Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius

dc.contributor.advisorBeebe, Steve
dc.contributor.authorCruz Ruiz, Sergio Andres
dc.contributor.educationalvalidatorLópez Diana Carolina
dc.date.accessioned2022-03-23T21:34:35Z
dc.date.available2022-03-23T21:34:35Z
dc.date.issued2022-03-17
dc.descriptionarchivo digital en formato PDF que contiene texto e imagenes en las 140 paginas que compone el documentospa
dc.descriptionIlustraciones, tablasspa
dc.description.abstractVarios estudios han demostrado que Phaseolus acutifolius A. Gray es una fuente potencial de genes asociados a la tolerancia al calor que pueden ser utilizados para mejorar la adaptación del fríjol común (P. vulgaris L.) a las condiciones de alta temperatura, sin embargo, hasta ahora la base genética de esta resistencia es desconocida por ello se construyó una población de mapeo genético interespecífica entre P. acutifolius A. Gray y P. vulgaris L. con la cual se evaluaron componentes de rendimiento bajo condiciones controladas de alta temperatura (/25°C dia/noche, respectivamente). La población de mapeo genético se secuenció mediante el método de genotipado por secuenciación (Genotyping By sequencing, GBS), posteriormente se realizó un análisis de asociación genética con dos modelos de asociación genética para delimitar las regiones genómicas candidatas asociadas con la resistencia al estrés por calor encontrándose 31 asociaciones significativas para las variables: número de vainas, número de semillas por planta, peso promedio de semillas, índice de cosecha de vaina, número de vainas vanas por planta y rendimiento por planta. Se encontraron asociaciones que presentaron un efecto positivo y provinieron de los parentales silvestres de P. acutifolius A. Gray. Los genes presentes en las asociaciones significativas se relacionaron con la respuesta canónica al estrés por calor y a la señalización con fitohormonas como las auxinas y el etileno. (Texto tomado de la fuente)spa
dc.description.abstractSeveral studies have shown that Phaseolus actifolius A. Gray is a potential source of genes associated with heat tolerance that can be used to improve the adaptation of common bean (P. vulgaris L.) to high temperature conditions, however, so far the genetic basis of this resistance is still unknown, therefore an interspecific genetic mapping population was constructed between P. acutifolius A. Gray and P. vulgaris L. to evaluate yield components under high temperature conditions. The genetic mapping population was sequenced using the Genotyping By sequencing (GBS) method, then a genetic association analysis was performed with the mixed linear models to delimit candidate genomic regions associated with resistance to heat stress, finding significant associations for the variables: number of pods and yield per plant that were associated with a positive effect came from the wild parents of P. acutifolius A. Gray. The genes present in the significant associations were related to the canonical response to heat stress and to the signaling that may be involved in the expression of these genes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsSe construyó una población de mapeo genético interespecífica en donde se incorporó P. vugaris y P. acutifolius mediante el uso de la línea puente VAP 1 (Barrera et al., 2018). Los fundadores de la población fueron: la línea puente VAP 1, dos accesiones silvestres de P. acutifolius A. Gray: G40056 y G40287 y cinco líneas comerciales de frijol común que se sabe a priori presentan algún grado de tolerancia a la sequía y con diferentes clases comerciales de grano: ICTA Ligero, SMC 214, SMR 155, SEF 10 y SEN 118 (Figura 2-1). El esquema de cruzamiento consistió en tomar polen de P. acutifolius y polinizar flores de VAP 1 vulgaris, su descendencia posteriormente fue cruzada una vez o dos veces con un parental P. vulgaris. Se realizaron catorce cruzamientos diferentes constituyendo la generación F1.2 compuesta por 50 semillas las cuales fueron sembradas en casa de malla y posteriormente incrementadas mediante selección individual hasta la generación F4.5 en campo. Los criterios de selección en campo fueron al azar para no favorecer un cierto tipo de genes en la población sin antes evaluarse en condiciones de calor. Se obtuvieron un total de 892 familias F4.5 que fueron evaluadas en un ensayo sin replicación en invernaderos climatizados donde se mantuvo la temperatura nocturna por encima de los 25°C. Con esta información se seleccionaron de forma individual 302 familias F5.6 muestreando de forma equitativa cada cruzamiento y garantizando la selección de familias contrastantes en cuanto a su desempeño en calorspa
dc.description.researchareaFitomejoramientospa
dc.description.sponsorshipAgencia Noruega para la Cooperación al Desarrollo (NORAD) que a través de la organización internacional Crop Trust financió este proyectospa
dc.format.extentvii, 89 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81344
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placePalmiraspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAlqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013spa
dc.relation.referencesAmbawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1spa
dc.relation.referencesAndrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.xspa
dc.relation.referencesBaird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203spa
dc.relation.referencesBarrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTRspa
dc.relation.referencesBarrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457spa
dc.relation.referencesBeebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035spa
dc.relation.referencesBeebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5spa
dc.relation.referencesBeebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change.spa
dc.relation.referencesBitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesCajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina.spa
dc.relation.referencesChacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2spa
dc.relation.referencesChaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076spa
dc.relation.referencesCoyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537.spa
dc.relation.referencesDebouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390spa
dc.relation.referencesDebouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1spa
dc.relation.referencesDelfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEXspa
dc.relation.referencesDoyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15.spa
dc.relation.referencesElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379spa
dc.relation.referencesFarooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012spa
dc.relation.referencesFaure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT.spa
dc.relation.referencesFeller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9).spa
dc.relation.referencesFernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT.spa
dc.relation.referencesFreytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT.spa
dc.relation.referencesGao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430spa
dc.relation.referencesGao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310spa
dc.relation.referencesGarcía-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-xspa
dc.relation.referencesGarvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153spa
dc.relation.referencesGaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017spa
dc.relation.referencesGe, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931spa
dc.relation.referencesGepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT.spa
dc.relation.referencesGepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5spa
dc.relation.referencesGil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanumspa
dc.relation.referencesGross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173spa
dc.relation.referencesGross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0spa
dc.relation.referencesHuang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154spa
dc.relation.referencesJanni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034spa
dc.relation.referencesJones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13spa
dc.relation.referencesKaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794spa
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923spa
dc.relation.referencesLê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01spa
dc.relation.referencesLipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444spa
dc.relation.referencesLobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068spa
dc.relation.referencesMacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087spa
dc.relation.referencesMartinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan.spa
dc.relation.referencesMartins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906spa
dc.relation.referencesMejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640spa
dc.relation.referencesMoehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-yspa
dc.relation.referencesMoghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012spa
dc.relation.referencesMohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614spa
dc.relation.referencesMurube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1spa
dc.relation.referencesNakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2).spa
dc.relation.referencesNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300spa
dc.relation.referencesOakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-zspa
dc.relation.referencesOmae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413spa
dc.relation.referencesOsmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/termsspa
dc.relation.referencesParker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.Xspa
dc.relation.referencesPolania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation.spa
dc.relation.referencesPorch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras.spa
dc.relation.referencesPorch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.xspa
dc.relation.referencesPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512spa
dc.relation.referencesRainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23.spa
dc.relation.referencesRaj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350spa
dc.relation.referencesRao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4spa
dc.relation.referencesRawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121spa
dc.relation.referencesRochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253spa
dc.relation.referencesRomán-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4).spa
dc.relation.referencesSantiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057spa
dc.relation.referencesSantiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260spa
dc.relation.referencesSchmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008spa
dc.relation.referencesSchoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56.spa
dc.relation.referencesScott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6spa
dc.relation.referencesShonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005xspa
dc.relation.referencesSingh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina.spa
dc.relation.referencesSoltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2spa
dc.relation.referencesSouter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851spa
dc.relation.referencesSuárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4spa
dc.relation.referencesTavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.spa
dc.relation.referencesTello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275spa
dc.relation.referencesTibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077spa
dc.relation.referencesToro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution.spa
dc.relation.referencesVargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859spa
dc.relation.referencesVaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907spa
dc.relation.referencesWahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011spa
dc.relation.referencesWray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3spa
dc.relation.referencesYu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96spa
dc.relation.referencesZheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocPhaseolus acutifolius
dc.subject.agrovocTolerancia al calor
dc.subject.agrovocFrijol
dc.subject.agrovocAdaptación
dc.subject.agrovocIntrogresión
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc580 - Plantasspa
dc.subject.proposalP. acutifoliuseng
dc.subject.proposalGWASeng
dc.subject.proposalResistencia a altas temperaturasspa
dc.subject.proposalQTLeng
dc.subject.proposalP. vulgariseng
dc.subject.proposalIntrogresionesspa
dc.titleIdentificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifoliusspa
dc.title.translatedIdentification of QTLs associated with heat stress resistance using interspecific common bean populations derived from Phaseolus acutifolius.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIdentificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifoliusspa
oaire.fundernameCrop Trustspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Vulgaris_SAC.pdf
Tamaño:
8.13 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: