Reducción de cromo (VI) de agua de la industria del cromado empleando recubrimientos TiO2/Ni obtenidos mediante oxidación electrolítica por plasma
dc.contributor.advisor | Torres Cerón, Darwin Augusto | |
dc.contributor.advisor | Restrepo-Parra, Elisabeth | |
dc.contributor.author | Velasquez Tamayo, Juan Pablo | |
dc.contributor.cvlac | Velasquez Tamayo, Juan Pablo [0000038714] | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=Nt09opYAAAAJ&hl=en | spa |
dc.contributor.orcid | Velasquez Tamayo, Juan Pablo [0000000273972404] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Juan-Velasquez-Tamayo | spa |
dc.contributor.researchgroup | laboratorio de Fisica del Plasma | spa |
dc.date.accessioned | 2023-12-11T21:16:24Z | |
dc.date.available | 2023-12-11T21:16:24Z | |
dc.date.issued | 2023 | |
dc.description | graficas, ilustraciones, mapas, tablas | spa |
dc.description.abstract | En este trabajo investigativo se realizó aprovechamiento de agua residual de niquelado para la síntesis de recubrimientos de TiO2/Ni mediante Oxidación Electrolítica por Plasma (PEO), y su evaluación en la reducción fotoelectrocatalítica de Cr (VI) en agua residual de cromado. Para ello se utilizaron sustratos de titanio de dimensiones 20x20x1 mm con variaciones de ciclo útil de trabajo entre 2% y 50%. Los recubrimientos se caracterización mediante: SEM/EDS, AFM, XRD, Raman, XPS y DRS. Los resultados obtenidos por SEM indicaron la existencia de poros en la superficie de los recubrimientos y los análisis EDS revelaron la presencia de Ti, O, Ni y S, y que la cantidad de Ni aumentó a medida que se incrementó el ciclo útil de trabajo; también se encontró que la rugosidad de los recubrimientos incrementó al pasar de ~214,2 nm a ~574,5 nm, mediante AFM. Adicionalmente, los resultados de XRD y microscopia Raman mostraron la presencia de las fases de anatasa y rutilo del TiO2, y su variación en proporción al incrementar el ciclo útil de trabajo; además se encontró que para el recubrimiento a ciclo útil de 50% se formaron fases de NiTiO3 y de NiO, lo cual fue confirmado por XPS. La caracterización óptica de los recubrimientos por DRS mostró un corrimiento hacia la región visible del espectro electromagnético en respuesta a la presencia de Ni en el material sintetizado, presentando absorciones desde ~505 nm hasta ~558 nm. Finalmente, se implementaron diseños experimentales para la evaluación fotoelectrocatalítica en la reducción de Cr (VI), para los recubrimientos de 2% y 50% de ciclo útil de trabajo. Los resultados indicaron que la tensión aplicada y la concentración de Cr (VI) son las variables de mayor influencia en el proceso, y que el recubrimiento de 2% de ciclo útil presentó mejores eficiencias de reducción de Cr (VI) comparado al de 50%, debido a la presencia de mayor proporción de la fase anatasa. Además, se determinaron las condiciones óptimas del proceso, se realizó el estudio cinético ajustado a un modelo cinético de pseudo-primer orden, y se evaluaron los ciclos de uso del material, encontrando que luego de 16 ciclos de uso la eficiencia es mayor al 98% (Texto tomado de la fuente) | spa |
dc.description.abstract | In this research work, the use of nickel-plating wastewater was exploited for the synthesis of TiO2/Ni coatings using Plasma Electrolytic Oxidation (PEO), and their evaluation in the photoelectrocatalytic reduction of Cr (VI) in chrome-plating wastewater. Titanium substrates of dimensions 20x20x1 mm with variations in duty cycle from 2% to 50% were used for this purpose. The coatings were characterized by SEM/EDS, AFM, XRD, Raman, XPS and DRS. The SEM results indicated the presence of pores on the surface of the coatings and EDS analysis revealed the presence of Ti, O, Ni, and S, with an increase in Ni content as the duty cycle increased. The AFM results showed an increase in coating roughness from ~214.2 nm to ~574.5 nm with an increase in the duty cycle. XRD and Raman microscopy results showed the presence of anatase and rutile phases of TiO2, with a change in proportion of increasing in duty cycle. Furthermore, NiTiO3 and NiO phases were formed in the coating with 50% of the duty cycle, as confirmed by XPS. Optical characterization of the coatings performed by DRS showed a shift band towards the visible region of the electromagnetic spectrum in response to the presence of Ni in the synthesized material, with absorptions ranging from ~505 nm to ~558 nm. Finally, experimental designs were implemented to evaluate the photoelectrocatalytic reduction of Cr (VI) using the coatings with 2% and 50% of the duty cycle. The results indicated that the applied voltage and Cr (VI) concentration were the most influential variables in the process, and the 2% duty cycle coating showed better Cr (VI) reduction efficiency compared to the 50% duty cycle coating due to the higher proportion of the anatase phase. Additionally, the optimal process conditions were determined, the kinetic study was adjusted to a pseudo-first-order kinetic model, and the material's usage cycles were evaluated, finding that after 16 cycles of use, the efficiency was higher than 98%. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Procesos Avanzados de Oxidación | spa |
dc.format.extent | xvii, 166 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85067 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | Adeleke, S. A., Ramesh, S., Bushroa, A. R., Ching, Y. C., Sopyan, I., Maleque, M. A., Krishnasamy, S., Chandran, H., Misran, H., & Sutharsini, U. (2018). The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Ceramics International, 44(2), 1802–1811. https://doi.org/10.1016/J.CERAMINT.2017.10.114 | spa |
dc.relation.references | Aliasghari, S., Skeleton, P., & Thompson, G. E. (2014). Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Applied Surface Science, 316(1), 463–476. https://doi.org/10.1016/J.APSUSC.2014.08.037 | spa |
dc.relation.references | Aliofkhazraei, M., Macdonald, D. D., Matykina, E., Parfenov, E. V., Egorkin, V. S., Curran, J. A., Troughton, S. C., Sinebryukhov, S. L., Gnedenkov, S. V., Lampke, T., Simchen, F., & Nabavi, H. F. (2021). Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Applied Surface Science Advances, 5. https://doi.org/10.1016/J.APSADV.2021.100121 | spa |
dc.relation.references | Alulema-Pullupaxi, P., Espinoza-Montero, P. J., Sigcha-Pallo, C., Vargas, R., Fernández, L., Peralta-Hernández, J. M., & Paz, J. L. (2021). Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere, 281, 130821. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130821 | spa |
dc.relation.references | Alulema-Pullupaxi, P., Fernández, L., Debut, A., Santacruz, C. P., Villacis, W., Fierro, C., & Espinoza-Montero, P. J. (2021). Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere, 278, 130488. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130488 | spa |
dc.relation.references | American Public Health Association (APHA), American Water Works Association (AWWA), & Water Environment Federation (WEF). (2017). Standard Methods for the Examination of Water and Wastewater. | spa |
dc.relation.references | Ameta, R., Chohadia, A. K., Jain, A., & Punjabi, P. B. (2018). Fenton and Photo-Fenton Processes. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. Academic Press. https://doi.org/10.1016/B978-0-12-810499-6.00003-6 | spa |
dc.relation.references | Arab, H., Chiarello, G. L., Selli, E., Bomboi, G., Calloni, A., Bussetti, G., Albani, G., Bestetti, M., & Franz, S. (2020). Ni-Doped Titanium Dioxide Films Obtained by Plasma Electrolytic Oxidation in Refrigerated Electrolytes. Surfaces 2020, Vol. 3, Pages 168-181, 3(2), 168–181. https://doi.org/10.3390/SURFACES3020013 | spa |
dc.relation.references | Ashley, K., Howe, A. M., Demange, M., & Nygren, O. (2003). Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. Journal of Environmental Monitoring, 5(5), 707–716. https://doi.org/10.1039/B306105C | spa |
dc.relation.references | Asturnatura. (2022). Cromita. https://www.asturnatura.com/mineral/cromita/890.html | spa |
dc.relation.references | Babyszko, A., Wanag, A., Kusiak-Nejman, E., & Morawski, A. W. (2023). Effect of Calcination Temperature of SiO2/TiO2 Photocatalysts on UV-VIS and VIS Removal Efficiency of Color Contaminants. Catalysts 2023, Vol. 13, Page 186, 13(1), 186. https://doi.org/10.3390/CATAL13010186 | spa |
dc.relation.references | Bakovets, V. V., Polyakov, О. V., & Dolgovesova, I. P. (1991). Plasma-electrolytic anodic processing of metals. Science, Novosibirsk, 168. | spa |
dc.relation.references | Bala Srinivasan, P., Liang, J., Balajeee, R. G., Blawert, C., Störmer, M., & Dietzel, W. (2010). Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy. Applied Surface Science, 256(12), 3928–3935. https://doi.org/10.1016/J.APSUSC.2010.01.052 | spa |
dc.relation.references | Balakrishnan, M., & John, R. (2021). Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar Cell. Journal of Materials Science: Materials in Electronics, 32(5), 5295–5308. https://doi.org/10.1007/S10854-020-05100-0 | spa |
dc.relation.references | Balan, C., Volf, I., & Bilba, D. (2013). Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure. Chemical Industry and Chemical Engineering Quarterly / CICEQ, 19(4), 615–628. https://doi.org/10.2298/CICEQ120531095B | spa |
dc.relation.references | Barnes, R. J., Molina, R., Xu, J., Dobson, P. J., & Thompson, I. P. (2013). Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. Journal of Nanoparticle Research, 15(2), 1–11. https://doi.org/10.1007/S11051-013-1432-9 | spa |
dc.relation.references | Bera, S. P., Godhaniya, M., & Kothari, C. (2022). Emerging and advanced membrane technology for wastewater treatment: A review. Journal of Basic Microbiology, 62(3–4), 245–259. https://doi.org/10.1002/JOBM.202100259 | spa |
dc.relation.references | Beretta, G., Daghio, M., Tofalos, A. E., Franzetti, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2019). Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium. Water 2019, Vol. 11, Page 2336, 11(11), 2336. https://doi.org/10.3390/W11112336 | spa |
dc.relation.references | Bessegato, G. G., Cardoso, J. C., & Zanoni, M. V. B. (2015). Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catalysis Today, 240(PA), 100–106. https://doi.org/10.1016/J.CATTOD.2014.03.073 | spa |
dc.relation.references | Bessegato, G. G., De Almeida, L. C., Ferreira, S. L. C., & Zanoni, M. V. B. (2019). Experimental design as a tool for parameter optimization of photoelectrocatalytic degradation of a textile dye. Journal of Environmental Chemical Engineering, 7(4), 103264. https://doi.org/10.1016/J.JECE.2019.103264 | spa |
dc.relation.references | Bessegato, G. G., Guaraldo, T. T., de Brito, J. F., Brugnera, M. F., & Zanoni, M. V. B. (2015). Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications. Electrocatalysis 2015 6:5, 6(5), 415–441. https://doi.org/10.1007/S12678-015-0259-9 | spa |
dc.relation.references | Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717–2730. https://doi.org/10.1016/J.APSUSC.2010.10.051 | spa |
dc.relation.references | Blesa, M. A. (2001). Eliminación de Contaminantes por Fotocatálisis Heterogénea. Usos de óxidos semiconductores y materiales relacionados para aplicaciones ambientales y ópticas. Comisión Nacional de Energía Atómica, Unidad de Actividad Química. | spa |
dc.relation.references | Bojacá Méndez, I. M., & Mora Burgos, M. A. (2020). Revisión bibliográfica de estudios realizados en Colombia y Latinoamérica, relacionados con la adsorción de cromo hexavalente y mercurio en disoluciones acuosas y muestras reales, empleando adsorbentes naturales e isotermas de adsorción [Proyecto Curricular Tecnología en Saneamiento Ambiental, Universidad Distrital Francisco José de Caldas]. https://repository.udistrital.edu.co/handle/11349/26025 | spa |
dc.relation.references | Brienza, M., & Katsoyiannis, I. A. (2017). Sulfate Radical Technologies as Tertiary Treatment for the Removal of Emerging Contaminants from Wastewater. Sustainability 2017, Vol. 9, Page 1604, 9(9), 1604. https://doi.org/10.3390/SU9091604 | spa |
dc.relation.references | Bruker. (2022). D8 ADVANCE | Bruker. https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/d8-advance-family/d8-advance.html | spa |
dc.relation.references | BRUKER. (2023). DIFFRAC.EVA. https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html | spa |
dc.relation.references | Caminos, D. A., Rimondino, G. N., Gatica, E., Massad, W. A., & Argüello, J. E. (2023). Riboflavin and Eosin Y Supported on Chromatographic Silica Gel as Heterogeneous Photocatalysts. ACS Omega, 8, 30705–30715. https://doi.org/10.1021/ACSOMEGA.3C04622 | spa |
dc.relation.references | Carl Zeiss AG. (2022). ZEISS Sigma Family - Field Emission SEM. https://www.zeiss.com/microscopy/en/products/sem-fib-sem/sem/sigma.html | spa |
dc.relation.references | Castiblanco, Y., Perilla, A., Arbelaez, O., Velásquez, P., & Santis, A. (2021). Effect of the pH and the Catalyst Concentration on the Removal of Hexavalent Chromium (Cr (VI)) During Photocatalysis of Wastewater from Plating on Plastics Industry. Chemical Engineering Transactions, 86, 679–684. https://doi.org/10.3303/CET2186114 | spa |
dc.relation.references | Caviedes Rubio, D. I., Muñoz Calderón, R. A., Perdomo Gualtero, A., Rodríguez Acosta, D., & Sandoval, J. (2015). Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión. Ingenieria y Región, 13(13), 73–90. https://dialnet.unirioja.es/servlet/articulo?codigo=5432290&info=resumen&idioma=SPA | spa |
dc.relation.references | Cervantes, T. N. M., Zaia, D. A. M., Moore, G. J., & de Santana, H. (2013). Photoelectrocatalysis Study of the Decolorization of Synthetic Azo Dye Mixtures on Ti/TiO2. Electrocatalysis, 4(2), 85–91. https://doi.org/10.1007/S12678-012-0123-0 | spa |
dc.relation.references | Chakraborty, R., Kumar Mitra, A., & Mukherjee, S. (2013). Synergistic chromium bioremediation by Water Lettuce (Pistia) and bacteria (Bacillus cereus GXBC-1) interaction. Journal of Biological and Chemical Research, 30(2), 421–431. www.jbcr.in | spa |
dc.relation.references | Chang, L., Ahmed, N., Zeng, G., Ray, A., & Zhang, Y. (2022). N, S co-doped carbon quantum dots/TiO2 composite for visible-light-driven photocatalytic reduction of Cr (VI). Journal of Environmental Chemical Engineering, 108742. https://doi.org/10.1016/J.JECE.2022.108742 | spa |
dc.relation.references | Chellasamy, V., & Thangadurai, P. (2017). Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment. Frontiers of Materials Science, 11(2), 162–170. https://doi.org/10.1007/S11706-017-0380-1 | spa |
dc.relation.references | Chen, D., Li, Q., Shao, L., Zhang, F., & Qian, G. (2016). Recovery and application of heavy metals from pickling waste liquor (PWL) and electroplating wastewater (EPW) by the combination process of ferrite nanoparticles. Desalination and Water Treatment, 57(60), 29264–29273. https://doi.org/10.1080/19443994.2016.1172984 | spa |
dc.relation.references | Chen, D., Zhang, C., Rong, H., Zhao, M., & Gou, S. (2020). Treatment of electroplating wastewater using the freezing method. Separation and Purification Technology, 234, 116043. https://doi.org/10.1016/J.SEPPUR.2019.116043 | spa |
dc.relation.references | Chen, Q., Lei, S., Deng, P., Ou, X., Chen, L., Wang, W., Xiao, Y., & Cheng, B. (2017). Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. Journal of Materials Chemistry A, 5(36), 19323–19332. https://doi.org/10.1039/C7TA05373H | spa |
dc.relation.references | Cheng, Y., Wang, T., Li, S., Cheng, Y., Cao, J., & Xie, H. (2017). The effects of anion deposition and negative pulse on the behaviours of plasma electrolytic oxidation (PEO)—A systematic study of the PEO of a Zirlo alloy in aluminate electrolytes. Electrochimica Acta, 225, 47–68. https://doi.org/10.1016/J.ELECTACTA.2016.12.115 | spa |
dc.relation.references | Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1–13. https://doi.org/10.1155/2014/752708 | spa |
dc.relation.references | Choi, J., Park, H., & Hoffmann, M. R. (2010). Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. Journal of Physical Chemistry C, 114(2), 783–792. https://doi.org/10.1021/JP908088X | spa |
dc.relation.references | Cisterna Osorio, P., & Peña, D. (2014). Determinación de la relación DQO/DBO5 en aguas residuales de comunas con población menor a 25.000 habitantes en la VIII región. - PDF Descargar libre. Universidad Tec. Fed. Sta María. https://docplayer.es/20765727-Determinacion-de-la-relacion-dqo-dbo-5-en-aguas-residuales-de-comunas-con-poblacion-menor-a-25-000-habitantes-en-la-viii-region.html | spa |
dc.relation.references | Córdova Llacsahuache, R. J., & Torres Odar, D. Y. (2020). Revisión sistemática del uso de los residuos orgánicos bioadsorbentes para la remoción de metales pesados en aguas residuales urbanas [Escuela profesional de Ingeniería Ambiental]. In Repositorio Institucional - UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/63399 | spa |
dc.relation.references | CROMMAR SRL. (2022). Cromo duro. http://crommar.com.bo/cromodecorativo.htm | spa |
dc.relation.references | Cuesta-Parra, D. M., Velazco-Rincón, C. L., & Castro-Pardo, J. C. (2018). Evaluación ambiental asociada a los vertimientos de aguas residuales generados por una empresa de curtiembres en la cuenca del río Aburrá. Revista UIS Ingenierías, 17(2), 141–152. https://doi.org/10.18273/REVUIN.V17N2-2018013 | spa |
dc.relation.references | Currò, G. M., Grasso, V., Neri, F., & Silipigni, L. (1995). The effects of the lithium intercalation on the X-ray photoelectron spectra of NiPS3. Il Nuovo Cimento D, 17(1), 37–52. https://doi.org/10.1007/BF02451601 | spa |
dc.relation.references | Daghrir, R., Drogui, P., & Robert, D. (2012). Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41–52. https://doi.org/10.1016/J.JPHOTOCHEM.2012.04.009 | spa |
dc.relation.references | Daghrir, R., Drogui, P., & Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: A review. Industrial and Engineering Chemistry Research, 52(10), 3581–3599. https://doi.org/10.1021/IE303468T | spa |
dc.relation.references | Dal Corso, A. (2022). pseudopotentials - Quantum Espresso. https://www.quantum-espresso.org/pseudopotentials/ | spa |
dc.relation.references | Desimoni, E., Malitesta, C., Zambonin, P. G., & Rivière, J. C. (1988). An x-ray photoelectron spectroscopic study of some chromium–oxygen systems. Surface and Interface Analysis, 13(2–3), 173–179. https://doi.org/10.1002/SIA.740130210 | spa |
dc.relation.references | Divyapriya, G., Srinivasan, R., Mohanalakshmi, J., & Nambi, I. M. (2022). Development of a hybrid bifunctional rotating drum electrode system for the enhanced oxidation of ciprofloxacin: An integrated photoelectrocatalysis and photo-electro-Fenton processes. Journal of Water Process Engineering, 49, 102967. https://doi.org/10.1016/J.JWPE.2022.102967 | spa |
dc.relation.references | Domènech, X., Jardim, W. F., & Litter, M. I. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes. https://www.researchgate.net/publication/237764122 | spa |
dc.relation.references | Domínguez-Espíndola, R. B., Bruguera-Casamada, C., Silva-Martínez, S., Araujo, R. M., Brillas, E., & Sirés, I. (2019). Photoelectrocatalytic inactivation of Pseudomonas aeruginosa using an Ag-decorated TiO2 photoanode. Separation and Purification Technology, 208, 83–91. https://doi.org/10.1016/J.SEPPUR.2018.05.005 | spa |
dc.relation.references | Dong, J., Yi, A., Li, W., Zeng, X., Liao, Z., Zhu, W., Li, K., Liu, M., Zhu, Z., & Ken, C. (2023). Electrical conductivity and corrosion resistance of Mo/Ti/Mn-based composite conversion films on AZ91D magnesium alloy. Surface and Coatings Technology, 459, 129388. https://doi.org/10.1016/J.SURFCOAT.2023.129388 | spa |
dc.relation.references | dos Santos, A. J., Barazorda-Ccahuana, H. L., Caballero-Manrique, G., Chérémond, Y., Espinoza-Montero, P. J., González-Rodríguez, J. R., Jáuregui-Haza, U. J., Lanza, M. R. V., Nájera, A., Oporto, C., Pérez Parada, A., Pérez, T., Quezada, V. D., Rojas, V., Sosa, V., Thiam, A., Torres-Palma, R. A., Vargas, R., & Garcia-Segura, S. (2023). Accelerating innovative water treatment in Latin America. Nature Sustainability 2023 6:4, 6(4), 349–351. https://doi.org/10.1038/s41893-022-01042-z | spa |
dc.relation.references | dos Santos, E. V., & Scialdone, O. (2018). Photo-Electrochemical Technologies for Removing Organic Compounds in Wastewater. Electrochemical Water and Wastewater Treatment, 239–266. https://doi.org/10.1016/B978-0-12-813160-2.00010-9 | spa |
dc.relation.references | Dubé, C. E., Workie, B., Kounaves, S. P., Robbat, A., Aksub, M. L., & Davies, G. (1995). Electrodeposition of Metal Alloy and Mixed Oxide Films Using a Single‐Precursor Tetranuclear Copper‐Nickel Complex. Journal of The Electrochemical Society, 142(10), 3357–3365. https://doi.org/10.1149/1.2049987 | spa |
dc.relation.references | Electro Níquel Forcán. (2020). Proceso de cromado de piezas metálicas. https://electroniquelforcan.com/cromado-de-metales | spa |
dc.relation.references | Encyclopedia Britannica. (2020, April 16). Chemical kinetics . https://www.britannica.com/science/chemical-kinetics | spa |
dc.relation.references | Environmental Protection Agency (EPA). (1998). How Wastewater Treatment Works... The Basics. https://www3.epa.gov/npdes/pubs/bastre.pdf | spa |
dc.relation.references | E-PRTR. (2020). Emisiones de contaminantes en Europa por los sectores regulador de E-PRTR. https://industry.eea.europa.eu/analyse/pollutant-and-sector | spa |
dc.relation.references | European Parliament News. (2022). Circular economy: definition, importance and benefits | News | European Parliament. Economy. https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits | spa |
dc.relation.references | Fang, T., Liao, L., Xu, X., Peng, J., & Jing, Y. (2012). Removal of COD and colour in real pharmaceutical wastewater by photoelectrocatalytic oxidation method, 34(6), 779–786. https://doi.org/10.1080/09593330.2012.715760 | spa |
dc.relation.references | Fattah-alhosseini, A., Babaei, K., & Molaei, M. (2020). Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surfaces and Interfaces, 18, 100441. https://doi.org/10.1016/J.SURFIN.2020.100441 | spa |
dc.relation.references | Fattah-alhosseini, A., Molaei, M., & Babaei, K. (2020). The effects of nano- and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review. Surfaces and Interfaces, 21, 100659. https://doi.org/10.1016/J.SURFIN.2020.100659 | spa |
dc.relation.references | Fei, W., Song, Y., Li, N., Chen, D., Xu, Q., Li, H., He, J., & Lu, J. (2019). Fabrication of visible-light-active ZnO/ZnFe-LDH heterojunction on Ni foam for pollutants removal with enhanced photoelectrocatalytic performance. Solar Energy, 188, 593–602. https://doi.org/10.1016/J.SOLENER.2019.06.037 | spa |
dc.relation.references | Feng, X., Shang, J., & Chen, J. (2017). Photoelectrocatalytic reduction of hexavalent chromium by Ti-doped hydroxyapatite thin film. Molecular Catalysis, 427, 11–17. https://doi.org/10.1016/J.MOLCATA.2016.09.031 | spa |
dc.relation.references | Fibras y Normas de Colombia S.A.S. (2017). TIPOS DE TRATAMIENTO DE AGUAS RESIDUALES. https://blog.fibrasynormasdecolombia.com/tipos-tratamiento-aguas-residuales | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations (FAO). (2022). Wastewater treatment. https://www.fao.org/3/t0551e/t0551e05.htm#TopOfPage | spa |
dc.relation.references | Fu, J. F., Zhao, Y. Q., Xue, X. D., Li, W. C., & Babatunde, A. O. (2009). Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box–Behnken design. Desalination, 243(1–3), 42–51. https://doi.org/10.1016/J.DESAL.2008.03.038 | spa |
dc.relation.references | Fullam, S., Ray, N. J., & Karpov, E. G. (2015). Cyclic resistive switching effect in plasma electrolytically oxidized mesoporous Pt/TiO2 structures. Superlattices and Microstructures, 82, 378–383. https://doi.org/10.1016/J.SPMI.2015.02.032 | spa |
dc.relation.references | Garcia-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1–35. https://doi.org/10.1016/J.JPHOTOCHEMREV.2017.01.005 | spa |
dc.relation.references | Gaya, U. I. (2014). Heterogeneous photocatalysis using inorganic semiconductor solids. Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, 9789400777750, 1–213. https://doi.org/10.1007/978-94-007-7775-0 | spa |
dc.relation.references | Ge, M., Cai, J., Iocozzia, J., Cao, C., Huang, J., Zhang, X., Shen, J., Wang, S., Zhang, S., Zhang, K. Q., Lai, Y., & Lin, Z. (2017). A review of TiO2 nanostructured catalysts for sustainable H2 generation. International Journal of Hydrogen Energy, 42(12), 8418–8449. https://doi.org/10.1016/J.IJHYDENE.2016.12.052 | spa |
dc.relation.references | Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502 | spa |
dc.relation.references | GilPalvas, E., Gómez, C. M., Rynkowski, J. M., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2015). Decolorization and mineralization of yellow 5 (E102) by UV/Fe2+/H2O2 process. Optimization of the operational conditions by response surface methodology. Comptes Rendus Chimie, 18(10), 1152–1160. https://doi.org/10.1016/J.CRCI.2015.08.001 | spa |
dc.relation.references | Gnedenkov, S. V., Sharkeev, Y. P., Sinebryukhov, S. L., Khrisanfova, O. A., Legostaeva, E. V., Zavidnaya, A. G., Puz’, A. V., Khlusov, I. A., & Opra, D. P. (2016). Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: Fundamental principles and synthesis conditions. Corrosion Reviews, 34(1–2), 65–83. https://doi.org/10.1515/CORRREV-2015-0069 | spa |
dc.relation.references | Gómez Aguilar, D. L. (2019). Bioadsorción de Mn (II), Zn (II), Pb (II), Cr (III y VI) con Residuos Lignocelulósicos en Aguas Residuales. Una aplicación en Curtiembres. Universidad de Manizales. https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/4193 | spa |
dc.relation.references | Gómez Atara, D. M., & Saldaña Cáceres, K. Y. (2016). ESTADO DEL ARTE SOBRE LA EXPOSICIÓN AL CROMO EN TRABAJADORES DEL SECTOR DE ARTES GRÁFICAS [Trabajo Final Especialización en Salud Ocupacional, Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/bitstream/handle/10554/21820/GomezAtaraDianaMarcela2016.pdf?sequence=1 | spa |
dc.relation.references | Gonbeau, D., Guimon, C., Pfister-Guillouzo, G., Levasseur, A., Meunier, G., & Dormoy, R. (1991). XPS study of thin films of titanium oxysulfides. Surface Science, 254(1–3), 81–89. https://doi.org/10.1016/0039-6028(91)90640-E | spa |
dc.relation.references | Govil, P. K., & Krishna, A. K. (2018). Soil and Water Contamination by Potentially Hazardous Elements: A Case History From India. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories: Second Edition, 567–597. https://doi.org/10.1016/B978-0-444-63763-5.00023-9 | spa |
dc.relation.references | Grim, S. O., Swartz, W. E., Matienzo, L. J., & Yin, I. (1973). X-ray Photoelectron Spectroscopy of Nickel Compounds. Inorganic Chemistry, 12(12), 2762–2769. https://doi.org/10.1021/IC50130A005 | spa |
dc.relation.references | Grison, C., Koop, S., Eisenreich, S., Hofman, J., Chang, I. S., Wu, J., Savic, D., & van Leeuwen, K. (2023). Integrated Water Resources Management in Cities in the World: Global Challenges. Water Resources Management, 37(6–7), 2787–2803. https://doi.org/10.1007/S11269-023-03475-3 | spa |
dc.relation.references | Günterschultze, A., & Betz, H. (1937). Elektrolytkondensatoren: Ihre Entwicklung, wissenchaftliche Grundlagen, Herstellung, Messung, und Verwendung. https://doi.org/10.1515/9783112313855 | spa |
dc.relation.references | Gutiérrez Pulido, H., & de la Vara Salazar, R. (2012). Análisis y Diseño de Experimentos (3a Edición). McGraw Hill. | spa |
dc.relation.references | Han, H. X., Shi, C., Zhang, N., Yuan, L., & Sheng, G. P. (2018). Visible-light-enhanced Cr(VI) reduction at Pd-decorated silicon nanowire photocathode in photoelectrocatalytic microbial fuel cell. Science of The Total Environment, 639, 1512–1519. https://doi.org/10.1016/J.SCITOTENV.2018.05.271 | spa |
dc.relation.references | Hardcastle, F. D. (2011). Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts. Journal of the Arkansas Academy of Science, 65(1), 43–48. https://doi.org/https://doi.org/10.54119/jaas.2011.6504 | spa |
dc.relation.references | Harmancioglu, N. B. (2017). Overview of Water Policy Developments: Pre- and Post-2015 Development Agenda. Water Resources Management, 31(10), 3001–3021. https://doi.org/10.1007/S11269-017-1725-3 | spa |
dc.relation.references | Hase, Y., Sharma, V., Doiphode, V., Waghmare, A., Punde, A., Shinde, P., Shah, S., Rahane, S., Vairale, P., Bade, B., Jadhav, Y., Prasad, M., Rondiya, S., Rokade, A., & Jadkar, S. (2022). Humidity sensor properties of hydrothermally grown rutile-TiO2 microspheres on interdigital electrodes (IDEs). Journal of Materials Science: Materials in Electronics, 33(15), 11825–11840. https://doi.org/10.1007/S10854-022-08146-4 | spa |
dc.relation.references | Hassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology, 1(1), 27–35. http://article.ijpcpb.org/pdf/10.11648.j.ijpp.20170101.15.pdf | spa |
dc.relation.references | He, S., Li, Z., Wang, J., Wen, P., Gao, J., Ma, L., Yang, Z., & Yang, S. (2016). MOF-derived NiXCo1−X(OH)2 composite microspheres for high-performance supercapacitors. RSC Advances, 6(55), 49478–49486. https://doi.org/10.1039/C6RA03992H | spa |
dc.relation.references | Hitachi Ltd. (2022). AFM5100N. https://www.hitachi-hightech.com/global/science/products/microscopes/afm/units/afm5100n.html | spa |
dc.relation.references | Horiba Ltd. (2022). LabRAM HR Evolution - HORIBA. https://www.horiba.com/sgp/scientific/products/detail/action/show/Product/labram-hr-evolution-1083/ | spa |
dc.relation.references | Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, Vol. 3, Pages 189-218, 3(1), 189–218. https://doi.org/10.3390/CATAL3010189 | spa |
dc.relation.references | Ikonopisov, S. (1975). Problems and contradictions in galvanoluminescence, a critical review. Electrochimica Acta, 20(10), 783–793. https://doi.org/10.1016/0013-4686(75)85015-8 | spa |
dc.relation.references | IndustryARC. (2022). Chromium Market - Forecast(2022 - 2027). https://www.industryarc.com/Report/18668/chromium-market.html | spa |
dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). (2004). CALIDAD DEL AGUA. MUESTREO. PARTE 3: DIRECTRICES PARA LA PRESERVACIÓN Y MANEJO DE LAS MUESTRAS. | spa |
dc.relation.references | Instituto de Hidrología, M. y E. A. (IDEAM). (2002). Guía para el monitoreo de vertimientos de aguas superficiales y subterráneas. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3834 | spa |
dc.relation.references | Instituto Nacional de Seguridad y Salud en el Trabajo (INSST). (2017). Tratamientos de superficies. Cromado electrolítico manual: Exposición a cromo hexavalente. https://www.insst.es/stp/basequim/023-tratamientos-de-superficies-cromado-electrolitico-manual-exposicion-a-cromo-hexavalente-2017 | spa |
dc.relation.references | Jain, A., Hautier, G., Ong, S. P., Moore, C. J., Fischer, C. C., Persson, K. A., & Ceder, G. (2011). Formation enthalpies by mixing GGA and GGA + U calculations. Physical Review B - Condensed Matter and Materials Physics, 84(4), 045115. https://doi.org/10.1103/PHYSREVB.84.045115 | spa |
dc.relation.references | Ji, W., Wang, X., Ding, T., Chakir, S., Xu, Y., Huang, X., & Wang, H. (2023). Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water. Chemical Engineering Journal, 451, 138973. https://doi.org/10.1016/J.CEJ.2022.138973 | spa |
dc.relation.references | Ji, Y., Lou, L., Ding, W., Hu, J., Shao, M., Wang, Q., Zhang, Y., & Cong, Y. (2019). Construction of 3D leaf-like Bi2O3-Bi2S3 nanosheets on Fe2O3 nanofilms and its photoelectrocatalytic performance. Electrochimica Acta, 313, 282–291. https://doi.org/10.1016/J.ELECTACTA.2019.05.020 | spa |
dc.relation.references | Jiang, B. L., & Wang, Y. M. (2010). Plasma electrolytic oxidation treatment of aluminium and titanium alloys. Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys, 110–154. https://doi.org/10.1533/9781845699451.2.110 | spa |
dc.relation.references | Jiang, L. C., & Zhang, W. De. (2010). Charge transfer properties and photoelectrocatalytic activity of TiO2/MWCNT hybrid. Electrochimica Acta, 56(1), 406–411. https://doi.org/10.1016/J.ELECTACTA.2010.08.061 | spa |
dc.relation.references | Jin, X., Zhou, X., Sun, P., Lin, S., Cao, W., Li, Z., & Liu, W. (2019). Photocatalytic degradation of norfloxacin using N-doped TiO2: Optimization, mechanism, identification of intermediates and toxicity evaluation. Chemosphere, 237, 124433. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124433 | spa |
dc.relation.references | Ju, L., Wu, P., Ju, Y., Chen, M., Yang, S., & Zhu, H. (2021). The degradation mechanism of Bisphenol A by photoelectrocatalysis using new materials as the working electrode. Surfaces and Interfaces, 23, 100967. https://doi.org/10.1016/J.SURFIN.2021.100967 | spa |
dc.relation.references | Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/J.JECE.2018.06.060 | spa |
dc.relation.references | Kim, K. S., & Winograd, N. (1974). X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surface Science, 43(2), 625–643. https://doi.org/10.1016/0039-6028(74)90281-7 | spa |
dc.relation.references | Kim, Y. S., Shin, K. R., Kim, G. W., Ko, Y. G., & Shin, D. H. (2016). Photocatalytic activity of TiO2 film containing Fe2O3 via plasma electrolytic oxidation. Surface Engineering, 32(6), 443–447. https://doi.org/10.1179/1743294415Y.0000000077 | spa |
dc.relation.references | Kong, X., Zhang, C., Hwang, S. Y., Chen, Q., & Peng, Z. (2017). Free-Standing Holey Ni(OH)2 Nanosheets with Enhanced Activity for Water Oxidation. Nano-micro Small, 13(26), 1700334. https://doi.org/10.1002/SMLL.201700334 | spa |
dc.relation.references | Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1–14. https://doi.org/10.1016/J.APCATB.2003.11.010 | spa |
dc.relation.references | Kozlovskiy, A., Shlimas, I., Dukenbayev, K., & Zdorovets, M. (2019). Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum, 164, 224–232. https://doi.org/10.1016/J.VACUUM.2019.03.026 | spa |
dc.relation.references | Kumar, A., & Pandey, G. (2018). Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review. American Journal of Nano Research and Applications, 6(1), 1–10. https://doi.org/10.11648/j.nano.20180601.11 | spa |
dc.relation.references | Lakrafli, H., Tahiri, S., Albizane, A., & El Otmani, M. E. (2012). Effect of wet blue chrome shaving and buffing dust of leather industry on the thermal conductivity of cement and plaster based materials. Construction and Building Materials, 30, 590–596. https://doi.org/10.1016/J.CONBUILDMAT.2011.12.041 | spa |
dc.relation.references | Leather Dictionary. (2022). Wet blue. https://www.leather-dictionary.com/index.php/Wet_blue | spa |
dc.relation.references | Lederpiel. (2014). Investigación sobre cromo y cuero: un enfoque equilibrado de datos y hechos científicos. http://lederpiel.com/investigacion-sobre-cromo-y-cuero/ | spa |
dc.relation.references | Leinen, D., Fernández, A., Espinós, J. P., & González‐Elipe, A. R. (1993). XPS and ISS study of NiTiO3 and PbTiO3 subjected to low-energy ion bombardment. I. Influence of the type of ion (Ar+ and O2+). Surface and Interface Analysis, 20(12), 941–948. https://doi.org/10.1002/SIA.740201203 | spa |
dc.relation.references | Lelis, M., Tuckute, S., Urbonavicius, M., Varnagiris, S., & Demikyte, E. (2023). Non-Conventional Synthesis and Repetitive Application of Magnetic Visible Light Photocatalyst Powder Consisting of Bi-Layered C-Doped TiO2 and Ni Particles. Catalysts 2023, Vol. 13, Page 169, 13(1), 169. https://doi.org/10.3390/CATAL13010169 | spa |
dc.relation.references | Li, C., Zhang, Y., Qiu, C., Yuan, B., Zhang, R., Li, W., & Jin, H. (2023). Powder-precursor integrated 3D-printed TiO2 photocatalyst and adsorption-degradation synergy effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131570. https://doi.org/10.1016/J.COLSURFA.2023.131570 | spa |
dc.relation.references | Li, J., Li, Y., Xiong, Z., Yao, G., & Lai, B. (2019). The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chinese Chemical Letters, 30(12), 2139–2146. https://doi.org/10.1016/J.CCLET.2019.04.057 | spa |
dc.relation.references | Li, S., Liu, C., Liu, H., Lv, W., & Liu, G. (2022). Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. Journal of Hazardous Materials, 422, 126974. https://doi.org/10.1016/J.JHAZMAT.2021.126974 | spa |
dc.relation.references | Li, Y., Xu, J., Peng, M., Liu, Z., Li, X., & Zhao, S. (2019). MoS2/NiTiO3 Heterojunctions as Photocatalysts: Improved Charge Separation for Promoting Photocatalytic Hydrogen Production Activity. Catalysis Surveys from Asia, 23(4), 277–289. https://doi.org/10.1007/S10563-019-09282-4 | spa |
dc.relation.references | Lian, K. K., Kirk, D. W., & Thorpe, S. J. (1995). Investigation of a “Two‐State” Tafel Phenomenon for the Oxygen Evolution Reaction on an Amorphous Ni‐Co Alloy. Journal of The Electrochemical Society, 142(11), 3704–3712. https://doi.org/10.1149/1.2048402 | spa |
dc.relation.references | Liang, J., Hu, L., & Hao, J. (2007). Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science, 253(10), 4490–4496. https://doi.org/10.1016/J.APSUSC.2006.09.064 | spa |
dc.relation.references | Lianos, P. (2017). Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 210, 235–254. https://doi.org/10.1016/J.APCATB.2017.03.067 | spa |
dc.relation.references | Liao, W., Yang, J., Zhou, H., Murugananthan, M., & Zhang, Y. (2014). Electrochemically Self-Doped TiO2 Nanotube Arrays for Efficient Visible Light Photoelectrocatalytic Degradation of Contaminants. Electrochimica Acta, 136, 310–317. https://doi.org/10.1016/J.ELECTACTA.2014.05.091 | spa |
dc.relation.references | Lin, G. W., Huang, Y. H., Tseng, W., & Lu, F. H. (2019). Production of N-doped anatase TiO2 on TiN-coated Ti substrates by plasma electrolytic oxidation for visible-light photocatalysts. Ceramics International, 45(17), 22506–22512. https://doi.org/10.1016/J.CERAMINT.2019.07.275 | spa |
dc.relation.references | Litter, M. I. (2005). Tecnologías avanzadas de oxidación: tecnologías solares. Proyecto Solar Sage Water, 73–90. https://www.psa.es/es/projects/solarsafewater/documents/libro/05_Capitulo_05.pdf | spa |
dc.relation.references | Litter, M. I. (2009). Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. Advances in Chemical Engineering, 36, 37–67. https://doi.org/10.1016/S0065-2377(09)00402-5 | spa |
dc.relation.references | Litter, M. I. (2015). Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure and Applied Chemistry, 87(6), 557–567. https://doi.org/10.1515/PAC-2014-0710 | spa |
dc.relation.references | Liu, J., Wang, Y., & Wang, L. (2019). Poly (3, 4-ethylenedioxythiophene) modified polyvinylidene fluoride membrane for visible photoelectrocatalysis and filtration. Journal of Colloid and Interface Science, 553, 220–227. https://doi.org/10.1016/J.JCIS.2019.06.024 | spa |
dc.relation.references | Liu, M., Yin, W., Qian, F. J., Zhao, T. L., Yao, Q. Z., Fu, S. Q., & Zhou, G. T. (2020). A novel synthesis of porous TiO2 nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. Journal of Environmental Chemical Engineering, 8(5), 104061. https://doi.org/10.1016/J.JECE.2020.104061 | spa |
dc.relation.references | Liu, S., Zhao, X., Zeng, H., Wang, Y., Qiao, M., & Guan, W. (2017). Enhancement of photoelectrocatalytic degradation of diclofenac with persulfate activated by Cu cathode. Chemical Engineering Journal, 320, 168–177. https://doi.org/10.1016/J.CEJ.2017.03.047 | spa |
dc.relation.references | Lohrengel, M. M. (1993). Thin anodic oxide layers on aluminium and other valve metals: high field regime. Materials Science and Engineering R, 11(6), 243–294. https://doi.org/10.1016/0927-796X(93)90005-N | spa |
dc.relation.references | Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports 2014 4:1, 4(1), 1–8. https://doi.org/10.1038/srep04043 | spa |
dc.relation.references | Mahdi, M. H., Mohammed, T. J., & Al-Najar, J. A. (2021). Advanced Oxidation Processes (AOPs) for treatment of antibiotics in wastewater: A review. IOP Conference Series: Earth and Environmental Science, 779(1), 012109. https://doi.org/10.1088/1755-1315/779/1/012109 | spa |
dc.relation.references | Manojkumar, P., Premchand, C., Lokeshkumar, E., Subrahmanyam, C., Viswanathan, A., Krishna, L. R., & Rameshbabu, N. (2022). Development of immobilised sunlight active W-Mo/Mo-V/V-W co-doped TiO2 photocatalyst by plasma electrolytic oxidation. Journal of Alloys and Compounds, 919. https://doi.org/10.1016/J.JALLCOM.2022.165781 | spa |
dc.relation.references | Mansour, A. N., & Melendres, C. A. (1994). Characterization of Electrochemically Prepared γ-NiOOH by XPS. Surface Science Spectra, 3(3), 278. https://doi.org/10.1116/1.1247756 | spa |
dc.relation.references | Martínez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 26(1), 113–124. https://doi.org/10.18359/RFCE.2357 | spa |
dc.relation.references | Martínez Guerrero, P. A., & Peña Antonio, J. A. (2019). Propuesta para un sistema de tratamiento de aguas residuales generadas en el proceso del taller de electroquímica perteneciente a la Fuerza Aérea Colombiana Madrid - Cundinamarca [Fundación Universitaria de América]. https://repository.uamerica.edu.co/handle/20.500.11839/7601 | spa |
dc.relation.references | Martínez, J. I., Hansen, H. A., Rossmeisl, J., & Nørskov, J. K. (2009). Formation energies of rutile metal dioxides using density functional theory. Physical Review B - Condensed Matter and Materials Physics, 79(4), 045120. https://doi.org/10.1103/PHYSREVB.79.045120 | spa |
dc.relation.references | Mazierski, P., Borzyszkowska, A. F., Wilczewska, P., Białk-Bielińska, A., Zaleska-Medynska, A., Siedlecka, E. M., & Pieczyńska, A. (2019). Removal of 5-fluorouracil by solar-driven photoelectrocatalytic oxidation using Ti/TiO2(NT) photoelectrodes. Water Research, 157, 610–620. https://doi.org/10.1016/J.WATRES.2019.04.010 | spa |
dc.relation.references | McManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J. D., & Morris, M. A. (2015). A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 406, 51–57. https://doi.org/10.1016/J.MOLCATA.2015.05.002 | spa |
dc.relation.references | McMichael, S., Fernández-Ibáñez, P., & Byrne, J. A. (2021). A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water 2021, Vol. 13, Page 1198, 13(9), 1–36. https://doi.org/10.3390/W13091198 | spa |
dc.relation.references | Miller, J. N., & Miller, J. C. (2010). Statistics and Chemometrics for Analytical Chemistry, 6th Edition. Pearson/Prentice Hall. | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631. https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/ | spa |
dc.relation.references | Mishra, S., & Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 34(1), 1–32. https://doi.org/10.1080/10590501.2015.1096883 | spa |
dc.relation.references | Mohammadi, M. J., Salari, J., Takdastan, A., Farhadi, M., Javanmardi, P., Yari, A. R., Dobaradaran, S., Almasi, H., & Rahimi, S. (2017). Removal of turbidity and organic matter from car wash wastewater by electrocoagulation process. Desalination and Water Treatment, 68, 122–128. https://doi.org/10.5004/DWT.2017.20319 | spa |
dc.relation.references | Mohammadi, M. J., Takdastan, A., Jorfi, S., Neisi, A., Farhadi, M., Yari, A. R., Dobaradaran, S., & Khaniabadi, Y. O. (2017). Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran. Data in Brief, 11, 634. https://doi.org/10.1016/J.DIB.2017.03.006 | spa |
dc.relation.references | Montero León, N. (2022). Diseño de un filtro para la retención de cromo total en agua proveniente de un vertimiento de una curtiembre sobre el Río Tunjuelo [Universidad El Bosque]. https://repositorio.unbosque.edu.co/handle/20.500.12495/7894 | spa |
dc.relation.references | Montgomery, D. C. (2012). Design and Analysis of Experiments (8th Edition). John Wiley & Sons, Incorporated. https://books.google.com.co/books?id=XQAcAAAAQBAJ | spa |
dc.relation.references | Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217–261. https://doi.org/10.1016/J.APCATB.2016.08.037 | spa |
dc.relation.references | Moreno-Benavides, J. A., Peña-Salamanca, E. J., Benítez-Campo, N., Moreno-Benavides, J. A., Peña-Salamanca, E. J., & Benítez-Campo, N. (2019). Reducing Cr6+ in electroplating wastewater with Bacillus cereus strain B1. Universitas Scientiarum, 24(1), 73–89. https://doi.org/10.11144/JAVERIANA.SC24-1.RCIE | spa |
dc.relation.references | Mortazavi, G., Jiang, J., & Meletis, E. I. (2019). Investigation of the plasma electrolytic oxidation mechanism of titanium. Applied Surface Science, 488, 370–382. https://doi.org/10.1016/J.APSUSC.2019.05.250 | spa |
dc.relation.references | Mosquera, A. A., Albella, J. M., Navarro, V., Bhattacharyya, D., & Endrino, J. L. (2016). Effect of silver on the phase transition and wettability of titanium oxide films. Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep32171 | spa |
dc.relation.references | Mousset, E., & Dionysiou, D. D. (2020). Photoelectrochemical reactors for treatment of water and wastewater: a review. Environmental Chemistry Letters 2020 18:4, 18(4), 1301–1318. https://doi.org/10.1007/S10311-020-01014-9 | spa |
dc.relation.references | Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W., & Powell, C. J. (2012). NIST X-ray Photoelectron Spectroscopy (XPS) Database. https://doi.org/http://dx.doi.org/10.18434/T4T88K | spa |
dc.relation.references | Nefedov, V. I., Salyn, Y. V., Leonhardt, G., & Scheibe, R. (1977). A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 10(2), 121–124. https://doi.org/10.1016/0368-2048(77)85010-X | spa |
dc.relation.references | Nidheesh, P. V., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210–227. https://doi.org/10.1016/J.CHEMOSPHERE.2017.12.195 | spa |
dc.relation.references | Noman, M. T., Ashraf, M. A., & Ali, A. (2018). Synthesis and applications of nano-TiO2: a review. Environmental Science and Pollution Research 2018 26:4, 26(4), 3262–3291. https://doi.org/10.1007/S11356-018-3884-Z | spa |
dc.relation.references | Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16–42. https://doi.org/10.1016/j.jphotochemrev.2015.06.001 | spa |
dc.relation.references | OriginLab Corp. (2023). OriginPro. https://www.originlab.com/index.aspx?go=Products/Origin | spa |
dc.relation.references | Orimolade, B. O., & Arotiba, O. A. (2022). Enhanced photoelectrocatalytic degradation of diclofenac sodium using a system of Ag-BiVO4/BiOI anode and Ag-BiOI cathode. Scientific Reports 2022 12:1, 12(1), 1–12. https://doi.org/10.1038/s41598-022-08213-0 | spa |
dc.relation.references | Parfenov, E. V., Yerokhin, A., Nevyantseva, R. R., Gorbatkov, M. V., Liang, C. J., & Matthews, A. (2015). Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling. Surface and Coatings Technology, 269(1), 2–22. https://doi.org/10.1016/J.SURFCOAT.2015.02.019 | spa |
dc.relation.references | Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO2 photocatalyst for environmental applications. In Journal of Photochemistry and Photobiology C: Photochemistry Reviews (Vol. 15, Issue 1, pp. 1–20). https://doi.org/10.1016/j.jphotochemrev.2012.10.001 | spa |
dc.relation.references | Pedanekar, R. S., Shaikh, S. K., & Rajpure, K. Y. (2020). Thin film photocatalysis for environmental remediation: A status review. Current Applied Physics, 20(8), 931–952. https://doi.org/10.1016/J.CAP.2020.04.006 | spa |
dc.relation.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865 | spa |
dc.relation.references | Pesode, P., & Barve, S. (2021). Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: A review. Materials Today: Proceedings, 46, 594–602. https://doi.org/10.1016/J.MATPR.2020.11.294 | spa |
dc.relation.references | Pirsaheb, M., Hoseini, H., & Abtin, V. (2021). Photoelectrocatalytic degradation of humic acid and disinfection over Ni TiO2-Ni/ AC-PTFE electrode under natural sunlight irradiation: Modeling, optimization and reaction pathway. Journal of the Taiwan Institute of Chemical Engineers, 118, 204–214. https://doi.org/10.1016/J.JTICE.2020.12.023 | spa |
dc.relation.references | Porras Chávez, Á. (2010). DESCRIPCIÓN DE LA NOCIVIDAD DEL CROMO PROVENIENTE DE LA INDUSTRIA CURTIEMBRE Y DE LAS POSIBLES FORMAS DE REMOVERLO. Revista Ingenierías Universidad de Medellín, 9(17), 41–50. https://www.redalyc.org/pdf/750/75017164003.pdf | spa |
dc.relation.references | Porto, M. B., Alvim, L. B., & de Almeida Neto, A. F. (2017). Nickel removal from wastewater by induced co-deposition using tungsten to formation of metallic alloys. Journal of Cleaner Production, 142, 3293–3299. https://doi.org/10.1016/J.JCLEPRO.2016.10.140 | spa |
dc.relation.references | Prieto Rincón, G., Guatame Aponte, C. L., & Cárdenas, S. C. (2019). RECURSOS MINERALES DE COLOMBIA (Vol. 2). Imprenta Nacional de Colombia. https://www2.sgc.gov.co/Publicaciones/Cientificas/NoSeriadas/Documents/recursos-minerales-de-colombia-vol-2.pdf | spa |
dc.relation.references | Priyadarshini, M., Das, I., Ghangrekar, M. M., & Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295. https://doi.org/10.1016/J.JENVMAN.2022.115295 | spa |
dc.relation.references | Programa De Las Naciones Unidas Para el Desarrollo (PNUD). (2022). Objetivo 6: Agua limpia y Saneamiento. https://www.undp.org/es/sustainable-development-goals#agua-limpia-saneamiento | spa |
dc.relation.references | Putri, R. M., Almunadya, N. S., Amri, A. F., Afnan, N. T., Nurachman, Z., Devianto, H., & Saputera, W. H. (2022). Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation. ACS Omega, 7, 44047–44056. https://doi.org/10.1021/ACSOMEGA.2C05450 | spa |
dc.relation.references | Qi, K., Selvaraj, R., Al Fahdi, T., Al-Kindy, S., Kim, Y., Wang, G. C., Tai, C. W., & Sillanpää, M. (2016). Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study. Applied Surface Science, 387, 750–758. https://doi.org/10.1016/J.APSUSC.2016.06.134 | spa |
dc.relation.references | Qin, Y., Li, H., Lu, J., Meng, F., Ma, C., Yan, Y., & Meng, M. (2020). Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chemical Engineering Journal, 384. https://doi.org/10.1016/J.CEJ.2019.123275 | spa |
dc.relation.references | Rache, M. L., García, A. R., Zea, H. R., Silva, A. M. T., Madeira, L. M., & Ramírez, J. H. (2014). Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi’s equation. Applied Catalysis B: Environmental, 146, 192–200. https://doi.org/10.1016/J.APCATB.2013.04.028 | spa |
dc.relation.references | Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(7), 1–21. https://doi.org/10.1007/S10661-019-7528-7 | spa |
dc.relation.references | Rakoch, A. G., Khokhlov, V. V., Bautin, V. A., Lebedeva, N. A., Magurova, Y. V., & Bardin, I. V. (2006). Model concepts on the mechanism of microarc oxidation of metal materials and the control over this process. Protection of Metals, 42(2), 158–169. https://doi.org/10.1134/S003317320602010X | spa |
dc.relation.references | Ribeiro, R. A. P., De Lazaro, S. R., & Gatti, C. (2016). The role of exchange–correlation functional on the description of multiferroic properties using density functional theory: the ATiO3 (A = Mn, Fe, Ni) case study. RSC Advances, 6(103), 101216–101225. https://doi.org/10.1039/C6RA21465G | spa |
dc.relation.references | Ruiz Preciado, M. A., Kassiba, A., Morales-Acevedo, A., & Makowska-Janusik, M. (2015). Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations. RSC Advances, 5(23), 17396–17404. https://doi.org/10.1039/C4RA16400H | spa |
dc.relation.references | Ruiz-Preciado, M. A., Bulou, A., Makowska-Janusik, M., Gibaud, A., Morales-Acevedo, A., & Kassiba, A. (2016). Nickel titanate (NiTiO3) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm, 18(18), 3229–3236. https://doi.org/10.1039/C6CE00306K | spa |
dc.relation.references | Ruiz-Preciado, M. A., Kassiba, A., Gibaud, A., & Morales-Acevedo, A. (2015). Comparison of nickel titanate (NiTiO3) powders synthesized by sol–gel and solid state reaction. Materials Science in Semiconductor Processing, 37, 171–178. https://doi.org/10.1016/J.MSSP.2015.02.063 | spa |
dc.relation.references | Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782–1806. https://doi.org/10.1080/00958972.2011.583646 | spa |
dc.relation.references | Sajjad, S., Leghari, S. A. K., Chen, F., & Zhang, J. (2010). Bismuth-Doped Ordered Mesoporous TiO2: Visible-Light Catalyst for Simultaneous Degradation of Phenol and Chromium. Chemistry – A European Journal, 16(46), 13795–13804. https://doi.org/10.1002/CHEM.201001099 | spa |
dc.relation.references | Samadi, P., Binczarski, M. J., Pawlaczyk, A., Rogowski, J., Szynkowska-Jozwik, M. I., & Witonska, I. A. (2022). CO Oxidation over Pd Catalyst Supported on Porous TiO2 Prepared by Plasma Electrolytic Oxidation (PEO) of a Ti Metallic Carrier. Materials 2022, Vol. 15, Page 4301, 15(12), 4301. https://doi.org/10.3390/MA15124301 | spa |
dc.relation.references | Sarayu, K., & Sandhya, S. (2012). Current Technologies for Biological Treatment of Textile Wastewater–A Review. Applied Biochemistry and Biotechnology 2012 167:3, 167(3), 645–661. https://doi.org/10.1007/S12010-012-9716-6 | spa |
dc.relation.references | Sarkar, A., Karmakar, K., & Khan, G. G. (2017). Designing Co-Pi Modified One-Dimensional n-p TiO2/ZnCo2O4 Nanoheterostructure Photoanode with Reduced Electron-Hole Pair Recombination and Excellent Photoconversion Efficiency (>3%). Journal of Physical Chemistry C, 121(46), 25705–25717. https://doi.org/10.1021/ACS.JPCC.7B08213 | spa |
dc.relation.references | Sayao, F. A., Ma, X., Zanoni, M. V. B., & Lachgar, A. (2022). Modulating the photoelectrocatalytic conversion of CO2 to methanol and/or H2O to hydrogen at a phosphorene modified Ti/TiO2 electrode. Journal of Materials Chemistry C, 10(31), 11276–11285. https://doi.org/10.1039/D2TC01814D | spa |
dc.relation.references | Scott, J. P., & Ollis, D. F. (1995). Integration of chemical and biological oxidation processes for water treatment: Review and recommendations. Environmental Progress, 14(2), 88–103. https://doi.org/10.1002/EP.670140212 | spa |
dc.relation.references | Sekar, S., Kim, D. Y., & Lee, S. (2020). Excellent Oxygen Evolution Reaction of Activated Carbon-Anchored NiO Nanotablets Prepared by Green Routes. Nanomaterials 2020, Vol. 10, Page 1382, 10(7), 1382. https://doi.org/10.3390/NANO10071382 | spa |
dc.relation.references | Serga, V., Burve, R., Krumina, A., Pankratova, V., Popov, A. I., & Pankratov, V. (2021). Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. Journal of Materials Research and Technology, 13, 2350–2360. https://doi.org/10.1016/J.JMRT.2021.06.029 | spa |
dc.relation.references | Servicio Geológico Colombiano (SGC). (2020). Atlas Geoquímico de Colombia Versión 2020, 2018 y 2016. https://www2.sgc.gov.co/sgc/mapas/Paginas/AtlasGeoquimico.aspx | spa |
dc.relation.references | Shahriari, T., Karbassi, A. R., & Reyhani, M. (2018). Treatment of oil refinery wastewater by electrocoagulation–flocculation (Case Study: Shazand Oil Refinery of Arak). International Journal of Environmental Science and Technology 2018 16:8, 16(8), 4159–4166. https://doi.org/10.1007/S13762-018-1810-Z | spa |
dc.relation.references | Shigeno, M., & Morohashi, S. (1998). X‐ray photoelectron spectroscopy study for Nb Josephson junctions with overlayer structure. Applied Physics Letters, 61(7), 855. https://doi.org/10.1063/1.107767 | spa |
dc.relation.references | Shimadzu Corp. (2022). UV-2600i, UV-2700i : SHIMADZU. https://www.shimadzu.com/an/products/molecular-spectroscopy/uv-vis/uv-vis-nir-spectroscopy/uv-2600i-uv-2700i/index.html | spa |
dc.relation.references | Simchen, F., Sieber, M., Kopp, A., & Lampke, T. (2020). Introduction to plasma electrolytic oxidation-an overview of the process and applications. Coatings, 10(7). https://doi.org/10.3390/COATINGS10070628 | spa |
dc.relation.references | Sinha, V., Pakshirajan, K., & Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: An overview. Journal of Environmental Management, 206, 715–730. https://doi.org/10.1016/j.jenvman.2017.10.033 | spa |
dc.relation.references | Siriwardane, R. V., & Cook, J. M. (1985). Interactions of NO and SO2 with iron deposited on silica. Journal of Colloid and Interface Science, 104(1), 250–257. https://doi.org/10.1016/0021-9797(85)90029-3 | spa |
dc.relation.references | Spurr, R. A., & Myers, H. (1957). Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 29(5), 760–762. https://doi.org/https://doi.org/10.1021/ac60125a006 | spa |
dc.relation.references | StatEase. (2023). Design-Expert. https://www.statease.com/software/design-expert/ | spa |
dc.relation.references | Stojadinović, S., Radić, N., Grbić, B., Maletić, S., Stefanov, P., Pačevski, A., & Vasilić, R. (2016). Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Applied Surface Science, 370, 218–228. https://doi.org/10.1016/J.APSUSC.2016.02.131 | spa |
dc.relation.references | Stojadinović, S., Radić, N., Vasilić, R., Tadić, N., & Tsanev, A. (2022). Photocatalytic degradation of methyl orange in the presence of transition metals (Mn, Ni, Co) modified TiO2 coatings formed by plasma electrolytic oxidation. Solid State Sciences, 129, 106896. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2022.106896 | spa |
dc.relation.references | Stojadinović, S., Tadić, N., Radić, N., Grbić, B., & Vasilić, R. (2017). TiO2/SnO2 photocatalyst formed by plasma electrolytic oxidation. Materials Letters, 196, 292–295. https://doi.org/10.1016/J.MATLET.2017.03.115 | spa |
dc.relation.references | Stojadinović, S., Tadić, N., Radić, N., Grbić, B., & Vasilić, R. (2018). Effect of Tb3+ doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium. Surface and Coatings Technology, 337, 279–289. https://doi.org/10.1016/J.SURFCOAT.2018.01.033 | spa |
dc.relation.references | Stojadinovic, S., Vasilic, R., Belca, I., Petkovic, M., Kasalica, B., Nedic, Z., & Zekovic, L. (2010). Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate. Corrosion Science, 52(10), 3258–3265. https://doi.org/10.1016/J.CORSCI.2010.05.042 | spa |
dc.relation.references | Stojadinović, S., Vasilić, R., Petković, M., & Zeković, L. (2011). Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surface and Coatings Technology, 206(2–3), 575–581. https://doi.org/10.1016/J.SURFCOAT.2011.07.090 | spa |
dc.relation.references | Suárez García, O. J. (2006). Obtención de un recubrimiento de cromo decorativo a partir de soluciones de cromo trivalente. Ingeniería e Investigación, ISSN 0120-5609, ISSN-e 2248-8723, Vol. 26, No. 2, 2006, Págs. 75-83, 26(2), 75–83. https://dialnet.unirioja.es/servlet/articulo?codigo=2230801 | spa |
dc.relation.references | Sun, W., & Lu, Q. (2023). Self-supported α-Ni(OH)2 nanosheet arrays modified with carbon quantum dots for high-performance supercapacitors. Scripta Materialia, 224, 115119. https://doi.org/10.1016/J.SCRIPTAMAT.2022.115119 | spa |
dc.relation.references | Sun, Y., Lan, J., Du, Y., Guo, L., Du, D., Chen, S., Ye, H., & Zhang, T. C. (2020). Chromium(VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: Impact of operational conditions. Bioresource Technology, 302, 121974. https://doi.org/10.1016/J.BIORTECH.2019.121974 | spa |
dc.relation.references | Sun, Z., Pichugin, V. F., Evdokimov, K. E., Konishchev, M. E., Syrtanov, M. S., Kudiiarov, V. N., Li, K., & Tverdokhlebov, S. I. (2020). Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film. Applied Surface Science, 500, 144048. https://doi.org/10.1016/J.APSUSC.2019.144048 | spa |
dc.relation.references | Swamy, V., Muddle, B. C., & Dai, Q. (2006). Size-dependent modifications of the Raman spectrum of rutile TiO2. Applied Physics Letters, 89(16), 163118. https://doi.org/10.1063/1.2364123 | spa |
dc.relation.references | Takanabe, K. (2017). Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catalysis, 7(11), 8006–8022. https://doi.org/10.1021/ACSCATAL.7B02662 | spa |
dc.relation.references | Tang, J., Durrant, J. R., & Klug, D. R. (2008). Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. Journal of the American Chemical Society, 130(42), 13885–13891. https://doi.org/10.1021/JA8034637 | spa |
dc.relation.references | Tang, X., Huang, Y., Li, Y., Wang, L., Pei, X., Zhou, D., He, P., & Hughes, S. S. (2021). Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicology and Environmental Safety, 208, 111699. https://doi.org/10.1016/J.ECOENV.2020.111699 | spa |
dc.relation.references | Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6 | spa |
dc.relation.references | Tekin, D., Kiziltas, H., & Ungan, H. (2020). Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. Journal of Molecular Liquids, 306, 112905. https://doi.org/10.1016/J.MOLLIQ.2020.112905 | spa |
dc.relation.references | Téllez M, J., Roxs, M. C., & Gaitán, A. M. (2004). Aspectos toxicológicos relacionados con la utilización del cromo en el proceso productivo de curtiembres. Revista de La Facultad de Medicina, 52(1), 50–61. https://revistas.unal.edu.co/index.php/revfacmed/article/view/43297 | spa |
dc.relation.references | Thermo Fischer Scientific Inc. (2022). K-Alpha X-ray Photoelectron Spectrometer (XPS) System. https://www.thermofisher.com/order/catalog/product/IQLAADGAAFFACVMAHV | spa |
dc.relation.references | Thiagarajan, V., Karthikeyan, P., Manoharan, R., Sampath, S., Hernández-Ramírez, A., Sánchez-Castro, M. E., Alonso-Lemus, I. L., & Rodríguez-Varela, F. J. (2018). Pt-Ru-NiTiO3 Nanoparticles Dispersed on Vulcan as High Performance Electrocatalysts for the Methanol Oxidation Reaction (MOR). Electrocatalysis, 9(5), 582–592. https://doi.org/10.1007/S12678-017-0450-2 | spa |
dc.relation.references | Torres-Ceron, D. A., Amaya-Roncancio, S., Riva, J. S., Vargas-Eudor, A., Escobar-Rincon, D., & Restrepo-Parra, E. (2021). Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study. Surface and Coatings Technology, 421, 127437. https://doi.org/10.1016/J.SURFCOAT.2021.127437 | spa |
dc.relation.references | Torres-Ceron, D. A., Restrepo-Parra, E., Acosta-Medina, C. D., Escobar-Rincon, D., & Ospina-Ospina, R. (2019). Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process. Surface and Coatings Technology, 375, 221–228. https://doi.org/10.1016/J.SURFCOAT.2019.06.021 | spa |
dc.relation.references | Tozer, L. (2023). Water pollution ‘timebomb’ threatens global health. Nature. https://doi.org/10.1038/D41586-023-02337-7 | spa |
dc.relation.references | Unidad de Planeación mineroenergética (UPME). (2022). Cadena de valor del cromo. https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/inter-cromo.aspx | spa |
dc.relation.references | Vaiopoulou, E., & Gikas, P. (2020). Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere, 254, 126876. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126876 | spa |
dc.relation.references | Vargas Villanueva, S. (2022). Producción De Recubrimientos De TiO2/S Obtenidos Por Oxidación Electrolítica Por Plasma Con El Fin De Reducción De Cr(VI) En Medios Acuosos. Universidad Nacional de Colombia sede Manizales. | spa |
dc.relation.references | Vargas-Villanueva, S., Torres-Ceron, D. A., Amaya-Roncancio, S., Arellano-Ramírez, I. D., Riva, J. S., & Restrepo-Parra, E. (2022). Study of the incorporation of S in TiO2/SO42− Coatings produced by PEO process through XPS and DFT. Applied Surface Science, 599, 153811. https://doi.org/10.1016/J.APSUSC.2022.153811 | spa |
dc.relation.references | Vega, M. P. B., Hinojosa-Reyes, M., Hernández-Ramírez, A., Mar, J. L. G., Rodríguez-González, V., & Hinojosa-Reyes, L. (2018). Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. Journal of Sol-Gel Science and Technology 2018 85:3, 85(3), 723–731. https://doi.org/10.1007/S10971-018-4579-0 | spa |
dc.relation.references | Vineta, S., Silvana, Z., Sanja, R., & Golomeova, S. (2014). METHODS FOR WASTE WATERS TREATMENT IN TEXTILE INDUSTRY. International Scientific Conference “UNITECH 2014” – Gabrovo. | spa |
dc.relation.references | Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science & Health, 2, 32–45. https://doi.org/10.1016/j.coesh.2018.01.005 | spa |
dc.relation.references | Wang, J. L., & Xu, L. J. (2011). Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698 | spa |
dc.relation.references | Wang, K., He, H., Li, D., Li, Y., Li, J., & Li, W. (2018). Photoelectrochemical reduction of Cr (VI) on plate-like WO3/BiVO4 composite electrodes under visible-light irradiation: characteristics and kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 367, 438–445. https://doi.org/10.1016/J.JPHOTOCHEM.2018.09.005 | spa |
dc.relation.references | Wang, K. T., Wang, W. Y., & Wei, T. C. (2019). Photomask-Free, Direct Selective Electroless Deposition on Glass by Controlling Surface Hydrophilicity. ACS Omega, 4(4), 7706–7710. https://doi.org/10.1021/ACSOMEGA.9B00259 | spa |
dc.relation.references | Wang, M., Guo, S., Wang, Y., Wang, H., Yao, Y., & Min, T. (2016). Facile fix of porous composite titania photocatalytic film by PEO. Surface Engineering, 32(6), 423–427. https://doi.org/10.1179/1743294414Y.0000000345 | spa |
dc.relation.references | Wang, P., Zong, L., Guan, Z., Li, Q., & Yang, J. (2018). PtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution. Nanoscale Research Letters, 13(1), 1–9. https://doi.org/10.1186/S11671-018-2448-Y | spa |
dc.relation.references | Wang, Q., Shi, X., Liu, E., Xu, J., Crittenden, J. C., Zhang, Y., & Cong, Y. (2016). Preparation and photoelectrochemical performance of visible-light active AgI/TiO2-NTs composite with rich β-AgI. Industrial and Engineering Chemistry Research, 55(17), 4897–4904. https://doi.org/10.1021/ACS.IECR.6B00883 | spa |
dc.relation.references | Wang, S., Wang, Y., Cui, Y., Zou, Y., Wu, Y., Chen, G., Jia, D., & Zhou, Y. (2019). High voltage resistance ceramic coating fabricated on titanium alloy for insulation shielding application. Ceramics International, 45(2), 1909–1917. https://doi.org/10.1016/J.CERAMINT.2018.10.083 | spa |
dc.relation.references | Wang, Y., Wang, L., Zheng, H., Du, C., ChengyunNing, Shi, Z., & Xu, C. (2010). Effect of frequency on the structure and cell response of Ca- and P-containing MAO films. Applied Surface Science, 256(7), 2018–2024. https://doi.org/10.1016/J.APSUSC.2009.09.041 | spa |
dc.relation.references | Wang, Y., Zu, M., Zhou, X., Lin, H., Peng, F., & Zhang, S. (2020). Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chemical Engineering Journal, 381, 122605. https://doi.org/10.1016/J.CEJ.2019.122605 | spa |
dc.relation.references | Wang, Z., Li, L., Yu, Y., & Yang, C. (2020). Porous Hybrid Nanosheets of g-C3N4/β-Ni(OH)2 for Asymmetric Supercapacitor with Enhanced Specific Capacitance. Nano, 15(4). https://doi.org/10.1142/S1793292020500526 | spa |
dc.relation.references | Wang, Z., Srivastava, V., Wang, S., Sun, H., Thangaraj, S. K., Jänis, J., & Sillanpää, M. (2020). UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped Sb2O3/TiO2 photocatalyst. Journal of Colloid and Interface Science, 562, 461–469. https://doi.org/10.1016/J.JCIS.2019.11.094 | spa |
dc.relation.references | Wijerathna, W. S. M. S. K., Wimalaweera, T. I. P., Samarajeewa, D. R., Lindamulla, L. M. L. K. B., Rathnayake, R. M. L. D., Nanayakkara, K. G. N., Jegatheesan, V., Wei, Y., & Jinadasa, K. B. S. N. (2023). Imperative assessment on the current status of rubber wastewater treatment: Research development and future perspectives. Chemosphere, 338, 139512. https://doi.org/10.1016/j.chemosphere.2023.139512 | spa |
dc.relation.references | World Health Organization. (2017). Guidelines for drinking-water quality, (4th ed., pp. 340–340). World Health Organization (WHO). https://www.who.int/publications/i/item/9789241549950 | spa |
dc.relation.references | Wren, A. G., Phillips, R. W., & Tolentino, L. U. (1979). Surface reactions of chlorine molecules and atoms with water and sulfuric acid at low temperatures. Journal of Colloid and Interface Science, 70(3), 544–557. https://doi.org/10.1016/0021-9797(79)90062-6 | spa |
dc.relation.references | Wypych, A., Bobowska, I., Tracz, M., Opasinska, A., Kadlubowski, S., Krzywania-Kaliszewska, A., Grobelny, J., & Wojciechowski, P. (2014). Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/124814 | spa |
dc.relation.references | Xavier, J. R., Vinodhini, S. P., & Chandraraj, S. S. (2022). Synthesis and Electrochemical Characterization of CNTs-Based Multi Metal Sulphide Nanocomposite for Supercapacitor Applications. Journal of Cluster Science, 1, 1–13. https://doi.org/10.1007/S10876-022-02352-0 | spa |
dc.relation.references | Xiang, C., Weber, A. Z., Ardo, S., Berger, A., Chen, Y. K., Coridan, R., Fountaine, K. T., Haussener, S., Hu, S., Liu, R., Lewis, N. S., Modestino, M. A., Shaner, M. M., Singh, M. R., Stevens, J. C., Sun, K., & Walczak, K. (2016). Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. Angewandte Chemie International Edition, 55(42), 12974–12988. https://doi.org/10.1002/ANIE.201510463 | spa |
dc.relation.references | Xin, C., Wang, Y., Sui, Y., Wang, Y., Wang, X., Zhao, K., Liu, Z., Li, B., & Liu, X. (2014). Electronic, magnetic and multiferroic properties of magnetoelectric NiTiO3. Journal of Alloys and Compounds, 613, 401–406. https://doi.org/10.1016/J.JALLCOM.2014.05.189 | spa |
dc.relation.references | Xin, S., Song, L., Zhao, R., & Hu, X. (2006). Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films, 515(1), 326–332. https://doi.org/10.1016/J.TSF.2005.12.087 | spa |
dc.relation.references | Xu, X., Li, Y., Zhang, G., Yang, F., & He, P. (2019). NiO-NiFe2O4-rGO Magnetic Nanomaterials for Activated Peroxymonosulfate Degradation of Rhodamine B. Water 2019, Vol. 11, Page 384, 11(2), 384. https://doi.org/10.3390/W11020384 | spa |
dc.relation.references | Yang, Q., Bao, X., Li, Z., Yang, A., Cao, Y., Hu, X., Yu, L., & Liu, B. (2022). Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells. Journal of Water Process Engineering, 45, 102454. https://doi.org/10.1016/J.JWPE.2021.102454 | spa |
dc.relation.references | Yao, Z., Jia, F., Jiang, Y., Li, C. X., Jiang, Z., & Bai, X. (2010). Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst. Applied Surface Science, 256(6), 1793–1797. https://doi.org/10.1016/J.APSUSC.2009.10.005 | spa |
dc.relation.references | Yao, Z., Jia, F., Tian, S., Li, C., Jiang, Z., & Bai, X. (2010). Microporous Ni-Doped TiO2 film photocatalyst by plasma electrolytic oxidation. ACS Applied Materials and Interfaces, 2(9), 2617–2622. https://doi.org/10.1021/am100450h | spa |
dc.relation.references | Ye, S., Chen, Y., Yao, X., & Zhang, J. (2021). Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere, 273, 128503. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128503 | spa |
dc.relation.references | Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2–3), 73–93. https://doi.org/10.1016/S0257-8972(99)00441-7 | spa |
dc.relation.references | Youssef, A. M., Yakout, S. M., & Mousa, S. M. (2023). High relative permittivity and excellent dye photo-elimination: Pure and (Zr4+, Y3+, Sb5+) multi-doped anatase TiO2 structure. Optical Materials, 135, 113261. https://doi.org/10.1016/J.OPTMAT.2022.113261 | spa |
dc.relation.references | Zarei, E., & Ojani, R. (2016). Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. Journal of Solid State Electrochemistry 2016 21:2, 21(2), 305–336. https://doi.org/10.1007/S10008-016-3385-2 | spa |
dc.relation.references | Zeng, Q., Chen, J., Wan, Y., Ni, J., Ni, C., & Chen, H. (2022). Immobilizing TiO2 on nickel foam for an enhanced photocatalysis in NO abatement under visible light. Journal of Materials Science, 57(33), 15722–15736. https://doi.org/10.1007/S10853-022-07628-4 | spa |
dc.relation.references | Zhang, H., Xia, B., Wang, P., Wang, Y., Li, Z., Wang, Y., Feng, L., Li, X., & Du, S. (2020). From waste to waste treatment: Mesoporous magnetic NiFe2O4/ZnCuCr-layered double hydroxide composite for wastewater treatment. Journal of Alloys and Compounds, 819, 153053. https://doi.org/10.1016/J.JALLCOM.2019.153053 | spa |
dc.relation.references | Zhang, J., Fan, Y., Zhao, X., Ma, R., Du, A., & Cao, X. (2018). Influence of duty cycle on the growth behavior and wear resistance of micro-arc oxidation coatings on hot dip aluminized cast iron. Surface and Coatings Technology, 337, 141–149. https://doi.org/10.1016/J.SURFCOAT.2017.12.064 | spa |
dc.relation.references | Zhang, T., Zhang, H., Ji, Y., Chi, N., & Cong, Y. (2018). Preparation of a novel Fe2O3-MoS2-CdS ternary composite film and its photoelectrocatalytic performance. Electrochimica Acta, 285, 230–240. https://doi.org/10.1016/J.ELECTACTA.2018.07.217 | spa |
dc.relation.references | Zhang, X., Zhang, Y., Chang, L., Jiang, Z., Yao, Z., & Liu, X. (2012). Effects of frequency on growth process of plasma electrolytic oxidation coating. Materials Chemistry and Physics, 132(2–3), 909–915. https://doi.org/10.1016/J.MATCHEMPHYS.2011.12.032 | spa |
dc.relation.references | Zhang, Y. T., Zhu, J., Liu, Z. Y., Li, S. B., Huang, H., & Jiang, B. X. (2022). Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr(VI) reduction. Inorganica Chimica Acta, 543, 121204. https://doi.org/10.1016/J.ICA.2022.121204 | spa |
dc.relation.references | Zhao, Y., Chang, W., Huang, Z., Feng, X., Ma, L., Qi, X., & Li, Z. (2017). Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres. Applied Surface Science, 405, 102–110. https://doi.org/10.1016/J.APSUSC.2017.01.306 | spa |
dc.relation.references | Zheng, Z., Zhang, K., Toe, C. Y., Amal, R., Zhang, X., McCarthy, D. T., & Deletic, A. (2021). Stormwater herbicides removal with a solar-driven advanced oxidation process: A feasibility investigation. Water Research, 190, 116783. https://doi.org/10.1016/J.WATRES.2020.116783 | spa |
dc.relation.references | Zhu, H. X., Zhou, P. X., Li, X., & Liu, J.-M. (2014). Electronic structures and optical properties of rutile TiO2 with different point defects from DFT + U calculations. Physics Letters A, 378(36), 2719–2724. https://doi.org/10.1016/J.PHYSLETA.2014.07.029 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 530 - Física::535 - Luz y radiación relacionada | spa |
dc.subject.proposal | Oxidación Electrolítica por Plasma | spa |
dc.subject.proposal | Aprovechamiento de residuos | spa |
dc.subject.proposal | Aguas residuales industriales | spa |
dc.subject.proposal | Reducción de Cr (VI) | spa |
dc.subject.proposal | Fotoelectrocatálisis | spa |
dc.subject.proposal | Recubrimientos de TiO2/Ni | spa |
dc.subject.proposal | Plasma electrolytic oxidation | eng |
dc.subject.proposal | Waste recycling | eng |
dc.subject.proposal | Industrial wastewater | eng |
dc.subject.proposal | Cr (VI) reduction | eng |
dc.subject.proposal | Photoelectrocatalysis | eng |
dc.subject.proposal | TiO2/Ni coatings | eng |
dc.title | Reducción de cromo (VI) de agua de la industria del cromado empleando recubrimientos TiO2/Ni obtenidos mediante oxidación electrolítica por plasma | spa |
dc.title.translated | Chromium (VI) reduction in wastewater from chrome plating industry using TiO2/Ni coatings obtained by plasma electrolytic oxidation | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053849571.2023.pdf
- Tamaño:
- 5.21 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: