Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
dc.contributor.advisor | Barbosa Cruz, Edgard Robert | spa |
dc.contributor.advisor | Beltrán Calvo, Gloria Inés | spa |
dc.contributor.author | Rubiano Moreno, Nayel María | spa |
dc.date.accessioned | 2023-02-02T17:46:37Z | |
dc.date.available | 2023-02-02T17:46:37Z | |
dc.date.issued | 2022-08-26 | |
dc.description | ilustraciones, gráficas, tablas | spa |
dc.description.abstract | La construcción de una perforación horizontal dirigida (PHD) tiene tres (3) etapas principales: la elaboración del túnel piloto, el ensanchamiento de la perforación al diámetro requerido y la instalación de la tubería. Las actividades mencionadas generan en el suelo esfuerzos y deformaciones en los cuales influye el efecto de arco, la profundidad de la cobertura del suelo sobre la PHD y la presión de los lodos de perforación. En el trabajo desarrollado para el análisis de la construcción de una PHD se emplea el programa de computador Plaxis 3D, el cual cuenta con un módulo para la evaluación de túneles, lo que facilita la idealización y la modelación de las PHD. Mediante este módulo el usuario de Plaxis puede analizar una secuencia de pasos de construcción que se repite a lo largo de la perforación en un número de secciones seleccionadas. Por medio de estos pasos se puede analizar la excavación y la estabilización de una PHD, mediante la eliminación secuencial de volúmenes de suelo y la aplicación de una presión estabilizante sobre las paredes de la excavación, las cuales representan el avance de la PHD y el empleo de los lodos de perforación respectivamente. Las evaluaciones realizadas se basan en nueve (9) modelos de análisis mediante elementos finitos en tres dimensiones (3D), los cuales combinan tres (3) arenas de diferente resistencia al corte (compacidad) y tres (3) magnitudes diferentes de la presión de lodos aplicada sobre las paredes de la PHD. Además, se evaluaron dos (2) variables geométricas: el diámetro, incluyendo el túnel piloto y (2) diámetros de ensanchamiento, y la profundidad de la PHD variable, empleando el eje de la perforación inclinado 8° con respecto a la horizontal. La influencia de estas variables y su relación con el efecto de arco es evaluada mediante el análisis de los desplazamientos verticales y horizontales, y de los esfuerzos verticales totales en la clave, la batea y la pared de la perforación. (Texto tomado de la fuente). | spa |
dc.description.abstract | The construction of a horizontal directional drilling (HDD) has three (3) main stages: the excavation of the pilot tunnel, the expansion of the drilling hole to the required diameter and the installation of the pipe. The mentioned activities generate stresses and deformations in the soil which are influenced by the arching effect, the depth of the soil cover above the HDD and the pressure of the drilling fluid (mud). In the present study, the Plaxis 3D computer program is used for the analysis of the construction of a HDD. Plaxis has a module for the evaluation of tunnels, which facilitates the idealization and modelling of the HDD. Using this module, the Plaxis user can analyse a sequence of construction steps that is repeated throughout the borehole in several selected sections. Through those steps of analysis, the excavation and stabilization of a HDD can be examined by means of the sequential removal of volumes of soil and the application of a stabilizing pressure on the walls of the excavation, which represent the advance of the HDD and the use of drilling mud respectively. The evaluations carried out here are based on nine (9) three-dimensional (3D) finite element analysis models, which combine three (3) sands of different shear strength (density) and three (3) different magnitudes of mud pressure applied on the walls of the PHD. In addition, two (2) geometric variables were evaluated: including the pilot tunnel diameter and (2) underreaming diameters, and a variable PHD depth, using the borehole axis tilted 8° below the horizontal. The influence of those variables and their relationship with the arching effect is evaluated by analysing the vertical and horizontal displacements, and the total vertical stresses in the crown, the invert and the springline (wall) of the drilling hole. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.notes | Incluye anexos | spa |
dc.description.researcharea | Modelación y análisis en geotecnia | spa |
dc.format.extent | xix, 104 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83251 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Baumert, M. E., & Allouche, E. N. (2002). Methods for Estimating Pipe Pullback Loads for Horizontal Directional Drilling (HDD) Crossings. Journal of Infrastructure Systems, 8(1), 12–19. https://doi.org/10.1061/(asce)1076-0342(2002)8:1(12) | spa |
dc.relation.references | Baumert, M. E., Allouche, E. N., & Moore, I. D. (2005). Drilling Fluid Considerations in Design of Engineered Horizontal Directional Drilling Installations. International Journal of Geomechanics, 5(4), 339–349. https://doi.org/10.1061/(asce)1532-3641(2005)5:4(339) | spa |
dc.relation.references | Cai, L., Xu, G., Polak, M. A., and Knight, M. (2017). Horizontal directional drilling pulling forces prediction methods – A critical review. Tunnelling and Underground Space Technology, 69(November 2015), 85–93. https://doi.org/10.1016/j.tust.2017.05.026 | spa |
dc.relation.references | Deltares, K. (2009). The trenchless technique horizontal directional drilling Soil related risks and risk mitigation. In Proceeding of the 4th Pipeline Technology Conference, 99–109. http://ezproxy.upm.edu.my:2260/ehost/pdfviewer/pdfviewer?vid=13&sid=74bed4d9-8c93-4c38-8a77-49b6923eb9dc%40sessionmgr113&hid=124 | spa |
dc.relation.references | Elwood, D. (2008). Hydraulic fracture experiments in a frictional material and approximations for maximum allowable mud pressure. 1988, 1681–1688. http://qspace.library.queensu.ca/handle/1974/1343 | spa |
dc.relation.references | Faghih, A., Yi, Y., Bayat, A., & Osbak, M. (2015). Fluidic Drag Estimation in Horizontal Directional Drilling Based on Flow Equations. Journal of Pipeline Systems Engineering and Practice, 6(4), 1–8. https://doi.org/10.1061/(asce)ps.1949-1204.0000200 | spa |
dc.relation.references | Guohui, L., Xiaocheng, M., & Chunling, Y. (2016). Engineering innovation of a length of nearly 3300m large diameter pipeline installed by HDD. Earth Sciences Research Journal, 20(1), P1–P5. https://doi.org/10.15446/esrj.v20n1.54504 | spa |
dc.relation.references | Han, J., Wang, F., Al-Naddaf, M., & Xu, C. (2017). Progressive Development of Two-Dimensional Soil Arching with Displacement. International Journal of Geomechanics, 17(12), 1–12. https://doi.org/10.1061/(asce)gm.1943-5622.0001025. | spa |
dc.relation.references | LbSTT, Aspectos generales de la perforación horizontal dirigida. Asociación Ibérica de tecnología sin Zanja. Universidad Politécnica de Valencia. Madrid (2015). | spa |
dc.relation.references | Klaus-Jurgen Bathe - Finite Element Procedures in Engineering Analysis (Prentice-Hall civil engineering and engineering mechanics series) (1982).pdf. (n.d.). | spa |
dc.relation.references | James A. McKelvey. (1994). The anatomy of soil arching. Geotextiles and Geomembranes, 13(5), 317–329. https://doi.org/10.1016/0266-1144(94)90026-4 | spa |
dc.relation.references | Lawrence, K., & Knight, M. (1998). Addressing geotechnical considerations of horizontal directional drilling using the new design. 981–985. | spa |
dc.relation.references | Mohd Norizam, M. S., Nuzul Azam, H., Helmi Zulhaidi, S., Abdul Aziz, A., & Nadzrol Fadzilah, A. (2017). Literature review of the benefits and obstacle of horizontal directional drilling. IOP Conference Series: Materials Science and Engineering, 271(1). https://doi.org/10.1088/1757-899X/271/1/012094 | spa |
dc.relation.references | More, D. (2012). Innovations in Design, Construction, Operations, and Maintenance –—Doing More with Less. Pipelines 2012, 307–318. | spa |
dc.relation.references | Pardo, G. S., & Sáez, E. (2014). Experimental and numerical study of arching soil effect in coarse sand. Computers and Geotechnics, 57, 75–84. https://doi.org/10.1016/j.compgeo.2014.01.005 | spa |
dc.relation.references | Registry, W., & Goldenberg, I. (2013). HD D – H o r i zonta l D i r ectional Drilling . TRENCH LE S S TEC HNOLOGY F OR A SAF E AND EFF ICIENT INS TALLATION O F P I P ELINES | spa |
dc.relation.references | Sargand, S. M., and Masada, T. (2007). Soil Arching over Deeply Buried Thermoplastic Pipe. Transportation Research Record: Journal of the Transportation Research Board, 1849(1), 109–123. https://doi.org/10.3141/1849-13 | spa |
dc.relation.references | Shu, B., and Ma, B. (2015). Study of ground collapse induced by large-diameter horizontal directional drilling in a sand layer using numerical modeling. Canadian Geotechnical Journal, 52(10), 1562–1574. https://doi.org/10.1139/cgj-2014-0388 | spa |
dc.relation.references | Siddiquee, M. S. A., and Dhar, A. S. (2007). Determination of Pipe Pullback Load for Horizontal Directional Drilling (HDD) Crossings by Finite Element Method. 2006, 1–17. https://doi.org/10.1061/40934(252)110 | spa |
dc.relation.references | Sterling, R. L. (2018). ScienceDirect Developments and research directions in pipe jacking and microtunneling. Underground Space. https://doi.org/10.1016/j.undsp.2018.09.001 | spa |
dc.relation.references | Stuedlein, A. W., and Meskele, T. (2013). Analysis and Design of Pipe Ramming Installation. 710. | spa |
dc.relation.references | Tien, H. (1996). A Literature Study of the Arching Effect. 1990. | spa |
dc.relation.references | Viehöfer, T., Linthof, T., Bezuijen, A., Box, P. O., and Delft, A. B. (n.d.). STABILITY OF A BOREHOLE DURING HORIZONTAL DIRECTIONAL DRILLING 2 . TEC Tunnel Engineering Consultants , P . O . Box 747 , 3900 AS Veenendaal ,. | spa |
dc.relation.references | Wang, X., and Sterling, R. L. (2007). Stability analysis of a borehole wall during horizontal directional drilling. Tunnelling and Underground Space Technology, 22(5–6), 620–632. https://doi.org/10.1016/j.tust.2007.01.002 | spa |
dc.relation.references | Wijeyesekera, D. C., and Warnakulasuriya, S. (2000). Effects of soil arching on the behaviour of flexible pipes buried in trenches of varying widths. April. | spa |
dc.relation.references | Wong, S. K., Giorgini, J. D., You, T. H., Lim, L., & Chadbourne, P. (1994). Navigating through the Venus atmosphere. Advances in the Astronautical Sciences, 87(2), 633–645. | spa |
dc.relation.references | Wu, J., Liao, S. M., and Liu, M. B. (2019). An analytical solution for the arching effect induced by ground loss of tunneling in sand. Tunnelling and Underground Space Technology, 83(October 2018), 175–186. https://doi.org/10.1016/j.tust.2018.09.025 | spa |
dc.relation.references | Wu, Y., Lü, G., Xu, L., Zhang, P., and Mao, N. (2014). Engineering difficulties and technical innovation in the Jiangyin Yangtze River Crossing Project 3300 m HDD. Natural Gas Industry, 34(4), 105–110. https://doi.org/10.3787/j.issn.1000-0976.2014.04.017 | spa |
dc.relation.references | Xia, H. (2009). Investigation of maximum mud pressure within sand and clay during horizontal directional drilling. 272. | spa |
dc.relation.references | Xu, G., Cai, L., Ji, R., and Wang, Z. (2018). Numerical simulation of pipe-soil interaction during pulling back phase in horizontal directional drilling installations. Tunnelling and Underground Space Technology, 76(June 2017), 194–201. https://doi.org/10.1016/j.tust.2018.03.022 | spa |
dc.relation.references | Yan, X., Ariaratnam, S. T., Dong, S., and Zeng, C. (2018). Horizontal directional drilling: State-of-the-art review of theory and applications. Tunnelling and Underground Space Technology, 72(October 2017), 162–173. https://doi.org/10.1016/j.tust.2017.10.005 | spa |
dc.relation.references | Yang, C. J., Zhu, W. D., Zhang, W. H., Zhu, X. H., & Ren, G. X. (2011). Determination of Pipe Pullback Loads in Horizontal Directional Drilling Using an Advanced Computational Dynamic Model. 1–13. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000749. | spa |
dc.relation.references | Zhang, C., Hu, J., Qian, L., and Zhang, J. (2018). Local Dent Behavior of Directional Crossing Pipeline Caused by the Boulder in Stratum. Journal of Failure Analysis and Prevention, 18(4), 988–997. https://doi.org/10.1007/s11668-018-0490-9 | spa |
dc.relation.references | Zhu, X. H. (2015). Failure analysis and solution studies on drill pipe thread gluing at the exit side of horizontal directional drilling. Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, 33, 153–173. https://doi.org/10.1016/B978-0-08-100117-2.00004-2 | spa |
dc.relation.references | Zou, J., Chen, G., and Qian, Z. (2019). Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106(October 2018), 1–17. https://doi.org/10.1016/j.compgeo.2018.10.014 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | Perforación | spa |
dc.subject.lemb | Boring | eng |
dc.subject.lemb | Rock mechanics | eng |
dc.subject.lemb | Mecánica de rocas | spa |
dc.subject.proposal | Perforación horizontal dirigida | spa |
dc.subject.proposal | PHD | spa |
dc.subject.proposal | Plaxis 3D | spa |
dc.subject.proposal | Horizontal directional drilling | eng |
dc.subject.proposal | HDD | eng |
dc.subject.proposal | Finite Element Method | eng |
dc.subject.proposal | Elementos finitos | spa |
dc.subject.proposal | Arching effect | eng |
dc.subject.proposal | Efecto de arco | spa |
dc.subject.unesco | Modelo matemático | spa |
dc.subject.unesco | Mathematical models | eng |
dc.title | Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida | spa |
dc.title.translated | Numerical simulation of the arching effect and drilling fluid pressure in a horizontal directional drilling | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 1026577923.2022.pdf
- Tamaño:
- 6.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Cargando...
- Nombre:
- AnexosPDFDocumentoFinal1026577923.pdf
- Tamaño:
- 13.44 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo: análisis de resultados
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: