa
dc.relation.referencesMojica, A., Guerrero, J. A. 2013. Evaluación del movimiento de plaguicidas hacia la cuenca del lago de tota, Colombia. Revista Colombiana de Química. 42(2): 29-38.spa
dc.relation.referencesMonsalve, O., Escobar, H., Medina, A., Forero, A. 2009. Estrategias de fertilización limpia y orgánica en la producción de tomate bajo invernadero. Universidad de Bogotá Jorge Tadeo Lozano. Bogotá. 98 p.spa
dc.relation.referencesMosquera-Vivas, C.S., Martinez, M.J., García-Santos, G., Guerrero-Dallos, J.A. 2018. Adsorption-desorption and hysteresis phenomenon of tebuconazole in Colombian agricultural soils: Experimental assays and mathematical approaches. Chemosphere. 190 (2018) 393 – 404.spa
dc.relation.referencesMosquera-Vivas,C.S., Walthe, E., García-Santos, G., Obregón-Neira, N., Celis-Ossa, R.E., González-Murillo, C.A., Juraske, R., Hellweg, S., Guerrero-Dallos, J.A. 2016. The effect of the soil properties on adsorption, single-point desorption, and degradation of chlorpyrifos in two agricultural soil profiles from Colombia. Soil Science.181 (9/10): 446-456.spa
dc.relation.referencesMunicipio De Villa de Leyva. 2004. Plan de Desarrollo Municipal 198 p.spa
dc.relation.referencesMurcia, A.M., Stashenko, E. 2008. Determinación de plaguicidas organofosforados en vegetales producidos en Colombia. Agro Sur. 36(2): 71-81.spa
dc.relation.referencesNaizaque, J. 2008. Esquema de ordenamiento territorial: Municipio de Combita. Corpoboyaca. Bogotá. p 43.spa
dc.relation.referencesNarváez, J., Palacio, J., Molina F. 2012. Persistencia de plaguicidas en el ambiente y su ecotoxicidad: Una revisión de los procesos de degradación natural. Revista Gestión y Ambiente. Universidad Nacional de Colombia. Sede Medellín. 15(3): 27-38.spa
dc.relation.referencesNasreddine, L., Parent-Massin, D. 2002.Food contamination by metals and pesticides in the European Union. Should we worry?.Toxicology Letters. 127: 29-41 pp.spa
dc.relation.referencesNicholls, C.I, Altieri M.A., Vazquez. L. 2016. Agroecology: Principles for the Conversion and Redesign of Farming Systems. J Ecosys Ecograph. S5: 010, 8p.spa
dc.relation.referencesNiewiadomska, A.2003. Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pretense L.). Polish Journal of Environmental Studies. 13(4): 403-410.spa
dc.relation.referencesOECD. 2003. OECD Environmental Indicators. Development, measurement and use. Reference paper. Organisation for Economic Co- Operation and development. France.spa
dc.relation.referencesOo, M.L, Yabe, M., Khai, H.V. 2012. Farmers' Perception, Knowledge and Pesticide Usage Practices: A Case Study of Tomato Production in Inlay Lake, Myanmar. Journal- Faculty of Agriculture Kyushu University. 57 (1), 327–331 (2012).spa
dc.relation.referencesOrtíz, M. Sánchez, E. Olvera, A. Folch, J. 2011. Pesticides in the Environment: Impacts and their Biodegradation as a Strategy for Residues Treatment. Cap 27. Pp 25. En: Stoytcheva, M (Ed). 2011. Pesticides- Formulations, Effects, Fate. InTech. Baja California, Mexico. 808 p.spa
dc.relation.referencesOsman, K.A., Al-Humaid, A.I., Al-Rehiayani, S.M., Al-Redhaiman, K.N. 2011. Estimated daily intake of pesticide residues exposure by vegetables grown in greenhouses in Al-Qassim región, Saudi Arabia.Food Control. 22: 947-953.spa
dc.relation.referencesOwnby, D.R., Trimble, T.A. Cole, M.J.L. 2004. Pesticide Residues in Water, Sediment and Fish at the Sparta, IL, USA National Guard Armony. Bulletin of Environmental Contamination and Toxicology. 73(5): 802-809.spa
dc.relation.referencesPáez, M.I., Varona, M., Díaz, S.M., Castro, R.A., Barbosa, E., Carvajal, N., Londoño, A. 2011. Evaluación de riesgo en humanos por plaguicidas en tomate cultivado con sistemas tradicional y BPA (Buenas Prácticas Agrícolas). Revista de Ciencias, Universida del Valle. 15: 153-166.spa
dc.relation.referencesPardo, S., Suárez, H., Pertuz, V. 2009. Interacción de los suelos sulfatados ácidos con el agua y sus efectos en la sobrevivencia del Bocachico (Prochilodus magdalenae) en cultivo. Revista Colombiana de Ciencias Pecuarias. Medellín. Colombia. 22(4).spa
dc.relation.referencesPenido, P., Clarete, E., Rath, S., Reyes, F.G. 2009. Residue content of oxytetracycline applied on tomatoes grown in open field and greenhouse. Food Control. 20: 11-16.spa
dc.relation.referencesPérez, M. A., Navarro, H., Miranda, E. 2013. Residuos de plaguicidas en hortalizas: problemática y riesgo en México. Revista Internacional de Contaminación Ambiental. 29: 45-64.spa
dc.relation.referencesPesticide Action Network (PAN). 2019. Pesticide Database, North America. Version 12.0. En http://www.pesticideinfo.org/. Consulta Julio de 2019.spa
dc.relation.referencesPinzón, G. 2007. Historia de la formación de Santander, sus provincias y municipios. (Sic) Editorial. 526 p.spa
dc.relation.referencesPolanco, Y., Salazar, J.C., Curbow, B. 2014. A quantitative analysis of Colombian campesinos’ use of pesticides: perceived control and confidence in this use. Rev. Fac. Nac. Salud Pública 2014; 32(3): 373-382.spa
dc.relation.referencesPesticide Properties Database (PPDB). 2019. University of Hertfordshire. En: https://sitem.herts.ac.uk/aeru/ppdb/en/. Consulta Julio de 2019.spa
dc.relation.referencesR Core Team, 2017. R: a language and environment for statistical computing. URL. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.spa
dc.relation.referencesRamírez, H. 2010. Geología. Diagnostico esquema de ordenamiento territorial de Páramo- Santander.spa
dc.relation.referencesRamírez, J. Lacasaña, M. 2001. Plaguicidas: clasificación, uso, toxicología y medición de la exposición. Arch Prev Riesgos Labor. 4(2): 67-75.spa
dc.relation.referencesRavelo-Pérez, L.M., Hernández-Borguez, J., Borgues-Miguel, T.M., Rodríguez-Delgado, M.A. 2008. Pesticide analysis in tomatoes by solid-phase microextraction and micellarelectrokinetic chromatography (Short communication).Journal of Chromatography.A(1185): 151-154.spa
dc.relation.referencesRodríguez, D., Ahumada, D.A., Díaz, A.C., Guerrero, J.A. 2014. Evaluation of pesticide residues in honey from different geographic regions of Colombia. Food Control. 37 (2014): 33-40.spa
dc.relation.referencesRoldán, G. Ramírez, J. 2008. Fundamentos de limnología neotropical: Editorial Universidad de Antioquia. Medellín. Colombia. 440 p.spa
dc.relation.referencesRömbke, J., Waichman, A. V., Garcia, M. V. 2008. Risk assessment of pesticides for soils of the Central Amazon, Brazil: comparing outcomes with temperate and tropical data. Integrated Environmental Assessment and Management. 4(1): 94-104.spa
dc.relation.referencesRuíz-Toledo, J., Castro, R., Rivero-Pérez, N., Bello-Mendoza, R., Sánchez, D. 2014. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico, Bulletin of Environmental Contamination and Toxicology. 93(3): 289-293.spa
dc.relation.referencesSabara, H. A., Gillespie, D. R., Elle, E., Winston, L. 2004. Influence of brood, vent screening, and time of year on honey bee (Hymenoptera: Apidae) pollination and fruit quality of greenhouse tomatoes. J. Econ. Entomol. 97(3): 727–734.spa
dc.relation.referencesSabara, H.A., Winston, M.L. 2003 Managing Honey Bees (Hymenoptera : Apidae ) for Greenhouse Tomato Pollination. J. Econ. Entomol. 96: 547–554.spa
dc.relation.referencesSadlo, S. 1997. Adaption of the internal standard method to a pesticide residues study in/on plants.Short communication.Journal of Chromatography.765: 115- 119.spa
dc.relation.referencesShetty, P.K., Murugan, M., Hiremath, M.B., Sreeja. K.G. 2010. Farmers’ education and perception on pesticide use and crop economies in Indian agriculture. Journal of Experimental Sciences 1(1): 3-8.spa
dc.relation.referencesShankar, P., Shaikh N., Sharmishtha P. 2012. Effect of Different Herbicides on the Nodulation Property of Rhizobial Isolates. Universal Journal of Environmental Research and Technology, 2(4): 293-299.spa
dc.relation.referencesShegunova, P. Klanova, J. Holoubek, I. 2007. Residues of organochlorinated pesticides in soils from the Czech Republic. Environmental Pollution. 146: 257-261.spa
dc.relation.referencesSilici, L. 2014. Agroecology-what it is and what it has to offer. Issue Paper 14629IIED. London: International Institute for Environment and Development.spa
dc.relation.referencesSolano, L. Malaver, T. Alarcon, R. Porras, M. Pineda, L. Duque, G. Gutiérrez, N. Vega, N. 2012. Plan de Desarrollo Municipal: Municipio de Paramo. Paramo, Colombia. 174 p.spa
dc.relation.referencesStandard Methods. 2005. Examination of Water and Wastewater; APHA, AWWA and WEF, 21st Edition.spa
dc.relation.referencesStephenson, G. Solomon, K. 2013. Plaguicidas y ambiente. Versión en español editada por Carazo, E. 1 ed. 580 p.spa
dc.relation.referencesSuárez, J., Suárez, J., López, D., Morocho, H., Cachiguango, L., & Dellai, W. 2017. Agroecology and Health: Lessons from Indigenous Populations. Current Environmental Health Reports, 4(2), 244-251.spa
dc.relation.referencesTittonell, P. 2014. Ecological intensification of agriculture sustainable by nature. Current Opinion in Environmental Sustainability, 8: 53-61.spa
dc.relation.referencesToledo, V.M. 2008. Metabolismos rurales: hacia una teoría económico-ecológica de la apropiación de la naturaleza. Revista Iberoamericana de Economía Ecológica. 7: 1-26spa
dc.relation.referencesTuo, Y., Hala, N. 2011. Impact of terrestrial spraying of thiocyclam hydrogen oxalate on oil palm pollinating insects. J. Agric. Biol. Sci. 2: 208–213.spa
dc.relation.referencesUrrego, C.J., Cachique, J.A. 1986. Cuantificación de residuos de plaguicidas Organoclorados y Organofosforados en cultivo de tomate en zonas de Cundinamarca y Boyacá. Tesis Agrología. Fundación Universidad de Bogotá Jorge Tadeo Lozano, Bogotá (Colombia). 107 p.spa
dc.relation.referencesVaarst, M., Getz, A., Chappell, M.J., Brinkley, C., Nijbroek, R. Arraes, N., Andreasen, L., Gattinger, A., De Almeida, G., Bossio D., Halberg, N. 2018. Exploring the concept of agroecological food systems in a city-region context, Agroecology and Sustainable Food Systems, 42(6): 686-711.spa
dc.relation.referencesVallejo, F. Estrada, E. 2004. Producción de hortalizas de clima cálido. Universidad Nacional de Colombia. Palmira, Colombia. 344 p.spa
dc.relation.referencesVan der Werf. 1996. Assessing the impact of pesticides on the environment. Agriculture, Ecosystems and Environment. 60: 81-96.spa
dc.relation.referencesVerschueren, K. 1983. Handbook of environmental data on organic chemicals. 2nd. edition. Van Nostrand Reinhol Company, pp: 22-137.spa
dc.relation.referencesVincent J. M. 1970. A Manual for the Practical Study of Root-Nodule Bacteria. Handbook. International Biological Programme Blackwell Scientific. 164 p.spa
dc.relation.referencesWang, C. Liu, Z. 2007. Foliar uptake of pesticides—Present status and future challenge. Pesticide Biochemistry and Physiology. 87: 1-8.spa
dc.relation.referencesWare, G. Estesen, B. Buck, N. 1980. Dislodgable insecticide residues on cotton foliage: Acephate, AC 222,705, EPN, fenvalerate, methomyl, methyl parathion, permethrin, and thiodicarb. Bulletin of Environmental Contamination and Toxicology. 25: 608-615.spa
dc.relation.referencesWezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., David, C. 2009. Agroecology as a science, a movement and a practice. A review. Agronomy for Sustainable Development, 29(4): 503-515.spa
dc.relation.referencesWezel, A., Casagrande, M., Celette, F., Vian, J., Ferrer, A., Peigné, J. 2014. Agroecological practices for sustainable agriculture A review. Agronomy for sustainable development, 34(1): 1-20.spa
dc.relation.referencesWilliamson, S. M., Wright, G. A. 2013. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 216 (10): 1799–1807.spa
dc.relation.referencesWillis, G., McDowell, L. 1987. Pesticide persistence on foliage. Reviews of Environmental Contamination and Toxicology. 100: 23-73.spa
dc.relation.referencesWood, S, A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S., Palm Ch. 2015. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends in Ecology & Evolution: 1–9.spa
dc.relation.referencesWorld Health Organization - WHO. 1997. Guidelines for predicting dietary intake of pesticide residues. Switzerland. 33 pp.spa
dc.relation.referencesWorld Health Organization - WHO. 2012. Joint FAO/WHO Meeting on Pesticide Residues (JMPR). En: http://apps.who.int/pesticide-residues-jmpr-database/Home/Range/All. Consulta Julio de 2019.spa
dc.relation.referencesYang, T., Doherty, J., Zhao, B., Kinchla, A., Clark, J., He, L. 2017. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. J. Agric. Food Chem. 9 p.spa
dc.relation.referencesZamar, A.B., Uddin, S., Moniruzzaman, B., Karim, M, Hua, S. 2012. Organophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the savar and dhamrai upazilas in bangladesh. International Journal of Environmental Research and Public Health. 9:3318-3329.spa
dc.relation.referencesZhang, W. Jiang, F. Ou, J. 2011. Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences. 1 (2): 125-144.spa
dc.relation.referencesZhang, W., Ricketts, T., Kremen, C., Carney, K., Swinton, S. 2007. Ecosystem services and dis-services to agriculture. Ecological economics, 64(2): 253-260.spa
dc.relation.referencesArias L.A. 2019. Programa Profesional en AGROECOLOGÍA, Universidad de Bogotá Jorge Tadeo Lozano. Resolución 008924 Ministerio de Educación Nacional (MEN) del 27 de agosto de 2019. Proponente, Líder del Proceso de Creación y Director del Programa. En: https://www.utadeo.edu.co/es/facultad/ciencias-naturales-e-ingenieria/programa/bogota/agroecologiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.lembPesticides - environmental aspectseng
dc.subject.lembPlaguicidas - Aspectos ambientalesspa
dc.subject.lembTomatoeseng
dc.subject.lembTomatesspa
dc.subject.lembAgricultural ecologyeng
dc.subject.lembEcología agrícolaspa
dc.subject.proposalAgroecosystemeng
dc.subject.proposalAgroecosistemaspa
dc.subject.proposalEvaluación de riesgospa
dc.subject.proposalRisk assessmenteng
dc.subject.proposalPercepciónspa
dc.subject.proposalPerceptioneng
dc.subject.proposalSostenibilidadspa
dc.subject.proposalSustainabilityeng
dc.titleEvaluación agroecológica del uso y destino ambiental de plaguicidas en sistemas de producción de tomate de Boyacá y Santander en Colombiaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80204606.2020.pdf
Tamaño:
2.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Agroecología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: