Caracterización patogénica y toxigénica de especies de Fusarium identificadas a partir de una colección de aislamientos obtenidos de lesiones en plantas de arroz (Oryza sativa) en Colombia.

dc.contributor.advisorGarcía Romero, Ibonne Aydee
dc.contributor.advisorCuellas Cuestas, Carolina Isabel
dc.contributor.authorTorres Galvis, Tatiana Andrea
dc.contributor.orcid0000000265302056spa
dc.date.accessioned2025-04-23T14:13:29Z
dc.date.available2025-04-23T14:13:29Z
dc.date.issued2024-10
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl cultivo de arroz es de gran importancia a nivel mundial y nacional, por su elevado consumo en la alimentación humana. Este cereal es afectado por varias enfermedades, como las causadas por el género Fusarium spp, que inducen marchitamiento, pudriciones en la raíz, vaneamiento, manchado y deformación de los granos, entre otros síntomas; asimismo, producen micotoxinas, deteriorando la inocuidad del grano. En los últimos años en Colombia se han obtenido aislamientos de Fusarium spp. a partir de plantas de arroz con lesiones, por lo cual esta investigación buscó identificar las especies presentes en 54 aislamientos provenientes de diferentes regiones del país, por medio de análisis de secuencia de los genes TEF1-α y HIS3, y huellas genómicas por IGS-RFLP. Asimismo, establecer la relación entre las especies fúngicas identificadas con la inhibición de la germinación in vitro de plantas de arroz, la expresión de síntomas en invernadero y la producción de micotoxinas in vitro detectada por HPLC, para asociarlas a la presencia de genes implicados en la síntesis de fumonisinas. La identificación molecular determinó que 31 aislamientos correspondieron a la especie F. proliferatum y 12 a F. verticillioides, las cuales se incluyen en el complejo Fusarium fujikuroi, consideradas como las principales especies implicadas en enfermedades en arroz. Estas especies presentaron los genes asociados a la biosíntesis de fumonisinas FUM1 y FUM21 y fueron capaces de producir in vitro micotoxinas del tipo FB1 y FB2. Las dos especies inhibieron la germinación de las semillas in vitro entre el 10 y el 60% y causaron síntomas asociados a la enfermedad Mancha café. Los resultados evidenciaron la relación de este género fúngico con el cultivo del arroz en Colombia y aportaron un precedente en el país frente a la patogenia y producción de toxinas que genera para así realizar su seguimiento y control (Texto tomado de la fuente)spa
dc.description.abstractRice cultivation is of great importance both globally and nationally due to its high consumption in human diets. This cereal is affected by several diseases, including those caused by the genus Fusarium spp., which induce wilting, root rots, blight, grain staining and deformation, among other symptoms. Additionally, these fungi produce mycotoxins, compromising the safety of the grain. In recent years in Colombia, isolates of Fusarium spp. have been obtained from rice plants with lesions, which prompted this research to identify the species present in 54 isolates from different regions of the country, using sequence analysis of the TEF1-α and HIS3 genes, as well as genomic fingerprinting by IGS-RFLP. The study also aimed to establish the relationship between the identified fungal species and the inhibition of in vitro germination of rice plants, the expression of symptoms in greenhouse conditions, and the in vitro production of mycotoxins detected by HPLC, in order to associate these traits with the presence of genes involved in fumonisin biosynthesis. Molecular identification determined that 31 isolates corresponded to the species F. proliferatum and 12 to F. verticillioides, both of which are part of the Fusarium fujikuroi species complex, recognized as major pathogens of rice. These species carried the fumonisin biosynthetic genes FUM1 and FUM21, and were capable of producing FB1 and FB2 type mycotoxins in vitro. Both species inhibited seed germination in vitro by 10 to 60% and caused symptoms associated with the disease known as brown spot. The results demonstrated the association of this fungal genus with rice cultivation in Colombia and provided a precedent in the country regarding its pathogenicity and mycotoxin production, highlighting the need for monitoring and control.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Microbiologíaspa
dc.description.researchareaBiotecnología agrícolaspa
dc.format.extent117 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88092
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbdel-Azeem, A. M., Abdel-Azeem, M. A., Darwish, A. G., Nafady, N. A., & Ibrahim, N. A. (2019). Fusarium: Biodiversity, ecological significances, and industrial applications. En A. N. Yadav, S. Mishra, S. Singh, & A. Gupta (Eds.), Recent Advancement in White Biotechnology Through Fungi: Volume 1: Diversity and Enzymes Perspectives (pp. 201-261). Springer International Publishing. https://doi.org/10.1007/978-3-030-10480-1_6spa
dc.relation.referencesAmatulli, M. T., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2012). Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. European Journal of Plant Pathology, 134(2), 401-408. https://doi.org/10.1007/s10658-012-9998-0spa
dc.relation.referencesAnfossi, L., Giovannoli, C., & Baggiani, C. (2016). Mycotoxin detection. Current Opinion in Biotechnology, 37, 120-126. https://doi.org/10.1016/j.copbio.2015.11.005spa
dc.relation.referencesAsibi, A. E., Chai, Q., & Coulter, J. A. (2019). Rice blast: A disease with implications for global food security. Agronomy, 9(8), 451. https://doi.org/10.3390/agronomy9080451spa
dc.relation.referencesAvila, C. F., Moreira, G. M., Nicolli, C. P., Gomes, L. B., Abreu, L. M., Pfenning, L. H., Haidukowski, M., Moretti, A., Logrieco, A., & Del Ponte, E. M. (2019). Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. International Journal of Food Microbiology, 306, 108267. https://doi.org/10.1016/j.ijfoodmicro.2019.108267spa
dc.relation.referencesBashyal, Bishnu Maya. «Etiology of an Emerging Disease: Bakanae of Rice». Indian Phytopathology, vol. 71, n.o 4, diciembre de 2018, pp. 485-94. Springer Link, https://doi.org/10.1007/s42360-018-0091-2.spa
dc.relation.referencesBertero, A., Moretti, A., Spicer, L. J., & Caloni, F. (2018). Fusarium molds and mycotoxins: Potential species-specific effects. Toxins, 10(6), 244. https://doi.org/10.3390/toxins10060244spa
dc.relation.referencesBhunjun, C. S., Phillips, A. J. L., Jayawardena, R. S., Promputtha, I., & Hyde, K. D. (2021). Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’s postulates. Pathogens, 10(9), 1096. https://doi.org/10.3390/pathogens10091096spa
dc.relation.referencesBigirimana, V. de P., Hua, G. K. H., Nyamangyoku, O. I., & Höfte, M. (2015). Rice sheath rot: An emerging ubiquitous destructive disease complex. Frontiers in Plant Science, 6. https://www.frontiersin.org/articles/10.3389/fpls.2015.01066spa
dc.relation.referencesChaibub, A. A., Sousa, T. P. de, Araújo, L. G. de, & Filippi, M. C. C. de. (2020). Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiological Research, 231, 126353. https://doi.org/10.1016/j.micres.2019.126353spa
dc.relation.referencesChandravarnan, P., Agyei, D., & Ali, A. (2022). Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends in Food Science & Technology, 124, 278-295. https://doi.org/10.1016/j.tifs.2022.04.020spa
dc.relation.referencesChang, X., Dai, H., Wang, D., Zhou, H., He, W., Fu, Y., Ibrahim, F., Zhou, Y., Gong, G., Shang, J., Yang, J., Wu, X., Yong, T., Song, C., & Yang, W. (2018). Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. European Journal of Plant Pathology, 151(3), 563-577. https://doi.org/10.1007/s10658-017-1410-7spa
dc.relation.referencesChauhan, R., Singh, J., Sachdev, T., Basu, T., & Malhotra, B. D. (2016). Recent advances in mycotoxins detection. Biosensors and Bioelectronics, 81, 532-545. https://doi.org/10.1016/j.bios.2016.03.004spa
dc.relation.referencesChoi, H.-W., Hong, S. K., Lee, Y. K., Kim, W. G., & Chun, S. (2018). Taxonomy of Fusarium fujikuroi species complex associated with bakanae on rice in Korea. Australasian Plant Pathology, 47(1), 23-34. https://doi.org/10.1007/s13313-017-0536-6spa
dc.relation.referencesChung, Chia-Lin, et al. «Detecting Bakanae Disease in Rice Seedlings by Machine Vision». Computers and Electronics in Agriculture, vol. 121, febrero de 2016, pp. 404-11. ScienceDirect, https://doi.org/10.1016/j.compag.2016.01.008spa
dc.relation.referencesCrous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H.-J., Chaverri, P., Gené, J., Guarro, J., Hirooka, Y., Bensch, K., Kema, G. H. J., Lamprecht, S. C., Cai, L., Rossman, A. Y., Stadler, M., Summerbell, R. C., Taylor, J. W., Ploch, S., Visagie, C. M., … Thines, M. (2021). Fusarium: More than a node or a foot-shaped basal cell. Studies in Mycology, 98, 100116. https://doi.org/10.1016/j.simyco.2021.100116spa
dc.relation.referencesColombia Rice Area, Yield and Production. https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=CO&crop=Rice. Accedido 20 de mayo de 2024.spa
dc.relation.referencesDeepa, N., & Sreenivasa, M. Y. (2019). Molecular methods and key genes targeted for the detection of fumonisin producing Fusarium verticillioides – An updated review. Food Bioscience, 32, 100473. https://doi.org/10.1016/j.fbio.2019.100473spa
dc.relation.referencesDita, M., Barquero, M., Heck, D. W., Mizubuti, E. S. G., & Staver, C. (2018). Fusarium Wilt of Banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01468spa
dc.relation.referencesDong, F., Zhang, X., Xu, J. H., Shi, J. R., Lee, Y.-W., Chen, X. Y., Li, Y. P., Mokoena, M. P., & Olaniran, A. O. (2020). Analysis of fusarium graminearum species complex from freshly harvested rice in jiangsu province(China). Plant Disease, 104(8), 2138-2143. https://doi.org/10.1094/PDIS-01-20-0084-REspa
dc.relation.referencesDong, F., Xu, J., Zhang, X., Wang, S., Xing, Y., Mokoena, M. P., Olaniran, A. O., & Shi, J. (2020). Gramineous weeds near paddy fields are alternative hosts for the Fusarium graminearum species complex that causes fusarium head blight in rice. Plant Pathology, 69(3), 433-441. https://doi.org/10.1111/ppa.13143spa
dc.relation.referencesDweba, C. C., Figlan, S., Shimelis, H. A., Motaung, T. E., Sydenham, S., Mwadzingeni, L., & Tsilo, T. J. (2017). Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114-122. https://doi.org/10.1016/j.cropro.2016.10.002spa
dc.relation.referencesEdel-Hermann, V., Gautheron, N., Mounier, A., & Steinberg, C. (2015). Fusarium diversity in soil using a specific molecular approach and a cultural approach. Journal of Microbiological Methods, 111, 64-71. https://doi.org/10.1016/j.mimet.2015.01.026spa
dc.relation.referencesFAO. 2021. Food and agriculture organization of the United Nations. Obtenido de https://www.fao.org/faostat/en/#data/ QCL/visualizespa
dc.relation.referencesFerre, F. S. (2016). Worldwide occurrence of mycotoxins in rice. Food Control, 62, 291-298. https://doi.org/10.1016/j.foodcont.2015.10.051spa
dc.relation.referencesGimeno, A., & Martins, M. L. (2011). Micotoxinas y micotoxicosis en animales y humanos. Special Nutrients, Florida, 50-53.spa
dc.relation.referencesGiorni, P., Rolla, U., Romani, M., Mulazzi, A., & Bertuzzi, T. (2019). Efficacy of azoxystrobin on mycotoxins and related fungi in italian paddy rice. Toxins, 11(6), 310. https://doi.org/10.3390/toxins11060310spa
dc.relation.referencesGiraldo-Arias, J., Celis-Zapata, S., Franco-Sierra, N. D., Arroyave-Toro, J. J., Jaramillo-Mazo, C., Alvarez, J. C., Giraldo-Arias, J., Celis-Zapata, S., Franco-Sierra, N. D., Arroyave-Toro, J. J., Jaramillo-Mazo, C., & Alvarez, J. C. (2018). Identification of fusarium cf. Verticillioides as the causal agent of pokka boheng disease in sugarcane in the department of antioquia, colombia. Ingeniería y Ciencia, 14(28), 113-134. https://doi.org/10.17230/ingciencia.14.28.5spa
dc.relation.referencesGomes, L. B., Ward, T. J., Badiale-Furlong, E., & Del Ponte, E. M. (2015). Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathology, 64(4), 980-987. https://doi.org/10.1111/ppa.12332spa
dc.relation.referencesHanan Aref, H. (2020). Biology and integrated control of tomato wilt caused by fusarium oxysporum lycopersici: A comprehensive review under the light of recent advancements. Journal of Botany Research, 3(1). https://doi.org/10.36959/771/565spa
dc.relation.referencesHe, J., Zhou, T., Young, J. C., Boland, G. J., & Scott, P. (2010). Chemical and Biological Transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends in Food Science and Technology, 21(2), 67-76. https://doi.org/10.1016/j.tifs.2009.08.002spa
dc.relation.referencesHuang, D., Cui, L., Sajid, A., Zainab, F., Wu, Q., Wang, X., & Yuan, Z. (2019). The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology, 123, 595-601. https://doi.org/10.1016/j.fct.2018.10.059spa
dc.relation.referencesHusna, Asmaul, et al. «Fusarium Commune Associated with Wilt and Root Rot Disease in Rice». Plant Pathology, vol. 70, n.o 1, enero de 2021, pp. 123-32. DOI.org (Crossref), https://doi.org/10.1111/ppa.13270.spa
dc.relation.referencesIqbal, S. Z. (2021). Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42, 237-247. https://doi.org/10.1016/j.cofs.2021.07.003spa
dc.relation.referencesJi, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J., & Shi, J. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Production, Processing and Nutrition, 1(1), 6. https://doi.org/10.1186/s43014-019-0007-2spa
dc.relation.referencesKamle, M., Mahato, D. K., Devi, S., Lee, J. Y., Kang, S. G., & Kumar, P. (2019). Fumonisins: Impact on agriculture, food, and Human Health and their management Strategies. Toxins, 11(6), 328. https://doi.org/10.3390/toxins11060328spa
dc.relation.referencesKarlsson, Ida, et al. «Genus-Specific Primers for Study of Fusarium Communities in Field Samples». Applied and Environmental Microbiology, vol. 82, n.o 2, enero de 2016, pp. 491-501. PubMed Central, https://doi.org/10.1128/AEM.02748-15spa
dc.relation.referencesKaul, N., Kashyap, P. L., Kumar, S., Singh, D., & Singh, G. P. (2022). Genetic diversity and population structure of head blight disease causing fungus fusarium graminearum in northern wheat belt of india. Journal of Fungi, 8(8), 820. https://doi.org/10.3390/jof8080820spa
dc.relation.referencesKim, Y., Kang, I. J., Shin, D. B., Roh, J. H., Heu, S., & Shim, H. K. (2018). Timing of fusarium head blight infection in rice by heading stage. Mycobiology, 46(3), 283-286. https://doi.org/10.1080/12298093.2018.1496637spa
dc.relation.referencesKhodaei, D., Javanmardi, F., & Khaneghah, A. M. (2021). The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science, 39, 36-42. https://doi.org/10.1016/j.cofs.2020.12.012spa
dc.relation.referencesKumar, S. (2021). Molecular taxonomy, diversity, and potential applications of genus Fusarium. In Industrially Important Fungi for Sustainable Development (pp. 277-293). Springer, Cham.spa
dc.relation.referencesQuintero-Domínguez, L. A., Ríos Rodríguez, L. R., Quintana Sánchez, D., León Ávila, B. Y., Quintero-Domínguez, L. A., Ríos Rodríguez, L. R., Quintana Sánchez, D., & León Ávila, B. Y. (2019). Sistema Experto para el diagnóstico presuntivo de enfermedades fúngicas en los cultivos. Revista Cubana de Ciencias Informáticas, 13(1), 61-75. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2227-18992019000100061&lng=es&nrm=iso&tlng=ptspa
dc.relation.referencesLei, S., Wang, L., Liu, L., Hou, Y., Xu, Y., Liang, M., Gao, J., Li, Q., & Huang, S. (2019). Infection and colonization of pathogenic fungus fusarium proliferatum in rice spikelet rot disease. Rice Science, 26(1), 60-68. https://doi.org/10.1016/j.rsci.2018.08.0057spa
dc.relation.referencesLeslie, J.F. and Summerell, B.A. (2006) The Fusarium Laboratory Manual. Blackwell Publishing, Hoboken, 1-2. https://doi.org/10.1002/9780470278376spa
dc.relation.referencesMa L.-J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium pathogenomics. Annual Review of Microbiology, 67(1), 399-416. https://doi.org/10.1146/annurev-micro-092412-155650spa
dc.relation.referencesMcCormick, SP, Stanley, AM, Stover, NA y Alexander, Nueva Jersey (2011). Tricotecenos: de micotoxinas simples a complejas. Toxinas , 3 (7), 802–814. MDPI AG. Obtenido de http://dx.doi.org/10.3390/toxins3070802spa
dc.relation.referencesMurugan, L., Krishnan, N., Venkataravanappa, V., Saha, S., Mishra, A. K., Sharma, B. K., & Rai, A. B. (2020). Molecular characterization and race identification of Fusarium oxysporum f.Sp. Lycopersici infecting tomato in India. 3 Biotech, 10(11), 486. https://doi.org/10.1007/s13205-020-02475-zspa
dc.relation.referencesMutiga, S. K., Mutuku, J. M., Koskei, V., Gitau, J. K., Ng’ang’a, F., Musyoka, J., Chemining’wa, G. N., & Murori, R. (2021). Multiple mycotoxins in kenyan rice. Toxins, 13(3), 203. https://doi.org/10.3390/toxins13030203spa
dc.relation.referencesNahle, S., El Khoury, A., & Atoui, A. (2021). Current status on the molecular biology of zearalenone: Its biosynthesis and molecular detection of zearalenone producing Fusarium species. European Journal of Plant Pathology, 159(2), 247-258. https://doi.org/10.1007/s10658-020-02173-9spa
dc.relation.referencesNganga, E. M., Kyallo, M., Orwa, P., Rotich, F., Gichuhi, E., Kimani, J. M., Mwongera, D., Waweru, B., Sikuku, P., Musyimi, D. M., Mutiga, S. K., Ziyomo, C., Murori, R., Wasilwa, L., Correll, J. C., & Talbot, N. J. (2022). Foliar diseases and the associated fungi in rice cultivated in kenya. Plants, 11(9), 1264. https://doi.org/10.3390/plants11091264spa
dc.relation.referencesO’Donnell, K., Whitaker, B. K., Laraba, I., Proctor, R. H., Brown, D. W., Broders, K., . . . Geiser, D. M. (2022). DNA sequence-based identification of fusarium: A work in progress. Plant Disease, 106(6), 1597-1609. doi:10.1094/PDIS-09-21-2035-SRspa
dc.relation.referencesPessôa, M. G., Paulino, B. N., Mano, M. C. R., Neri-Numa, I. A., Molina, G., & Pastore, G. M. (2017). Fusarium species—A promising tool box for industrial biotechnology. Applied Microbiology and Biotechnology, 101(9), 3493-3511. https://doi.org/10.1007/s00253-017-8255-zspa
dc.relation.referencesPinton, P., & Oswald, I. P. (2014). Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins, 6(5), 1615-1643. https://doi.org/10.3390/toxins6051615spa
dc.relation.referencesPiombo, Edoardo, et al. «Sequencing of Non-Virulent Strains of Fusarium Fujikuroi Reveals Genes Putatively Involved in Bakanae Disease of Rice». Fungal Genetics and Biology,vol. 156, noviembre de 2021, p. 103622. ScienceDirect, https://doi.org/10.1016/j.fgb.2021.103622.spa
dc.relation.referencesPollard, A. T., & Okubara, P. A. (2019). Real-time PCR quantification of Fusarium avenaceum in soil and seeds. Journal of Microbiological Methods, 157, 21-30. https://doi.org/10.1016/j.mimet.2018.12.009spa
dc.relation.referencesPrabhukarthikeyan, S. R., et al. «First Report of Fusarium proliferatum Causing Sheath Rot Disease of Rice in Eastern India». Plant Disease, vol. 105, n.o 3, marzo de 2021, pp. 704-704. apsjournals.apsnet.org (Atypon), https://doi.org/10.1094/PDIS-08-20-1846-PDN.spa
dc.relation.referencesPramunadipta, S., Widiastuti, A., Wibowo, A., Suga, H., & Priyatmojo, A. (2022). Identification and pathogenicity of Fusarium spp. Associated with the sheath rot disease of rice (Oryza sativa) in Indonesia. Journal of Plant Pathology, 104(1), 251-267. https://doi.org/10.1007/s42161-021-00988-xspa
dc.relation.referencesRampersad, S. N. (2020). Pathogenomics and management of fusarium diseases in plants. Pathogens, 9(5), 340. https://doi.org/10.3390/pathogens9050340spa
dc.relation.referencesRivera, M. V., & Gómez, L. C. (2012). Identificación y patogenicidad de Fusarium spp y Rhizoctonia solani en cultivos de arroz del Cesar. Revista Colombiana de Microbiología Tropical. Vol, 2(1)spa
dc.relation.referencesRong, Zhenyang, et al. «Rapid Diagnosis of Rice Bakanae Caused by Fusarium Fujikuroi and F. Proliferatum Using Loop-Mediated Isothermal Amplification Assays». Journal of Phytopathology, vol. 166, n.o 4, abril de 2018, pp. 283-90. DOI.org (Crossref), https://doi.org/10.1111/jph.12685spa
dc.relation.referencesRopejko, K., & Twarużek, M. (2021). Zearalenone and its Metabolites—General Overview, Occurrence, and Toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035spa
dc.relation.referencesSadia Nadir, Sehroon Khan, Qian Zhu, Doku Henry, Li Wei, Dong Sun Lee, LiJuan Chen, Una descripción general del aislamiento reproductivo en el complejo Oryza sativa , AoB PLANTS , volumen 10, número 6, diciembre de 2018, ply060, https:// doi.org/10.1093/aobpla/ply060spa
dc.relation.referencesSamiksha, & Kumar, S. (2021). Molecular taxonomy, diversity, and potential applications of genus fusarium. En A. M. Abdel-Azeem, A. N. Yadav, N. Yadav, & Z. Usmani (Eds.), Industrially Important Fungi for Sustainable Development: Volume 1: Biodiversity and Ecological Perspectives (pp. 277-293). Springer International Publishing. https://doi.org/10.1007/978-3-030-67561-5_8spa
dc.relation.referencesSampaio, A. M., Araújo, S. de S., Rubiales, D., & Vaz Patto, M. C. (2020). Fusarium wilt management in legume crops. Agronomy, 10(8), 1073. https://doi.org/10.3390/agronomy10081073spa
dc.relation.referencesSethy, P. K., Barpanda, N. K., Rath, A. K., & Behera, S. K. (2020). Image processing techniques for diagnosing rice plant disease: A survey. Procedia Computer Science, 167, 516-530. https://doi.org/10.1016/j.procs.2020.03.308spa
dc.relation.referencesSharma, L., & Marques, G. (2018). Fusarium, an entomopathogen—A myth or reality? Pathogens, 7(4), 93. https://doi.org/10.3390/pathogens7040093spa
dc.relation.referencesSifou, A., Meca, G., Serrano, A. B., Mahnine, N., El Abidi, A., Mañes, J., El Azzouzi, M., & Zinedine, A. (2011). First report on the presence of emerging Fusarium mycotoxins enniatins (A, a1, b, b1), beauvericin and fusaproliferin in rice on the Moroccan retail markets. Food Control, 22(12), 1826-1830. https://doi.org/10.1016/j.foodcont.2011.04.019spa
dc.relation.referencesSingha, Irom Manoj, et al. «Identification and Characterization of Fusarium Sp. Using ITS and RAPD Causing Fusarium Wilt of Tomato Isolated from Assam, North East India». Journal of Genetic Engineering and Biotechnology, vol. 14, n.o 1, junio de 2016, pp. 99-105. ScienceDirect, https://doi.org/10.1016/j.jgeb.2016.07.001.spa
dc.relation.referencesSummerell, B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual Review of Phytopathology, 57(1). doi:10.1146/annurev-phyto-082718-100204spa
dc.relation.referencesThomas, B., Contet Audonneau, N., Machouart, M., & Debourgogne, A. (2019). Molecular identification of Fusarium species complexes: Which gene and which database to choose in clinical practice? Journal de Mycologie Médicale, 29(1), 56-58. https://doi.org/10.1016/j.mycmed.2019.01.003spa
dc.relation.referencesTopi, D., Babič, J., Pavšič-Vrtač, K., Tavčar-Kalcher, G., & Jakovac-Strajn, B. (2021). Incidence of fusarium mycotoxins in wheat and maize from albania. Molecules, 26(1), 172. https://doi.org/10.3390/molecules26010172spa
dc.relation.referencesVan Diepeningen, A. D., Al-Hatmi, A. M. S., Brankovics, B., & De Hoog, G. S. (2014). Taxonomy and Clinical Spectra of Fusarium Species: Where Do We Stand in 2014? Current Clinical Microbiology Reports, 1(1-2), 10-18. https://doi.org/10.1007/s40588-014-0003-xspa
dc.relation.referencesVorob’eva, I., & Toropova, E. (2020). Fungi ecological niches of the genus Fusarium Link. BIO Web of Conferences, 24, 00095. https://doi.org/10.1051/bioconf/20202400095spa
dc.relation.referencesVoss, K. A., Smith, G. W., & Haschek, W. M. (2007). Fumonisins: Toxicokinetics, mechanism of action and toxicity. Animal Feed Science and Technology, 137(3-4), 299-325. https://doi.org/10.1016/j.anifeedsci.2007.06.007spa
dc.relation.referencesYazar, S., & Omurtag, G. Z. (2008). Fumonisins, trichothecenes and zearalenone in cereals. International Journal of Molecular Sciences, 9(11), 2062-2090. https://doi.org/10.3390/ijms9112062spa
dc.relation.referencesZinedine, A., Del Castillo, J. M. S., Moltó, J., & Mañes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology, 45(1), 1-18. https://doi.org/10.1016/j.fct.2006.07.030spa
dc.relation.referencesWilliamson-Benavides, B. A., & Dhingra, A. (2021). Understanding root rot disease in agricultural crops. Horticulturae, 7(2), 33. https://doi.org/10.3390/horticulturae7020033spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.agrovocFumonisina
dc.subject.ddc580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnoliasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembArroz
dc.subject.proposalFusarium proliferatum, arroz (Oryza sativa), PCR, IGS-RFLP, fumonisinas, FUM 1 Y FUM 21, patogenicidad.spa
dc.subject.proposalRice crop, Fusarium spp., Grain discoloration, Pathogenicity, Molecular identification, Mycotoxinseng
dc.subject.wikidataPatogenicidad
dc.titleCaracterización patogénica y toxigénica de especies de Fusarium identificadas a partir de una colección de aislamientos obtenidos de lesiones en plantas de arroz (Oryza sativa) en Colombia.spa
dc.title.translatedPathogenic and toxigenic characterization of Fusarium species identified from a collection of isolates obtained from lesions on rice (Oryza sativa) plants in Colombia.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018491202.2024.pdf
Tamaño:
2.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: