Reducción de cromo (VI) de agua de la industria del cromado empleando recubrimientos TiO2/Ni obtenidos mediante oxidación electrolítica por plasma

dc.contributor.advisorTorres Cerón, Darwin Augusto
dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.authorVelasquez Tamayo, Juan Pablo
dc.contributor.cvlacVelasquez Tamayo, Juan Pablo [0000038714]spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Nt09opYAAAAJ&hl=enspa
dc.contributor.orcidVelasquez Tamayo, Juan Pablo [0000000273972404]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Juan-Velasquez-Tamayospa
dc.contributor.researchgrouplaboratorio de Fisica del Plasmaspa
dc.date.accessioned2023-12-11T21:16:24Z
dc.date.available2023-12-11T21:16:24Z
dc.date.issued2023
dc.descriptiongraficas, ilustraciones, mapas, tablasspa
dc.description.abstractEn este trabajo investigativo se realizó aprovechamiento de agua residual de niquelado para la síntesis de recubrimientos de TiO2/Ni mediante Oxidación Electrolítica por Plasma (PEO), y su evaluación en la reducción fotoelectrocatalítica de Cr (VI) en agua residual de cromado. Para ello se utilizaron sustratos de titanio de dimensiones 20x20x1 mm con variaciones de ciclo útil de trabajo entre 2% y 50%. Los recubrimientos se caracterización mediante: SEM/EDS, AFM, XRD, Raman, XPS y DRS. Los resultados obtenidos por SEM indicaron la existencia de poros en la superficie de los recubrimientos y los análisis EDS revelaron la presencia de Ti, O, Ni y S, y que la cantidad de Ni aumentó a medida que se incrementó el ciclo útil de trabajo; también se encontró que la rugosidad de los recubrimientos incrementó al pasar de ~214,2 nm a ~574,5 nm, mediante AFM. Adicionalmente, los resultados de XRD y microscopia Raman mostraron la presencia de las fases de anatasa y rutilo del TiO2, y su variación en proporción al incrementar el ciclo útil de trabajo; además se encontró que para el recubrimiento a ciclo útil de 50% se formaron fases de NiTiO3 y de NiO, lo cual fue confirmado por XPS. La caracterización óptica de los recubrimientos por DRS mostró un corrimiento hacia la región visible del espectro electromagnético en respuesta a la presencia de Ni en el material sintetizado, presentando absorciones desde ~505 nm hasta ~558 nm. Finalmente, se implementaron diseños experimentales para la evaluación fotoelectrocatalítica en la reducción de Cr (VI), para los recubrimientos de 2% y 50% de ciclo útil de trabajo. Los resultados indicaron que la tensión aplicada y la concentración de Cr (VI) son las variables de mayor influencia en el proceso, y que el recubrimiento de 2% de ciclo útil presentó mejores eficiencias de reducción de Cr (VI) comparado al de 50%, debido a la presencia de mayor proporción de la fase anatasa. Además, se determinaron las condiciones óptimas del proceso, se realizó el estudio cinético ajustado a un modelo cinético de pseudo-primer orden, y se evaluaron los ciclos de uso del material, encontrando que luego de 16 ciclos de uso la eficiencia es mayor al 98% (Texto tomado de la fuente)spa
dc.description.abstractIn this research work, the use of nickel-plating wastewater was exploited for the synthesis of TiO2/Ni coatings using Plasma Electrolytic Oxidation (PEO), and their evaluation in the photoelectrocatalytic reduction of Cr (VI) in chrome-plating wastewater. Titanium substrates of dimensions 20x20x1 mm with variations in duty cycle from 2% to 50% were used for this purpose. The coatings were characterized by SEM/EDS, AFM, XRD, Raman, XPS and DRS. The SEM results indicated the presence of pores on the surface of the coatings and EDS analysis revealed the presence of Ti, O, Ni, and S, with an increase in Ni content as the duty cycle increased. The AFM results showed an increase in coating roughness from ~214.2 nm to ~574.5 nm with an increase in the duty cycle. XRD and Raman microscopy results showed the presence of anatase and rutile phases of TiO2, with a change in proportion of increasing in duty cycle. Furthermore, NiTiO3 and NiO phases were formed in the coating with 50% of the duty cycle, as confirmed by XPS. Optical characterization of the coatings performed by DRS showed a shift band towards the visible region of the electromagnetic spectrum in response to the presence of Ni in the synthesized material, with absorptions ranging from ~505 nm to ~558 nm. Finally, experimental designs were implemented to evaluate the photoelectrocatalytic reduction of Cr (VI) using the coatings with 2% and 50% of the duty cycle. The results indicated that the applied voltage and Cr (VI) concentration were the most influential variables in the process, and the 2% duty cycle coating showed better Cr (VI) reduction efficiency compared to the 50% duty cycle coating due to the higher proportion of the anatase phase. Additionally, the optimal process conditions were determined, the kinetic study was adjusted to a pseudo-first-order kinetic model, and the material's usage cycles were evaluated, finding that after 16 cycles of use, the efficiency was higher than 98%.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaProcesos Avanzados de Oxidaciónspa
dc.format.extentxvii, 166 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85067
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesAdeleke, S. A., Ramesh, S., Bushroa, A. R., Ching, Y. C., Sopyan, I., Maleque, M. A., Krishnasamy, S., Chandran, H., Misran, H., & Sutharsini, U. (2018). The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Ceramics International, 44(2), 1802–1811. https://doi.org/10.1016/J.CERAMINT.2017.10.114spa
dc.relation.referencesAliasghari, S., Skeleton, P., & Thompson, G. E. (2014). Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Applied Surface Science, 316(1), 463–476. https://doi.org/10.1016/J.APSUSC.2014.08.037spa
dc.relation.referencesAliofkhazraei, M., Macdonald, D. D., Matykina, E., Parfenov, E. V., Egorkin, V. S., Curran, J. A., Troughton, S. C., Sinebryukhov, S. L., Gnedenkov, S. V., Lampke, T., Simchen, F., & Nabavi, H. F. (2021). Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Applied Surface Science Advances, 5. https://doi.org/10.1016/J.APSADV.2021.100121spa
dc.relation.referencesAlulema-Pullupaxi, P., Espinoza-Montero, P. J., Sigcha-Pallo, C., Vargas, R., Fernández, L., Peralta-Hernández, J. M., & Paz, J. L. (2021). Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere, 281, 130821. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130821spa
dc.relation.referencesAlulema-Pullupaxi, P., Fernández, L., Debut, A., Santacruz, C. P., Villacis, W., Fierro, C., & Espinoza-Montero, P. J. (2021). Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere, 278, 130488. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130488spa
dc.relation.referencesAmerican Public Health Association (APHA), American Water Works Association (AWWA), & Water Environment Federation (WEF). (2017). Standard Methods for the Examination of Water and Wastewater.spa
dc.relation.referencesAmeta, R., Chohadia, A. K., Jain, A., & Punjabi, P. B. (2018). Fenton and Photo-Fenton Processes. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. Academic Press. https://doi.org/10.1016/B978-0-12-810499-6.00003-6spa
dc.relation.referencesArab, H., Chiarello, G. L., Selli, E., Bomboi, G., Calloni, A., Bussetti, G., Albani, G., Bestetti, M., & Franz, S. (2020). Ni-Doped Titanium Dioxide Films Obtained by Plasma Electrolytic Oxidation in Refrigerated Electrolytes. Surfaces 2020, Vol. 3, Pages 168-181, 3(2), 168–181. https://doi.org/10.3390/SURFACES3020013spa
dc.relation.referencesAshley, K., Howe, A. M., Demange, M., & Nygren, O. (2003). Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. Journal of Environmental Monitoring, 5(5), 707–716. https://doi.org/10.1039/B306105Cspa
dc.relation.referencesAsturnatura. (2022). Cromita. https://www.asturnatura.com/mineral/cromita/890.htmlspa
dc.relation.referencesBabyszko, A., Wanag, A., Kusiak-Nejman, E., & Morawski, A. W. (2023). Effect of Calcination Temperature of SiO2/TiO2 Photocatalysts on UV-VIS and VIS Removal Efficiency of Color Contaminants. Catalysts 2023, Vol. 13, Page 186, 13(1), 186. https://doi.org/10.3390/CATAL13010186spa
dc.relation.referencesBakovets, V. V., Polyakov, О. V., & Dolgovesova, I. P. (1991). Plasma-electrolytic anodic processing of metals. Science, Novosibirsk, 168.spa
dc.relation.referencesBala Srinivasan, P., Liang, J., Balajeee, R. G., Blawert, C., Störmer, M., & Dietzel, W. (2010). Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy. Applied Surface Science, 256(12), 3928–3935. https://doi.org/10.1016/J.APSUSC.2010.01.052spa
dc.relation.referencesBalakrishnan, M., & John, R. (2021). Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar Cell. Journal of Materials Science: Materials in Electronics, 32(5), 5295–5308. https://doi.org/10.1007/S10854-020-05100-0spa
dc.relation.referencesBalan, C., Volf, I., & Bilba, D. (2013). Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure. Chemical Industry and Chemical Engineering Quarterly / CICEQ, 19(4), 615–628. https://doi.org/10.2298/CICEQ120531095Bspa
dc.relation.referencesBarnes, R. J., Molina, R., Xu, J., Dobson, P. J., & Thompson, I. P. (2013). Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. Journal of Nanoparticle Research, 15(2), 1–11. https://doi.org/10.1007/S11051-013-1432-9spa
dc.relation.referencesBera, S. P., Godhaniya, M., & Kothari, C. (2022). Emerging and advanced membrane technology for wastewater treatment: A review. Journal of Basic Microbiology, 62(3–4), 245–259. https://doi.org/10.1002/JOBM.202100259spa
dc.relation.referencesBeretta, G., Daghio, M., Tofalos, A. E., Franzetti, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2019). Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium. Water 2019, Vol. 11, Page 2336, 11(11), 2336. https://doi.org/10.3390/W11112336spa
dc.relation.referencesBessegato, G. G., Cardoso, J. C., & Zanoni, M. V. B. (2015). Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catalysis Today, 240(PA), 100–106. https://doi.org/10.1016/J.CATTOD.2014.03.073spa
dc.relation.referencesBessegato, G. G., De Almeida, L. C., Ferreira, S. L. C., & Zanoni, M. V. B. (2019). Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye. Journal of Environmental Chemical Engineering, 7(4), 103264. https://doi.org/10.1016/J.JECE.2019.103264spa
dc.relation.referencesBessegato, G. G., Guaraldo, T. T., de Brito, J. F., Brugnera, M. F., & Zanoni, M. V. B. (2015). Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications. Electrocatalysis 2015 6:5, 6(5), 415–441. https://doi.org/10.1007/S12678-015-0259-9spa
dc.relation.referencesBiesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717–2730. https://doi.org/10.1016/J.APSUSC.2010.10.051spa
dc.relation.referencesBlesa, M. A. (2001). Eliminación de Contaminantes por Fotocatálisis Heterogénea. Usos de óxidos semiconductores y materiales relacionados para aplicaciones ambientales y ópticas. Comisión Nacional de Energía Atómica, Unidad de Actividad Química.spa
dc.relation.referencesBojacá Méndez, I. M., & Mora Burgos, M. A. (2020). Revisión bibliográfica de estudios realizados en Colombia y Latinoamérica, relacionados con la adsorción de cromo hexavalente y mercurio en disoluciones acuosas y muestras reales, empleando adsorbentes naturales e isotermas de adsorción [Proyecto Curricular Tecnología en Saneamiento Ambiental, Universidad Distrital Francisco José de Caldas]. https://repository.udistrital.edu.co/handle/11349/26025spa
dc.relation.referencesBrienza, M., & Katsoyiannis, I. A. (2017). Sulfate Radical Technologies as Tertiary Treatment for the Removal of Emerging Contaminants from Wastewater. Sustainability 2017, Vol. 9, Page 1604, 9(9), 1604. https://doi.org/10.3390/SU9091604spa
dc.relation.referencesBruker. (2022). D8 ADVANCE | Bruker. https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/d8-advance-family/d8-advance.htmlspa
dc.relation.referencesBRUKER. (2023). DIFFRAC.EVA. https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.htmlspa
dc.relation.referencesCaminos, D. A., Rimondino, G. N., Gatica, E., Massad, W. A., & Argüello, J. E. (2023). Riboflavin and Eosin Y Supported on Chromatographic Silica Gel as Heterogeneous Photocatalysts. ACS Omega, 8, 30705–30715. https://doi.org/10.1021/ACSOMEGA.3C04622spa
dc.relation.referencesCarl Zeiss AG. (2022). ZEISS Sigma Family - Field Emission SEM. https://www.zeiss.com/microscopy/en/products/sem-fib-sem/sem/sigma.htmlspa
dc.relation.referencesCastiblanco, Y., Perilla, A., Arbelaez, O., Velásquez, P., & Santis, A. (2021). Effect of the pH and the Catalyst Concentration on the Removal of Hexavalent Chromium (Cr (VI)) During Photocatalysis of Wastewater from Plating on Plastics Industry. Chemical Engineering Transactions, 86, 679–684. https://doi.org/10.3303/CET2186114spa
dc.relation.referencesCaviedes Rubio, D. I., Muñoz Calderón, R. A., Perdomo Gualtero, A., Rodríguez Acosta, D., & Sandoval, J. (2015). Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión. Ingenieria y Región, 13(13), 73–90. https://dialnet.unirioja.es/servlet/articulo?codigo=5432290&info=resumen&idioma=SPAspa
dc.relation.referencesCervantes, T. N. M., Zaia, D. A. M., Moore, G. J., & de Santana, H. (2013). Photoelectrocatalysis Study of the Decolorization of Synthetic Azo Dye Mixtures on Ti/TiO2. Electrocatalysis, 4(2), 85–91. https://doi.org/10.1007/S12678-012-0123-0spa
dc.relation.referencesChakraborty, R., Kumar Mitra, A., & Mukherjee, S. (2013). Synergistic chromium bioremediation by Water Lettuce (Pistia) and bacteria (Bacillus cereus GXBC-1) interaction. Journal of Biological and Chemical Research, 30(2), 421–431. www.jbcr.inspa
dc.relation.referencesChang, L., Ahmed, N., Zeng, G., Ray, A., & Zhang, Y. (2022). N, S co-doped carbon quantum dots/TiO2 composite for visible-light-driven photocatalytic reduction of Cr (VI). Journal of Environmental Chemical Engineering, 108742. https://doi.org/10.1016/J.JECE.2022.108742spa
dc.relation.referencesChellasamy, V., & Thangadurai, P. (2017). Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment. Frontiers of Materials Science, 11(2), 162–170. https://doi.org/10.1007/S11706-017-0380-1spa
dc.relation.referencesChen, D., Li, Q., Shao, L., Zhang, F., & Qian, G. (2016). Recovery and application of heavy metals from pickling waste liquor (PWL) and electroplating wastewater (EPW) by the combination process of ferrite nanoparticles. Desalination and Water Treatment, 57(60), 29264–29273. https://doi.org/10.1080/19443994.2016.1172984spa
dc.relation.referencesChen, D., Zhang, C., Rong, H., Zhao, M., & Gou, S. (2020). Treatment of electroplating wastewater using the freezing method. Separation and Purification Technology, 234, 116043. https://doi.org/10.1016/J.SEPPUR.2019.116043spa
dc.relation.referencesChen, Q., Lei, S., Deng, P., Ou, X., Chen, L., Wang, W., Xiao, Y., & Cheng, B. (2017). Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. Journal of Materials Chemistry A, 5(36), 19323–19332. https://doi.org/10.1039/C7TA05373Hspa
dc.relation.referencesCheng, Y., Wang, T., Li, S., Cheng, Y., Cao, J., & Xie, H. (2017). The effects of anion deposition and negative pulse on the behaviours of plasma electrolytic oxidation (PEO)—A systematic study of the PEO of a Zirlo alloy in aluminate electrolytes. Electrochimica Acta, 225, 47–68. https://doi.org/10.1016/J.ELECTACTA.2016.12.115spa
dc.relation.referencesChibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1–13. https://doi.org/10.1155/2014/752708spa
dc.relation.referencesChoi, J., Park, H., & Hoffmann, M. R. (2010). Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. Journal of Physical Chemistry C, 114(2), 783–792. https://doi.org/10.1021/JP908088Xspa
dc.relation.referencesCisterna Osorio, P., & Peña, D. (2014). Determinación de la relación DQO/DBO5 en aguas residuales de comunas con población menor a 25.000 habitantes en la VIII región. - PDF Descargar libre. Universidad Tec. Fed. Sta María. https://docplayer.es/20765727-Determinacion-de-la-relacion-dqo-dbo-5-en-aguas-residuales-de-comunas-con-poblacion-menor-a-25-000-habitantes-en-la-viii-region.htmlspa
dc.relation.referencesCórdova Llacsahuache, R. J., & Torres Odar, D. Y. (2020). Revisión sistemática del uso de los residuos orgánicos bioadsorbentes para la remoción de metales pesados en aguas residuales urbanas [Escuela profesional de Ingeniería Ambiental]. In Repositorio Institucional - UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/63399spa
dc.relation.referencesCROMMAR SRL. (2022). Cromo duro. http://crommar.com.bo/cromodecorativo.htmspa
dc.relation.referencesCuesta-Parra, D. M., Velazco-Rincón, C. L., & Castro-Pardo, J. C. (2018). Evaluación ambiental asociada a los vertimientos de aguas residuales generados por una empresa de curtiembres en la cuenca del río Aburrá. Revista UIS Ingenierías, 17(2), 141–152. https://doi.org/10.18273/REVUIN.V17N2-2018013spa
dc.relation.referencesCurrò, G. M., Grasso, V., Neri, F., & Silipigni, L. (1995). The effects of the lithium intercalation on the X-ray photoelectron spectra of NiPS3. Il Nuovo Cimento D, 17(1), 37–52. https://doi.org/10.1007/BF02451601spa
dc.relation.referencesDaghrir, R., Drogui, P., & Robert, D. (2012). Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41–52. https://doi.org/10.1016/J.JPHOTOCHEM.2012.04.009spa
dc.relation.referencesDaghrir, R., Drogui, P., & Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: A review. Industrial and Engineering Chemistry Research, 52(10), 3581–3599. https://doi.org/10.1021/IE303468Tspa
dc.relation.referencesDal Corso, A. (2022). pseudopotentials - Quantum Espresso. https://www.quantum-espresso.org/pseudopotentials/spa
dc.relation.referencesDesimoni, E., Malitesta, C., Zambonin, P. G., & Rivière, J. C. (1988). An x-ray photoelectron spectroscopic study of some chromium–oxygen systems. Surface and Interface Analysis, 13(2–3), 173–179. https://doi.org/10.1002/SIA.740130210spa
dc.relation.referencesDivyapriya, G., Srinivasan, R., Mohanalakshmi, J., & Nambi, I. M. (2022). Development of a hybrid bifunctional rotating drum electrode system for the enhanced oxidation of ciprofloxacin: An integrated photoelectrocatalysis and photo-electro-Fenton processes. Journal of Water Process Engineering, 49, 102967. https://doi.org/10.1016/J.JWPE.2022.102967spa
dc.relation.referencesDomènech, X., Jardim, W. F., & Litter, M. I. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes. https://www.researchgate.net/publication/237764122spa
dc.relation.referencesDomínguez-Espíndola, R. B., Bruguera-Casamada, C., Silva-Martínez, S., Araujo, R. M., Brillas, E., & Sirés, I. (2019). Photoelectrocatalytic inactivation of Pseudomonas aeruginosa using an Ag-decorated TiO2 photoanode. Separation and Purification Technology, 208, 83–91. https://doi.org/10.1016/J.SEPPUR.2018.05.005spa
dc.relation.referencesDong, J., Yi, A., Li, W., Zeng, X., Liao, Z., Zhu, W., Li, K., Liu, M., Zhu, Z., & Ken, C. (2023). Electrical conductivity and corrosion resistance of Mo/Ti/Mn-based composite conversion films on AZ91D magnesium alloy. Surface and Coatings Technology, 459, 129388. https://doi.org/10.1016/J.SURFCOAT.2023.129388spa
dc.relation.referencesdos Santos, A. J., Barazorda-Ccahuana, H. L., Caballero-Manrique, G., Chérémond, Y., Espinoza-Montero, P. J., González-Rodríguez, J. R., Jáuregui-Haza, U. J., Lanza, M. R. V., Nájera, A., Oporto, C., Pérez Parada, A., Pérez, T., Quezada, V. D., Rojas, V., Sosa, V., Thiam, A., Torres-Palma, R. A., Vargas, R., & Garcia-Segura, S. (2023). Accelerating innovative water treatment in Latin America. Nature Sustainability 2023 6:4, 6(4), 349–351. https://doi.org/10.1038/s41893-022-01042-zspa
dc.relation.referencesdos Santos, E. V., & Scialdone, O. (2018). Photo-Electrochemical Technologies for Removing Organic Compounds in Wastewater. Electrochemical Water and Wastewater Treatment, 239–266. https://doi.org/10.1016/B978-0-12-813160-2.00010-9spa
dc.relation.referencesDubé, C. E., Workie, B., Kounaves, S. P., Robbat, A., Aksub, M. L., & Davies, G. (1995). Electrodeposition of Metal Alloy and Mixed Oxide Films Using a Single‐Precursor Tetranuclear Copper‐Nickel Complex. Journal of The Electrochemical Society, 142(10), 3357–3365. https://doi.org/10.1149/1.2049987spa
dc.relation.referencesElectro Níquel Forcán. (2020). Proceso de cromado de piezas metálicas. https://electroniquelforcan.com/cromado-de-metalesspa
dc.relation.referencesEncyclopedia Britannica. (2020, April 16). Chemical kinetics . https://www.britannica.com/science/chemical-kineticsspa
dc.relation.referencesEnvironmental Protection Agency (EPA). (1998). How Wastewater Treatment Works... The Basics. https://www3.epa.gov/npdes/pubs/bastre.pdfspa
dc.relation.referencesE-PRTR. (2020). Emisiones de contaminantes en Europa por los sectores regulador de E-PRTR. https://industry.eea.europa.eu/analyse/pollutant-and-sectorspa
dc.relation.referencesEuropean Parliament News. (2022). Circular economy: definition, importance and benefits | News | European Parliament. Economy. https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefitsspa
dc.relation.referencesFang, T., Liao, L., Xu, X., Peng, J., & Jing, Y. (2012). Removal of COD and colour in real pharmaceutical wastewater by photoelectrocatalytic oxidation method, 34(6), 779–786. https://doi.org/10.1080/09593330.2012.715760spa
dc.relation.referencesFattah-alhosseini, A., Babaei, K., & Molaei, M. (2020). Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surfaces and Interfaces, 18, 100441. https://doi.org/10.1016/J.SURFIN.2020.100441spa
dc.relation.referencesFattah-alhosseini, A., Molaei, M., & Babaei, K. (2020). The effects of nano- and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review. Surfaces and Interfaces, 21, 100659. https://doi.org/10.1016/J.SURFIN.2020.100659spa
dc.relation.referencesFei, W., Song, Y., Li, N., Chen, D., Xu, Q., Li, H., He, J., & Lu, J. (2019). Fabrication of visible-light-active ZnO/ZnFe-LDH heterojunction on Ni foam for pollutants removal with enhanced photoelectrocatalytic performance. Solar Energy, 188, 593–602. https://doi.org/10.1016/J.SOLENER.2019.06.037spa
dc.relation.referencesFeng, X., Shang, J., & Chen, J. (2017). Photoelectrocatalytic reduction of hexavalent chromium by Ti-doped hydroxyapatite thin film. Molecular Catalysis, 427, 11–17. https://doi.org/10.1016/J.MOLCATA.2016.09.031spa
dc.relation.referencesFibras y Normas de Colombia S.A.S. (2017). TIPOS DE TRATAMIENTO DE AGUAS RESIDUALES. https://blog.fibrasynormasdecolombia.com/tipos-tratamiento-aguas-residualesspa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). (2022). Wastewater treatment. https://www.fao.org/3/t0551e/t0551e05.htm#TopOfPagespa
dc.relation.referencesFu, J. F., Zhao, Y. Q., Xue, X. D., Li, W. C., & Babatunde, A. O. (2009). Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box–Behnken design. Desalination, 243(1–3), 42–51. https://doi.org/10.1016/J.DESAL.2008.03.038spa
dc.relation.referencesFullam, S., Ray, N. J., & Karpov, E. G. (2015). Cyclic resistive switching effect in plasma electrolytically oxidized mesoporous Pt/TiO2 structures. Superlattices and Microstructures, 82, 378–383. https://doi.org/10.1016/J.SPMI.2015.02.032spa
dc.relation.referencesGarcia-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1–35. https://doi.org/10.1016/J.JPHOTOCHEMREV.2017.01.005spa
dc.relation.referencesGaya, U. I. (2014). Heterogeneous photocatalysis using inorganic semiconductor solids. Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, 9789400777750, 1–213. https://doi.org/10.1007/978-94-007-7775-0spa
dc.relation.referencesGe, M., Cai, J., Iocozzia, J., Cao, C., Huang, J., Zhang, X., Shen, J., Wang, S., Zhang, S., Zhang, K. Q., Lai, Y., & Lin, Z. (2017). A review of TiO2 nanostructured catalysts for sustainable H2 generation. International Journal of Hydrogen Energy, 42(12), 8418–8449. https://doi.org/10.1016/J.IJHYDENE.2016.12.052spa
dc.relation.referencesGiannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502spa
dc.relation.referencesGilPalvas, E., Gómez, C. M., Rynkowski, J. M., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2015). Decolorization and mineralization of yellow 5 (E102) by UV/Fe2+/H2O2 process. Optimization of the operational conditions by response surface methodology. Comptes Rendus Chimie, 18(10), 1152–1160. https://doi.org/10.1016/J.CRCI.2015.08.001spa
dc.relation.referencesGnedenkov, S. V., Sharkeev, Y. P., Sinebryukhov, S. L., Khrisanfova, O. A., Legostaeva, E. V., Zavidnaya, A. G., Puz’, A. V., Khlusov, I. A., & Opra, D. P. (2016). Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: Fundamental principles and synthesis conditions. Corrosion Reviews, 34(1–2), 65–83. https://doi.org/10.1515/CORRREV-2015-0069spa
dc.relation.referencesGómez Aguilar, D. L. (2019). Bioadsorción de Mn (II), Zn (II), Pb (II), Cr (III y VI) con Residuos Lignocelulósicos en Aguas Residuales. Una aplicación en Curtiembres. Universidad de Manizales. https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/4193spa
dc.relation.referencesGómez Atara, D. M., & Saldaña Cáceres, K. Y. (2016). ESTADO DEL ARTE SOBRE LA EXPOSICIÓN AL CROMO EN TRABAJADORES DEL SECTOR DE ARTES GRÁFICAS [Trabajo Final Especialización en Salud Ocupacional, Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/bitstream/handle/10554/21820/GomezAtaraDianaMarcela2016.pdf?sequence=1spa
dc.relation.referencesGonbeau, D., Guimon, C., Pfister-Guillouzo, G., Levasseur, A., Meunier, G., & Dormoy, R. (1991). XPS study of thin films of titanium oxysulfides. Surface Science, 254(1–3), 81–89. https://doi.org/10.1016/0039-6028(91)90640-Espa
dc.relation.referencesGovil, P. K., & Krishna, A. K. (2018). Soil and Water Contamination by Potentially Hazardous Elements: A Case History From India. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories: Second Edition, 567–597. https://doi.org/10.1016/B978-0-444-63763-5.00023-9spa
dc.relation.referencesGrim, S. O., Swartz, W. E., Matienzo, L. J., & Yin, I. (1973). X-ray Photoelectron Spectroscopy of Nickel Compounds. Inorganic Chemistry, 12(12), 2762–2769. https://doi.org/10.1021/IC50130A005spa
dc.relation.referencesGrison, C., Koop, S., Eisenreich, S., Hofman, J., Chang, I. S., Wu, J., Savic, D., & van Leeuwen, K. (2023). Integrated Water Resources Management in Cities in the World: Global Challenges. Water Resources Management, 37(6–7), 2787–2803. https://doi.org/10.1007/S11269-023-03475-3spa
dc.relation.referencesGünterschultze, A., & Betz, H. (1937). Elektrolytkondensatoren: Ihre Entwicklung, wissenchaftliche Grundlagen, Herstellung, Messung, und Verwendung. https://doi.org/10.1515/9783112313855spa
dc.relation.referencesGutiérrez Pulido, H., & de la Vara Salazar, R. (2012). Análisis y Diseño de Experimentos (3a Edición). McGraw Hill.spa
dc.relation.referencesHan, H. X., Shi, C., Zhang, N., Yuan, L., & Sheng, G. P. (2018). Visible-light-enhanced Cr(VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell. Science of The Total Environment, 639, 1512–1519. https://doi.org/10.1016/J.SCITOTENV.2018.05.271spa
dc.relation.referencesHardcastle, F. D. (2011). Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts. Journal of the Arkansas Academy of Science, 65(1), 43–48. https://doi.org/https://doi.org/10.54119/jaas.2011.6504spa
dc.relation.referencesHarmancioglu, N. B. (2017). Overview of Water Policy Developments: Pre- and Post-2015 Development Agenda. Water Resources Management, 31(10), 3001–3021. https://doi.org/10.1007/S11269-017-1725-3spa
dc.relation.referencesHase, Y., Sharma, V., Doiphode, V., Waghmare, A., Punde, A., Shinde, P., Shah, S., Rahane, S., Vairale, P., Bade, B., Jadhav, Y., Prasad, M., Rondiya, S., Rokade, A., & Jadkar, S. (2022). Humidity sensor properties of hydrothermally grown rutile-TiO2 microspheres on interdigital electrodes (IDEs). Journal of Materials Science: Materials in Electronics, 33(15), 11825–11840. https://doi.org/10.1007/S10854-022-08146-4spa
dc.relation.referencesHassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology, 1(1), 27–35. http://article.ijpcpb.org/pdf/10.11648.j.ijpp.20170101.15.pdfspa
dc.relation.referencesHe, S., Li, Z., Wang, J., Wen, P., Gao, J., Ma, L., Yang, Z., & Yang, S. (2016). MOF-derived NiXCo1−X(OH)2 composite microspheres for high-performance supercapacitors. RSC Advances, 6(55), 49478–49486. https://doi.org/10.1039/C6RA03992Hspa
dc.relation.referencesHitachi Ltd. (2022). AFM5100N. https://www.hitachi-hightech.com/global/science/products/microscopes/afm/units/afm5100n.htmlspa
dc.relation.referencesHoriba Ltd. (2022). LabRAM HR Evolution - HORIBA. https://www.horiba.com/sgp/scientific/products/detail/action/show/Product/labram-hr-evolution-1083/spa
dc.relation.referencesIbhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, Vol. 3, Pages 189-218, 3(1), 189–218. https://doi.org/10.3390/CATAL3010189spa
dc.relation.referencesIkonopisov, S. (1975). Problems and contradictions in galvanoluminescence, a critical review. Electrochimica Acta, 20(10), 783–793. https://doi.org/10.1016/0013-4686(75)85015-8spa
dc.relation.referencesIndustryARC. (2022). Chromium Market - Forecast(2022 - 2027). https://www.industryarc.com/Report/18668/chromium-market.htmlspa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación (ICONTEC). (2004). CALIDAD DEL AGUA. MUESTREO. PARTE 3: DIRECTRICES PARA LA PRESERVACIÓN Y MANEJO DE LAS MUESTRAS.spa
dc.relation.referencesInstituto de Hidrología, M. y E. A. (IDEAM). (2002). Guía para el monitoreo de vertimientos de aguas superficiales y subterráneas. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3834spa
dc.relation.referencesInstituto Nacional de Seguridad y Salud en el Trabajo (INSST). (2017). Tratamientos de superficies. Cromado electrolítico manual: Exposición a cromo hexavalente. https://www.insst.es/stp/basequim/023-tratamientos-de-superficies-cromado-electrolitico-manual-exposicion-a-cromo-hexavalente-2017spa
dc.relation.referencesJain, A., Hautier, G., Ong, S. P., Moore, C. J., Fischer, C. C., Persson, K. A., & Ceder, G. (2011). Formation enthalpies by mixing GGA and GGA + U calculations. Physical Review B - Condensed Matter and Materials Physics, 84(4), 045115. https://doi.org/10.1103/PHYSREVB.84.045115spa
dc.relation.referencesJi, W., Wang, X., Ding, T., Chakir, S., Xu, Y., Huang, X., & Wang, H. (2023). Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water. Chemical Engineering Journal, 451, 138973. https://doi.org/10.1016/J.CEJ.2022.138973spa
dc.relation.referencesJi, Y., Lou, L., Ding, W., Hu, J., Shao, M., Wang, Q., Zhang, Y., & Cong, Y. (2019). Construction of 3D leaf-like Bi2O3-Bi2S3 nanosheets on Fe2O3 nanofilms and its photoelectrocatalytic performance. Electrochimica Acta, 313, 282–291. https://doi.org/10.1016/J.ELECTACTA.2019.05.020spa
dc.relation.referencesJiang, B. L., & Wang, Y. M. (2010). Plasma electrolytic oxidation treatment of aluminium and titanium alloys. Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys, 110–154. https://doi.org/10.1533/9781845699451.2.110spa
dc.relation.referencesJiang, L. C., & Zhang, W. De. (2010). Charge transfer properties and photoelectrocatalytic activity of TiO2/MWCNT hybrid. Electrochimica Acta, 56(1), 406–411. https://doi.org/10.1016/J.ELECTACTA.2010.08.061spa
dc.relation.referencesJin, X., Zhou, X., Sun, P., Lin, S., Cao, W., Li, Z., & Liu, W. (2019). Photocatalytic degradation of norfloxacin using N-doped TiO2: Optimization, mechanism, identification of intermediates and toxicity evaluation. Chemosphere, 237, 124433. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124433spa
dc.relation.referencesJu, L., Wu, P., Ju, Y., Chen, M., Yang, S., & Zhu, H. (2021). The degradation mechanism of Bisphenol A by photoelectrocatalysis using new materials as the working electrode. Surfaces and Interfaces, 23, 100967. https://doi.org/10.1016/J.SURFIN.2021.100967spa
dc.relation.referencesKatheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/J.JECE.2018.06.060spa
dc.relation.referencesKim, K. S., & Winograd, N. (1974). X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surface Science, 43(2), 625–643. https://doi.org/10.1016/0039-6028(74)90281-7spa
dc.relation.referencesKim, Y. S., Shin, K. R., Kim, G. W., Ko, Y. G., & Shin, D. H. (2016). Photocatalytic activity of TiO2 film containing Fe2O3 via plasma electrolytic oxidation. Surface Engineering, 32(6), 443–447. https://doi.org/10.1179/1743294415Y.0000000077spa
dc.relation.referencesKong, X., Zhang, C., Hwang, S. Y., Chen, Q., & Peng, Z. (2017). Free-Standing Holey Ni(OH)2 Nanosheets with Enhanced Activity for Water Oxidation. Nano-micro Small, 13(26), 1700334. https://doi.org/10.1002/SMLL.201700334spa
dc.relation.referencesKonstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1–14. https://doi.org/10.1016/J.APCATB.2003.11.010spa
dc.relation.referencesKozlovskiy, A., Shlimas, I., Dukenbayev, K., & Zdorovets, M. (2019). Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum, 164, 224–232. https://doi.org/10.1016/J.VACUUM.2019.03.026spa
dc.relation.referencesKumar, A., & Pandey, G. (2018). Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review. American Journal of Nano Research and Applications, 6(1), 1–10. https://doi.org/10.11648/j.nano.20180601.11spa
dc.relation.referencesLakrafli, H., Tahiri, S., Albizane, A., & El Otmani, M. E. (2012). Effect of wet blue chrome shaving and buffing dust of leather industry on the thermal conductivity of cement and plaster based materials. Construction and Building Materials, 30, 590–596. https://doi.org/10.1016/J.CONBUILDMAT.2011.12.041spa
dc.relation.referencesLeather Dictionary. (2022). Wet blue. https://www.leather-dictionary.com/index.php/Wet_bluespa
dc.relation.referencesLederpiel. (2014). Investigación sobre cromo y cuero: un enfoque equilibrado de datos y hechos científicos. http://lederpiel.com/investigacion-sobre-cromo-y-cuero/spa
dc.relation.referencesLeinen, D., Fernández, A., Espinós, J. P., & González‐Elipe, A. R. (1993). XPS and ISS study of NiTiO3 and PbTiO3 subjected to low-energy ion bombardment. I. Influence of the type of ion (Ar+ and O2+). Surface and Interface Analysis, 20(12), 941–948. https://doi.org/10.1002/SIA.740201203spa
dc.relation.referencesLelis, M., Tuckute, S., Urbonavicius, M., Varnagiris, S., & Demikyte, E. (2023). Non-Conventional Synthesis and Repetitive Application of Magnetic Visible Light Photocatalyst Powder Consisting of Bi-Layered C-Doped TiO2 and Ni Particles. Catalysts 2023, Vol. 13, Page 169, 13(1), 169. https://doi.org/10.3390/CATAL13010169spa
dc.relation.referencesLi, C., Zhang, Y., Qiu, C., Yuan, B., Zhang, R., Li, W., & Jin, H. (2023). Powder-precursor integrated 3D-printed TiO2 photocatalyst and adsorption-degradation synergy effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131570. https://doi.org/10.1016/J.COLSURFA.2023.131570spa
dc.relation.referencesLi, J., Li, Y., Xiong, Z., Yao, G., & Lai, B. (2019). The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chinese Chemical Letters, 30(12), 2139–2146. https://doi.org/10.1016/J.CCLET.2019.04.057spa
dc.relation.referencesLi, S., Liu, C., Liu, H., Lv, W., & Liu, G. (2022). Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. Journal of Hazardous Materials, 422, 126974. https://doi.org/10.1016/J.JHAZMAT.2021.126974spa
dc.relation.referencesLi, Y., Xu, J., Peng, M., Liu, Z., Li, X., & Zhao, S. (2019). MoS2/NiTiO3 Heterojunctions as Photocatalysts: Improved Charge Separation for Promoting Photocatalytic Hydrogen Production Activity. Catalysis Surveys from Asia, 23(4), 277–289. https://doi.org/10.1007/S10563-019-09282-4spa
dc.relation.referencesLian, K. K., Kirk, D. W., & Thorpe, S. J. (1995). Investigation of a “Two‐State” Tafel Phenomenon for the Oxygen Evolution Reaction on an Amorphous Ni‐Co Alloy. Journal of The Electrochemical Society, 142(11), 3704–3712. https://doi.org/10.1149/1.2048402spa
dc.relation.referencesLiang, J., Hu, L., & Hao, J. (2007). Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science, 253(10), 4490–4496. https://doi.org/10.1016/J.APSUSC.2006.09.064spa
dc.relation.referencesLianos, P. (2017). Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 210, 235–254. https://doi.org/10.1016/J.APCATB.2017.03.067spa
dc.relation.referencesLiao, W., Yang, J., Zhou, H., Murugananthan, M., & Zhang, Y. (2014). Electrochemically Self-Doped TiO2 Nanotube Arrays for Efficient Visible Light Photoelectrocatalytic Degradation of Contaminants. Electrochimica Acta, 136, 310–317. https://doi.org/10.1016/J.ELECTACTA.2014.05.091spa
dc.relation.referencesLin, G. W., Huang, Y. H., Tseng, W., & Lu, F. H. (2019). Production of N-doped anatase TiO2 on TiN-coated Ti substrates by plasma electrolytic oxidation for visible-light photocatalysts. Ceramics International, 45(17), 22506–22512. https://doi.org/10.1016/J.CERAMINT.2019.07.275spa
dc.relation.referencesLitter, M. I. (2005). Tecnologías avanzadas de oxidación: tecnologías solares. Proyecto Solar Sage Water, 73–90. https://www.psa.es/es/projects/solarsafewater/documents/libro/05_Capitulo_05.pdfspa
dc.relation.referencesLitter, M. I. (2009). Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. Advances in Chemical Engineering, 36, 37–67. https://doi.org/10.1016/S0065-2377(09)00402-5spa
dc.relation.referencesLitter, M. I. (2015). Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure and Applied Chemistry, 87(6), 557–567. https://doi.org/10.1515/PAC-2014-0710spa
dc.relation.referencesLiu, J., Wang, Y., & Wang, L. (2019). Poly (3, 4-ethylenedioxythiophene) modified polyvinylidene fluoride membrane for visible photoelectrocatalysis and filtration. Journal of Colloid and Interface Science, 553, 220–227. https://doi.org/10.1016/J.JCIS.2019.06.024spa
dc.relation.referencesLiu, M., Yin, W., Qian, F. J., Zhao, T. L., Yao, Q. Z., Fu, S. Q., & Zhou, G. T. (2020). A novel synthesis of porous TiO2 nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. Journal of Environmental Chemical Engineering, 8(5), 104061. https://doi.org/10.1016/J.JECE.2020.104061spa
dc.relation.referencesLiu, S., Zhao, X., Zeng, H., Wang, Y., Qiao, M., & Guan, W. (2017). Enhancement of photoelectrocatalytic degradation of diclofenac with persulfate activated by Cu cathode. Chemical Engineering Journal, 320, 168–177. https://doi.org/10.1016/J.CEJ.2017.03.047spa
dc.relation.referencesLohrengel, M. M. (1993). Thin anodic oxide layers on aluminium and other valve metals: high field regime. Materials Science and Engineering R, 11(6), 243–294. https://doi.org/10.1016/0927-796X(93)90005-Nspa
dc.relation.referencesLuttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports 2014 4:1, 4(1), 1–8. https://doi.org/10.1038/srep04043spa
dc.relation.referencesMahdi, M. H., Mohammed, T. J., & Al-Najar, J. A. (2021). Advanced Oxidation Processes (AOPs) for treatment of antibiotics in wastewater: A review. IOP Conference Series: Earth and Environmental Science, 779(1), 012109. https://doi.org/10.1088/1755-1315/779/1/012109spa
dc.relation.referencesManojkumar, P., Premchand, C., Lokeshkumar, E., Subrahmanyam, C., Viswanathan, A., Krishna, L. R., & Rameshbabu, N. (2022). Development of immobilised sunlight active W-Mo/Mo-V/V-W co-doped TiO2 photocatalyst by plasma electrolytic oxidation. Journal of Alloys and Compounds, 919. https://doi.org/10.1016/J.JALLCOM.2022.165781spa
dc.relation.referencesMansour, A. N., & Melendres, C. A. (1994). Characterization of Electrochemically Prepared γ-NiOOH by XPS. Surface Science Spectra, 3(3), 278. https://doi.org/10.1116/1.1247756spa
dc.relation.referencesMartínez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 26(1), 113–124. https://doi.org/10.18359/RFCE.2357spa
dc.relation.referencesMartínez Guerrero, P. A., & Peña Antonio, J. A. (2019). Propuesta para un sistema de tratamiento de aguas residuales generadas en el proceso del taller de electroquímica perteneciente a la Fuerza Aérea Colombiana Madrid - Cundinamarca [Fundación Universitaria de América]. https://repository.uamerica.edu.co/handle/20.500.11839/7601spa
dc.relation.referencesMartínez, J. I., Hansen, H. A., Rossmeisl, J., & Nørskov, J. K. (2009). Formation energies of rutile metal dioxides using density functional theory. Physical Review B - Condensed Matter and Materials Physics, 79(4), 045120. https://doi.org/10.1103/PHYSREVB.79.045120spa
dc.relation.referencesMazierski, P., Borzyszkowska, A. F., Wilczewska, P., Białk-Bielińska, A., Zaleska-Medynska, A., Siedlecka, E. M., & Pieczyńska, A. (2019). Removal of 5-fluorouracil by solar-driven photoelectrocatalytic oxidation using Ti/TiO2(NT) photoelectrodes. Water Research, 157, 610–620. https://doi.org/10.1016/J.WATRES.2019.04.010spa
dc.relation.referencesMcManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J. D., & Morris, M. A. (2015). A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 406, 51–57. https://doi.org/10.1016/J.MOLCATA.2015.05.002spa
dc.relation.referencesMcMichael, S., Fernández-Ibáñez, P., & Byrne, J. A. (2021). A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water 2021, Vol. 13, Page 1198, 13(9), 1–36. https://doi.org/10.3390/W13091198spa
dc.relation.referencesMiller, J. N., & Miller, J. C. (2010). Statistics and Chemometrics for Analytical Chemistry, 6th Edition. Pearson/Prentice Hall.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631. https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/spa
dc.relation.referencesMishra, S., & Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 34(1), 1–32. https://doi.org/10.1080/10590501.2015.1096883spa
dc.relation.referencesMohammadi, M. J., Salari, J., Takdastan, A., Farhadi, M., Javanmardi, P., Yari, A. R., Dobaradaran, S., Almasi, H., & Rahimi, S. (2017). Removal of turbidity and organic matter from car wash wastewater by electrocoagulation process. Desalination and Water Treatment, 68, 122–128. https://doi.org/10.5004/DWT.2017.20319spa
dc.relation.referencesMohammadi, M. J., Takdastan, A., Jorfi, S., Neisi, A., Farhadi, M., Yari, A. R., Dobaradaran, S., & Khaniabadi, Y. O. (2017). Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran. Data in Brief, 11, 634. https://doi.org/10.1016/J.DIB.2017.03.006spa
dc.relation.referencesMontero León, N. (2022). Diseño de un filtro para la retención de cromo total en agua proveniente de un vertimiento de una curtiembre sobre el Río Tunjuelo [Universidad El Bosque]. https://repositorio.unbosque.edu.co/handle/20.500.12495/7894spa
dc.relation.referencesMontgomery, D. C. (2012). Design and Analysis of Experiments (8th Edition). John Wiley & Sons, Incorporated. https://books.google.com.co/books?id=XQAcAAAAQBAJspa
dc.relation.referencesMoreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217–261. https://doi.org/10.1016/J.APCATB.2016.08.037spa
dc.relation.referencesMoreno-Benavides, J. A., Peña-Salamanca, E. J., Benítez-Campo, N., Moreno-Benavides, J. A., Peña-Salamanca, E. J., & Benítez-Campo, N. (2019). Reducing Cr6+ in electroplating wastewater with Bacillus cereus strain B1. Universitas Scientiarum, 24(1), 73–89. https://doi.org/10.11144/JAVERIANA.SC24-1.RCIEspa
dc.relation.referencesMortazavi, G., Jiang, J., & Meletis, E. I. (2019). Investigation of the plasma electrolytic oxidation mechanism of titanium. Applied Surface Science, 488, 370–382. https://doi.org/10.1016/J.APSUSC.2019.05.250spa
dc.relation.referencesMosquera, A. A., Albella, J. M., Navarro, V., Bhattacharyya, D., & Endrino, J. L. (2016). Effect of silver on the phase transition and wettability of titanium oxide films. Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep32171spa
dc.relation.referencesMousset, E., & Dionysiou, D. D. (2020). Photoelectrochemical reactors for treatment of water and wastewater: a review. Environmental Chemistry Letters 2020 18:4, 18(4), 1301–1318. https://doi.org/10.1007/S10311-020-01014-9spa
dc.relation.referencesNaumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W., & Powell, C. J. (2012). NIST X-ray Photoelectron Spectroscopy (XPS) Database. https://doi.org/http://dx.doi.org/10.18434/T4T88Kspa
dc.relation.referencesNefedov, V. I., Salyn, Y. V., Leonhardt, G., & Scheibe, R. (1977). A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 10(2), 121–124. https://doi.org/10.1016/0368-2048(77)85010-Xspa
dc.relation.referencesNidheesh, P. V., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210–227. https://doi.org/10.1016/J.CHEMOSPHERE.2017.12.195spa
dc.relation.referencesNoman, M. T., Ashraf, M. A., & Ali, A. (2018). Synthesis and applications of nano-TiO2: a review. Environmental Science and Pollution Research 2018 26:4, 26(4), 3262–3291. https://doi.org/10.1007/S11356-018-3884-Zspa
dc.relation.referencesOla, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16–42. https://doi.org/10.1016/j.jphotochemrev.2015.06.001spa
dc.relation.referencesOriginLab Corp. (2023). OriginPro. https://www.originlab.com/index.aspx?go=Products/Originspa
dc.relation.referencesOrimolade, B. O., & Arotiba, O. A. (2022). Enhanced photoelectrocatalytic degradation of diclofenac sodium using a system of Ag-BiVO4/BiOI anode and Ag-BiOI cathode. Scientific Reports 2022 12:1, 12(1), 1–12. https://doi.org/10.1038/s41598-022-08213-0spa
dc.relation.referencesParfenov, E. V., Yerokhin, A., Nevyantseva, R. R., Gorbatkov, M. V., Liang, C. J., & Matthews, A. (2015). Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling. Surface and Coatings Technology, 269(1), 2–22. https://doi.org/10.1016/J.SURFCOAT.2015.02.019spa
dc.relation.referencesPark, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO2 photocatalyst for environmental applications. In Journal of Photochemistry and Photobiology C: Photochemistry Reviews (Vol. 15, Issue 1, pp. 1–20). https://doi.org/10.1016/j.jphotochemrev.2012.10.001spa
dc.relation.referencesPedanekar, R. S., Shaikh, S. K., & Rajpure, K. Y. (2020). Thin film photocatalysis for environmental remediation: A status review. Current Applied Physics, 20(8), 931–952. https://doi.org/10.1016/J.CAP.2020.04.006spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPesode, P., & Barve, S. (2021). Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: A review. Materials Today: Proceedings, 46, 594–602. https://doi.org/10.1016/J.MATPR.2020.11.294spa
dc.relation.referencesPirsaheb, M., Hoseini, H., & Abtin, V. (2021). Photoelectrocatalytic degradation of humic acid and disinfection over Ni TiO2-Ni/ AC-PTFE electrode under natural sunlight irradiation: Modeling, optimization and reaction pathway. Journal of the Taiwan Institute of Chemical Engineers, 118, 204–214. https://doi.org/10.1016/J.JTICE.2020.12.023spa
dc.relation.referencesPorras Chávez, Á. (2010). DESCRIPCIÓN DE LA NOCIVIDAD DEL CROMO PROVENIENTE DE LA INDUSTRIA CURTIEMBRE Y DE LAS POSIBLES FORMAS DE REMOVERLO. Revista Ingenierías Universidad de Medellín, 9(17), 41–50. https://www.redalyc.org/pdf/750/75017164003.pdfspa
dc.relation.referencesPorto, M. B., Alvim, L. B., & de Almeida Neto, A. F. (2017). Nickel removal from wastewater by induced co-deposition using tungsten to formation of metallic alloys. Journal of Cleaner Production, 142, 3293–3299. https://doi.org/10.1016/J.JCLEPRO.2016.10.140spa
dc.relation.referencesPrieto Rincón, G., Guatame Aponte, C. L., & Cárdenas, S. C. (2019). RECURSOS MINERALES DE COLOMBIA (Vol. 2). Imprenta Nacional de Colombia. https://www2.sgc.gov.co/Publicaciones/Cientificas/NoSeriadas/Documents/recursos-minerales-de-colombia-vol-2.pdfspa
dc.relation.referencesPriyadarshini, M., Das, I., Ghangrekar, M. M., & Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295. https://doi.org/10.1016/J.JENVMAN.2022.115295spa
dc.relation.referencesPrograma De Las Naciones Unidas Para el Desarrollo (PNUD). (2022). Objetivo 6: Agua limpia y Saneamiento. https://www.undp.org/es/sustainable-development-goals#agua-limpia-saneamientospa
dc.relation.referencesPutri, R. M., Almunadya, N. S., Amri, A. F., Afnan, N. T., Nurachman, Z., Devianto, H., & Saputera, W. H. (2022). Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation. ACS Omega, 7, 44047–44056. https://doi.org/10.1021/ACSOMEGA.2C05450spa
dc.relation.referencesQi, K., Selvaraj, R., Al Fahdi, T., Al-Kindy, S., Kim, Y., Wang, G. C., Tai, C. W., & Sillanpää, M. (2016). Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study. Applied Surface Science, 387, 750–758. https://doi.org/10.1016/J.APSUSC.2016.06.134spa
dc.relation.referencesQin, Y., Li, H., Lu, J., Meng, F., Ma, C., Yan, Y., & Meng, M. (2020). Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chemical Engineering Journal, 384. https://doi.org/10.1016/J.CEJ.2019.123275spa
dc.relation.referencesRache, M. L., García, A. R., Zea, H. R., Silva, A. M. T., Madeira, L. M., & Ramírez, J. H. (2014). Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi’s equation. Applied Catalysis B: Environmental, 146, 192–200. https://doi.org/10.1016/J.APCATB.2013.04.028spa
dc.relation.referencesRahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(7), 1–21. https://doi.org/10.1007/S10661-019-7528-7spa
dc.relation.referencesRakoch, A. G., Khokhlov, V. V., Bautin, V. A., Lebedeva, N. A., Magurova, Y. V., & Bardin, I. V. (2006). Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process. Protection of Metals, 42(2), 158–169. https://doi.org/10.1134/S003317320602010Xspa
dc.relation.referencesRibeiro, R. A. P., De Lazaro, S. R., & Gatti, C. (2016). The role of exchange–correlation functional on the description of multiferroic properties using density functional theory: the ATiO3 (A = Mn, Fe, Ni) case study. RSC Advances, 6(103), 101216–101225. https://doi.org/10.1039/C6RA21465Gspa
dc.relation.referencesRuiz Preciado, M. A., Kassiba, A., Morales-Acevedo, A., & Makowska-Janusik, M. (2015). Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations. RSC Advances, 5(23), 17396–17404. https://doi.org/10.1039/C4RA16400Hspa
dc.relation.referencesRuiz-Preciado, M. A., Bulou, A., Makowska-Janusik, M., Gibaud, A., Morales-Acevedo, A., & Kassiba, A. (2016). Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm, 18(18), 3229–3236. https://doi.org/10.1039/C6CE00306Kspa
dc.relation.referencesRuiz-Preciado, M. A., Kassiba, A., Gibaud, A., & Morales-Acevedo, A. (2015). Comparison of nickel titanate (NiTiO3) powders synthesized by sol–gel and solid state reaction. Materials Science in Semiconductor Processing, 37, 171–178. https://doi.org/10.1016/J.MSSP.2015.02.063spa
dc.relation.referencesSaha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782–1806. https://doi.org/10.1080/00958972.2011.583646spa
dc.relation.referencesSajjad, S., Leghari, S. A. K., Chen, F., & Zhang, J. (2010). Bismuth-Doped Ordered Mesoporous TiO2: Visible-Light Catalyst for Simultaneous Degradation of Phenol and Chromium. Chemistry – A European Journal, 16(46), 13795–13804. https://doi.org/10.1002/CHEM.201001099spa
dc.relation.referencesSamadi, P., Binczarski, M. J., Pawlaczyk, A., Rogowski, J., Szynkowska-Jozwik, M. I., & Witonska, I. A. (2022). CO Oxidation over Pd Catalyst Supported on Porous TiO2 Prepared by Plasma Electrolytic Oxidation (PEO) of a Ti Metallic Carrier. Materials 2022, Vol. 15, Page 4301, 15(12), 4301. https://doi.org/10.3390/MA15124301spa
dc.relation.referencesSarayu, K., & Sandhya, S. (2012). Current Technologies for Biological Treatment of Textile Wastewater–A Review. Applied Biochemistry and Biotechnology 2012 167:3, 167(3), 645–661. https://doi.org/10.1007/S12010-012-9716-6spa
dc.relation.referencesSarkar, A., Karmakar, K., & Khan, G. G. (2017). Designing Co-Pi Modified One-Dimensional n-p TiO2/ZnCo2O4 Nanoheterostructure Photoanode with Reduced Electron-Hole Pair Recombination and Excellent Photoconversion Efficiency (>3%). Journal of Physical Chemistry C, 121(46), 25705–25717. https://doi.org/10.1021/ACS.JPCC.7B08213spa
dc.relation.referencesSayao, F. A., Ma, X., Zanoni, M. V. B., & Lachgar, A. (2022). Modulating the photoelectrocatalytic conversion of CO2 to methanol and/or H2O to hydrogen at a phosphorene modified Ti/TiO2 electrode. Journal of Materials Chemistry C, 10(31), 11276–11285. https://doi.org/10.1039/D2TC01814Dspa
dc.relation.referencesScott, J. P., & Ollis, D. F. (1995). Integration of chemical and biological oxidation processes for water treatment: Review and recommendations. Environmental Progress, 14(2), 88–103. https://doi.org/10.1002/EP.670140212spa
dc.relation.referencesSekar, S., Kim, D. Y., & Lee, S. (2020). Excellent Oxygen Evolution Reaction of Activated Carbon-Anchored NiO Nanotablets Prepared by Green Routes. Nanomaterials 2020, Vol. 10, Page 1382, 10(7), 1382. https://doi.org/10.3390/NANO10071382spa
dc.relation.referencesSerga, V., Burve, R., Krumina, A., Pankratova, V., Popov, A. I., & Pankratov, V. (2021). Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. Journal of Materials Research and Technology, 13, 2350–2360. https://doi.org/10.1016/J.JMRT.2021.06.029spa
dc.relation.referencesServicio Geológico Colombiano (SGC). (2020). Atlas Geoquímico de Colombia Versión 2020, 2018 y 2016. https://www2.sgc.gov.co/sgc/mapas/Paginas/AtlasGeoquimico.aspxspa
dc.relation.referencesShahriari, T., Karbassi, A. R., & Reyhani, M. (2018). Treatment of oil refinery wastewater by electrocoagulation–flocculation (Case Study: Shazand Oil Refinery of Arak). International Journal of Environmental Science and Technology 2018 16:8, 16(8), 4159–4166. https://doi.org/10.1007/S13762-018-1810-Zspa
dc.relation.referencesShigeno, M., & Morohashi, S. (1998). X‐ray photoelectron spectroscopy study for Nb Josephson junctions with overlayer structure. Applied Physics Letters, 61(7), 855. https://doi.org/10.1063/1.107767spa
dc.relation.referencesShimadzu Corp. (2022). UV-2600i, UV-2700i : SHIMADZU. https://www.shimadzu.com/an/products/molecular-spectroscopy/uv-vis/uv-vis-nir-spectroscopy/uv-2600i-uv-2700i/index.htmlspa
dc.relation.referencesSimchen, F., Sieber, M., Kopp, A., & Lampke, T. (2020). Introduction to plasma electrolytic oxidation-an overview of the process and applications. Coatings, 10(7). https://doi.org/10.3390/COATINGS10070628spa
dc.relation.referencesSinha, V., Pakshirajan, K., & Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: An overview. Journal of Environmental Management, 206, 715–730. https://doi.org/10.1016/j.jenvman.2017.10.033spa
dc.relation.referencesSiriwardane, R. V., & Cook, J. M. (1985). Interactions of NO and SO2 with iron deposited on silica. Journal of Colloid and Interface Science, 104(1), 250–257. https://doi.org/10.1016/0021-9797(85)90029-3spa
dc.relation.referencesSpurr, R. A., & Myers, H. (1957). Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 29(5), 760–762. https://doi.org/https://doi.org/10.1021/ac60125a006spa
dc.relation.referencesStatEase. (2023). Design-Expert. https://www.statease.com/software/design-expert/spa
dc.relation.referencesStojadinović, S., Radić, N., Grbić, B., Maletić, S., Stefanov, P., Pačevski, A., & Vasilić, R. (2016). Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Applied Surface Science, 370, 218–228. https://doi.org/10.1016/J.APSUSC.2016.02.131spa
dc.relation.referencesStojadinović, S., Radić, N., Vasilić, R., Tadić, N., & Tsanev, A. (2022). Photocatalytic degradation of methyl orange in the presence of transition metals (Mn, Ni, Co) modified TiO2 coatings formed by plasma electrolytic oxidation. Solid State Sciences, 129, 106896. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2022.106896spa
dc.relation.referencesStojadinović, S., Tadić, N., Radić, N., Grbić, B., & Vasilić, R. (2017). TiO2/SnO2 photocatalyst formed by plasma electrolytic oxidation. Materials Letters, 196, 292–295. https://doi.org/10.1016/J.MATLET.2017.03.115spa
dc.relation.referencesStojadinović, S., Tadić, N., Radić, N., Grbić, B., & Vasilić, R. (2018). Effect of Tb3+ doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium. Surface and Coatings Technology, 337, 279–289. https://doi.org/10.1016/J.SURFCOAT.2018.01.033spa
dc.relation.referencesStojadinovic, S., Vasilic, R., Belca, I., Petkovic, M., Kasalica, B., Nedic, Z., & Zekovic, L. (2010). Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate. Corrosion Science, 52(10), 3258–3265. https://doi.org/10.1016/J.CORSCI.2010.05.042spa
dc.relation.referencesStojadinović, S., Vasilić, R., Petković, M., & Zeković, L. (2011). Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surface and Coatings Technology, 206(2–3), 575–581. https://doi.org/10.1016/J.SURFCOAT.2011.07.090spa
dc.relation.referencesSuárez García, O. J. (2006). Obtención de un recubrimiento de cromo decorativo a partir de soluciones de cromo trivalente. Ingeniería e Investigación, ISSN 0120-5609, ISSN-e 2248-8723, Vol. 26, No. 2, 2006, Págs. 75-83, 26(2), 75–83. https://dialnet.unirioja.es/servlet/articulo?codigo=2230801spa
dc.relation.referencesSun, W., & Lu, Q. (2023). Self-supported α-Ni(OH)2 nanosheet arrays modified with carbon quantum dots for high-performance supercapacitors. Scripta Materialia, 224, 115119. https://doi.org/10.1016/J.SCRIPTAMAT.2022.115119spa
dc.relation.referencesSun, Y., Lan, J., Du, Y., Guo, L., Du, D., Chen, S., Ye, H., & Zhang, T. C. (2020). Chromium(VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: Impact of operational conditions. Bioresource Technology, 302, 121974. https://doi.org/10.1016/J.BIORTECH.2019.121974spa
dc.relation.referencesSun, Z., Pichugin, V. F., Evdokimov, K. E., Konishchev, M. E., Syrtanov, M. S., Kudiiarov, V. N., Li, K., & Tverdokhlebov, S. I. (2020). Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film. Applied Surface Science, 500, 144048. https://doi.org/10.1016/J.APSUSC.2019.144048spa
dc.relation.referencesSwamy, V., Muddle, B. C., & Dai, Q. (2006). Size-dependent modifications of the Raman spectrum of rutile TiO2. Applied Physics Letters, 89(16), 163118. https://doi.org/10.1063/1.2364123spa
dc.relation.referencesTakanabe, K. (2017). Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catalysis, 7(11), 8006–8022. https://doi.org/10.1021/ACSCATAL.7B02662spa
dc.relation.referencesTang, J., Durrant, J. R., & Klug, D. R. (2008). Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. Journal of the American Chemical Society, 130(42), 13885–13891. https://doi.org/10.1021/JA8034637spa
dc.relation.referencesTang, X., Huang, Y., Li, Y., Wang, L., Pei, X., Zhou, D., He, P., & Hughes, S. S. (2021). Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicology and Environmental Safety, 208, 111699. https://doi.org/10.1016/J.ECOENV.2020.111699spa
dc.relation.referencesTchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6spa
dc.relation.referencesTekin, D., Kiziltas, H., & Ungan, H. (2020). Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. Journal of Molecular Liquids, 306, 112905. https://doi.org/10.1016/J.MOLLIQ.2020.112905spa
dc.relation.referencesTéllez M, J., Roxs, M. C., & Gaitán, A. M. (2004). Aspectos toxicológicos relacionados con la utilización del cromo en el proceso productivo de curtiembres. Revista de La Facultad de Medicina, 52(1), 50–61. https://revistas.unal.edu.co/index.php/revfacmed/article/view/43297spa
dc.relation.referencesThermo Fischer Scientific Inc. (2022). K-Alpha X-ray Photoelectron Spectrometer (XPS) System. https://www.thermofisher.com/order/catalog/product/IQLAADGAAFFACVMAHVspa
dc.relation.referencesThiagarajan, V., Karthikeyan, P., Manoharan, R., Sampath, S., Hernández-Ramírez, A., Sánchez-Castro, M. E., Alonso-Lemus, I. L., & Rodríguez-Varela, F. J. (2018). Pt-Ru-NiTiO3 Nanoparticles Dispersed on Vulcan as High Performance Electrocatalysts for the Methanol Oxidation Reaction (MOR). Electrocatalysis, 9(5), 582–592. https://doi.org/10.1007/S12678-017-0450-2spa
dc.relation.referencesTorres-Ceron, D. A., Amaya-Roncancio, S., Riva, J. S., Vargas-Eudor, A., Escobar-Rincon, D., & Restrepo-Parra, E. (2021). Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study. Surface and Coatings Technology, 421, 127437. https://doi.org/10.1016/J.SURFCOAT.2021.127437spa
dc.relation.referencesTorres-Ceron, D. A., Restrepo-Parra, E., Acosta-Medina, C. D., Escobar-Rincon, D., & Ospina-Ospina, R. (2019). Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process. Surface and Coatings Technology, 375, 221–228. https://doi.org/10.1016/J.SURFCOAT.2019.06.021spa
dc.relation.referencesTozer, L. (2023). Water pollution ‘timebomb’ threatens global health. Nature. https://doi.org/10.1038/D41586-023-02337-7spa
dc.relation.referencesUnidad de Planeación mineroenergética (UPME). (2022). Cadena de valor del cromo. https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/inter-cromo.aspxspa
dc.relation.referencesVaiopoulou, E., & Gikas, P. (2020). Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere, 254, 126876. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126876spa
dc.relation.referencesVargas Villanueva, S. (2022). Producción De Recubrimientos De TiO2/S Obtenidos Por Oxidación Electrolítica Por Plasma Con El Fin De Reducción De Cr(VI) En Medios Acuosos. Universidad Nacional de Colombia sede Manizales.spa
dc.relation.referencesVargas-Villanueva, S., Torres-Ceron, D. A., Amaya-Roncancio, S., Arellano-Ramírez, I. D., Riva, J. S., & Restrepo-Parra, E. (2022). Study of the incorporation of S in TiO2/SO42− Coatings produced by PEO process through XPS and DFT. Applied Surface Science, 599, 153811. https://doi.org/10.1016/J.APSUSC.2022.153811spa
dc.relation.referencesVega, M. P. B., Hinojosa-Reyes, M., Hernández-Ramírez, A., Mar, J. L. G., Rodríguez-González, V., & Hinojosa-Reyes, L. (2018). Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. Journal of Sol-Gel Science and Technology 2018 85:3, 85(3), 723–731. https://doi.org/10.1007/S10971-018-4579-0spa
dc.relation.referencesVineta, S., Silvana, Z., Sanja, R., & Golomeova, S. (2014). METHODS FOR WASTE WATERS TREATMENT IN TEXTILE INDUSTRY. International Scientific Conference “UNITECH 2014” – Gabrovo.spa
dc.relation.referencesVoulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science & Health, 2, 32–45. https://doi.org/10.1016/j.coesh.2018.01.005spa
dc.relation.referencesWang, J. L., & Xu, L. J. (2011). Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698spa
dc.relation.referencesWang, K., He, H., Li, D., Li, Y., Li, J., & Li, W. (2018). Photoelectrochemical reduction of Cr (VI) on plate-like WO3/BiVO4 composite electrodes under visible-light irradiation: characteristics and kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 367, 438–445. https://doi.org/10.1016/J.JPHOTOCHEM.2018.09.005spa
dc.relation.referencesWang, K. T., Wang, W. Y., & Wei, T. C. (2019). Photomask-Free, Direct Selective Electroless Deposition on Glass by Controlling Surface Hydrophilicity. ACS Omega, 4(4), 7706–7710. https://doi.org/10.1021/ACSOMEGA.9B00259spa
dc.relation.referencesWang, M., Guo, S., Wang, Y., Wang, H., Yao, Y., & Min, T. (2016). Facile fix of porous composite titania photocatalytic film by PEO. Surface Engineering, 32(6), 423–427. https://doi.org/10.1179/1743294414Y.0000000345spa
dc.relation.referencesWang, P., Zong, L., Guan, Z., Li, Q., & Yang, J. (2018). PtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution. Nanoscale Research Letters, 13(1), 1–9. https://doi.org/10.1186/S11671-018-2448-Yspa
dc.relation.referencesWang, Q., Shi, X., Liu, E., Xu, J., Crittenden, J. C., Zhang, Y., & Cong, Y. (2016). Preparation and photoelectrochemical performance of visible-light active AgI/TiO2-NTs composite with rich β-AgI. Industrial and Engineering Chemistry Research, 55(17), 4897–4904. https://doi.org/10.1021/ACS.IECR.6B00883spa
dc.relation.referencesWang, S., Wang, Y., Cui, Y., Zou, Y., Wu, Y., Chen, G., Jia, D., & Zhou, Y. (2019). High voltage resistance ceramic coating fabricated on titanium alloy for insulation shielding application. Ceramics International, 45(2), 1909–1917. https://doi.org/10.1016/J.CERAMINT.2018.10.083spa
dc.relation.referencesWang, Y., Wang, L., Zheng, H., Du, C., ChengyunNing, Shi, Z., & Xu, C. (2010). Effect of frequency on the structure and cell response of Ca- and P-containing MAO films. Applied Surface Science, 256(7), 2018–2024. https://doi.org/10.1016/J.APSUSC.2009.09.041spa
dc.relation.referencesWang, Y., Zu, M., Zhou, X., Lin, H., Peng, F., & Zhang, S. (2020). Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chemical Engineering Journal, 381, 122605. https://doi.org/10.1016/J.CEJ.2019.122605spa
dc.relation.referencesWang, Z., Li, L., Yu, Y., & Yang, C. (2020). Porous Hybrid Nanosheets of g-C3N4/β-Ni(OH)2 for Asymmetric Supercapacitor with Enhanced Specific Capacitance. Nano, 15(4). https://doi.org/10.1142/S1793292020500526spa
dc.relation.referencesWang, Z., Srivastava, V., Wang, S., Sun, H., Thangaraj, S. K., Jänis, J., & Sillanpää, M. (2020). UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped Sb2O3/TiO2 photocatalyst. Journal of Colloid and Interface Science, 562, 461–469. https://doi.org/10.1016/J.JCIS.2019.11.094spa
dc.relation.referencesWijerathna, W. S. M. S. K., Wimalaweera, T. I. P., Samarajeewa, D. R., Lindamulla, L. M. L. K. B., Rathnayake, R. M. L. D., Nanayakkara, K. G. N., Jegatheesan, V., Wei, Y., & Jinadasa, K. B. S. N. (2023). Imperative assessment on the current status of rubber wastewater treatment: Research development and future perspectives. Chemosphere, 338, 139512. https://doi.org/10.1016/j.chemosphere.2023.139512spa
dc.relation.referencesWorld Health Organization. (2017). Guidelines for drinking-water quality, (4th ed., pp. 340–340). World Health Organization (WHO). https://www.who.int/publications/i/item/9789241549950spa
dc.relation.referencesWren, A. G., Phillips, R. W., & Tolentino, L. U. (1979). Surface reactions of chlorine molecules and atoms with water and sulfuric acid at low temperatures. Journal of Colloid and Interface Science, 70(3), 544–557. https://doi.org/10.1016/0021-9797(79)90062-6spa
dc.relation.referencesWypych, A., Bobowska, I., Tracz, M., Opasinska, A., Kadlubowski, S., Krzywania-Kaliszewska, A., Grobelny, J., & Wojciechowski, P. (2014). Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/124814spa
dc.relation.referencesXavier, J. R., Vinodhini, S. P., & Chandraraj, S. S. (2022). Synthesis and Electrochemical Characterization of CNTs-Based Multi Metal Sulphide Nanocomposite for Supercapacitor Applications. Journal of Cluster Science, 1, 1–13. https://doi.org/10.1007/S10876-022-02352-0spa
dc.relation.referencesXiang, C., Weber, A. Z., Ardo, S., Berger, A., Chen, Y. K., Coridan, R., Fountaine, K. T., Haussener, S., Hu, S., Liu, R., Lewis, N. S., Modestino, M. A., Shaner, M. M., Singh, M. R., Stevens, J. C., Sun, K., & Walczak, K. (2016). Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. Angewandte Chemie International Edition, 55(42), 12974–12988. https://doi.org/10.1002/ANIE.201510463spa
dc.relation.referencesXin, C., Wang, Y., Sui, Y., Wang, Y., Wang, X., Zhao, K., Liu, Z., Li, B., & Liu, X. (2014). Electronic, magnetic and multiferroic properties of magnetoelectric NiTiO3. Journal of Alloys and Compounds, 613, 401–406. https://doi.org/10.1016/J.JALLCOM.2014.05.189spa
dc.relation.referencesXin, S., Song, L., Zhao, R., & Hu, X. (2006). Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films, 515(1), 326–332. https://doi.org/10.1016/J.TSF.2005.12.087spa
dc.relation.referencesXu, X., Li, Y., Zhang, G., Yang, F., & He, P. (2019). NiO-NiFe2O4-rGO Magnetic Nanomaterials for Activated Peroxymonosulfate Degradation of Rhodamine B. Water 2019, Vol. 11, Page 384, 11(2), 384. https://doi.org/10.3390/W11020384spa
dc.relation.referencesYang, Q., Bao, X., Li, Z., Yang, A., Cao, Y., Hu, X., Yu, L., & Liu, B. (2022). Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells. Journal of Water Process Engineering, 45, 102454. https://doi.org/10.1016/J.JWPE.2021.102454spa
dc.relation.referencesYao, Z., Jia, F., Jiang, Y., Li, C. X., Jiang, Z., & Bai, X. (2010). Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst. Applied Surface Science, 256(6), 1793–1797. https://doi.org/10.1016/J.APSUSC.2009.10.005spa
dc.relation.referencesYao, Z., Jia, F., Tian, S., Li, C., Jiang, Z., & Bai, X. (2010). Microporous Ni-Doped TiO2 film photocatalyst by plasma electrolytic oxidation. ACS Applied Materials and Interfaces, 2(9), 2617–2622. https://doi.org/10.1021/am100450hspa
dc.relation.referencesYe, S., Chen, Y., Yao, X., & Zhang, J. (2021). Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere, 273, 128503. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128503spa
dc.relation.referencesYerokhin, A. L., Nie, X., Leyland, A., Matthews, A., & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2–3), 73–93. https://doi.org/10.1016/S0257-8972(99)00441-7spa
dc.relation.referencesYoussef, A. M., Yakout, S. M., & Mousa, S. M. (2023). High relative permittivity and excellent dye photo-elimination: Pure and (Zr4+, Y3+, Sb5+) multi-doped anatase TiO2 structure. Optical Materials, 135, 113261. https://doi.org/10.1016/J.OPTMAT.2022.113261spa
dc.relation.referencesZarei, E., & Ojani, R. (2016). Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. Journal of Solid State Electrochemistry 2016 21:2, 21(2), 305–336. https://doi.org/10.1007/S10008-016-3385-2spa
dc.relation.referencesZeng, Q., Chen, J., Wan, Y., Ni, J., Ni, C., & Chen, H. (2022). Immobilizing TiO2 on nickel foam for an enhanced photocatalysis in NO abatement under visible light. Journal of Materials Science, 57(33), 15722–15736. https://doi.org/10.1007/S10853-022-07628-4spa
dc.relation.referencesZhang, H., Xia, B., Wang, P., Wang, Y., Li, Z., Wang, Y., Feng, L., Li, X., & Du, S. (2020). From waste to waste treatment: Mesoporous magnetic NiFe2O4/ZnCuCr-layered double hydroxide composite for wastewater treatment. Journal of Alloys and Compounds, 819, 153053. https://doi.org/10.1016/J.JALLCOM.2019.153053spa
dc.relation.referencesZhang, J., Fan, Y., Zhao, X., Ma, R., Du, A., & Cao, X. (2018). Influence of duty cycle on the growth behavior and wear resistance of micro-arc oxidation coatings on hot dip aluminized cast iron. Surface and Coatings Technology, 337, 141–149. https://doi.org/10.1016/J.SURFCOAT.2017.12.064spa
dc.relation.referencesZhang, T., Zhang, H., Ji, Y., Chi, N., & Cong, Y. (2018). Preparation of a novel Fe2O3-MoS2-CdS ternary composite film and its photoelectrocatalytic performance. Electrochimica Acta, 285, 230–240. https://doi.org/10.1016/J.ELECTACTA.2018.07.217spa
dc.relation.referencesZhang, X., Zhang, Y., Chang, L., Jiang, Z., Yao, Z., & Liu, X. (2012). Effects of frequency on growth process of plasma electrolytic oxidation coating. Materials Chemistry and Physics, 132(2–3), 909–915. https://doi.org/10.1016/J.MATCHEMPHYS.2011.12.032spa
dc.relation.referencesZhang, Y. T., Zhu, J., Liu, Z. Y., Li, S. B., Huang, H., & Jiang, B. X. (2022). Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr(VI) reduction. Inorganica Chimica Acta, 543, 121204. https://doi.org/10.1016/J.ICA.2022.121204spa
dc.relation.referencesZhao, Y., Chang, W., Huang, Z., Feng, X., Ma, L., Qi, X., & Li, Z. (2017). Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres. Applied Surface Science, 405, 102–110. https://doi.org/10.1016/J.APSUSC.2017.01.306spa
dc.relation.referencesZheng, Z., Zhang, K., Toe, C. Y., Amal, R., Zhang, X., McCarthy, D. T., & Deletic, A. (2021). Stormwater herbicides removal with a solar-driven advanced oxidation process: A feasibility investigation. Water Research, 190, 116783. https://doi.org/10.1016/J.WATRES.2020.116783spa
dc.relation.referencesZhu, H. X., Zhou, P. X., Li, X., & Liu, J.-M. (2014). Electronic structures and optical properties of rutile TiO2 with different point defects from DFT + U calculations. Physics Letters A, 378(36), 2719–2724. https://doi.org/10.1016/J.PHYSLETA.2014.07.029spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.proposalOxidación Electrolítica por Plasmaspa
dc.subject.proposalAprovechamiento de residuosspa
dc.subject.proposalAguas residuales industrialesspa
dc.subject.proposalReducción de Cr (VI)spa
dc.subject.proposalFotoelectrocatálisisspa
dc.subject.proposalRecubrimientos de TiO2/Nispa
dc.subject.proposalPlasma electrolytic oxidationeng
dc.subject.proposalWaste recyclingeng
dc.subject.proposalIndustrial wastewatereng
dc.subject.proposalCr (VI) reductioneng
dc.subject.proposalPhotoelectrocatalysiseng
dc.subject.proposalTiO2/Ni coatingseng
dc.titleReducción de cromo (VI) de agua de la industria del cromado empleando recubrimientos TiO2/Ni obtenidos mediante oxidación electrolítica por plasmaspa
dc.title.translatedChromium (VI) reduction in wastewater from chrome plating industry using TiO2/Ni coatings obtained by plasma electrolytic oxidationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053849571.2023.pdf
Tamaño:
5.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: