Funcionalización de Péptidos derivados de LfcinB con motivos no proteicos : una estrategia para la optimización de fármacos peptídicos con aplicaciones terapéuticas y de diagnóstico

dc.contributor.advisorFierro Medina, Ricardo
dc.contributor.advisorGarcía Castañeda, Javier Eduardo
dc.contributor.authorCastellar, Daniel Alejandro
dc.contributor.orcidCastellar Almonacid, Daniel Alejandro [0009000517042842]
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicas
dc.date.accessioned2025-09-09T14:06:19Z
dc.date.available2025-09-09T14:06:19Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa incidencia del cáncer de cuello uterino ha aumentado en los últimos años a una tasa alarmante. A pesar de los avances en los tratamientos y métodos de diagnóstico para el cáncer, las terapias existentes siguen siendo poco selectivas ocasionando numerosas reacciones adversas tanto locales como sistémicas. Debido a esto, es importante el desarrollo de nuevos agentes terapéuticos contra el cáncer que exhiban un perfil de selectividad favorable. Recientemente, se han obtenido péptidos sintéticos polivalentes derivados de la Lactoferricina Bovina (LfcinB) con actividad anticancerosa in vitro. Entre estos, el péptido palindrómico RWQWRWQWR, ha exhibido actividad citotóxica selectiva en líneas celulares derivadas del cáncer de mama, cuello uterino y colon. Esta investigación se fundamentó en la búsqueda de nuevas entidades hibridas del péptido palindrómico con motivos no proteicos, para optimizar la actividad biológica. Se exploraron conjugaciones de la secuencia palindrómica encaminadas a potenciar la actividad anticancerosa y/o para emplearla como herramienta bionalitica que permita contribuir al entendimiento de su posible mecanismo de acción. Para ello se diseñaron y sintetizaron péptidos conjugados con i) Antinflamatorios No Esteroidales (AINES) ii) ferroceno y iii) moléculas fluorescentes mediante SPPS y la estrategia Fmoc/tBu. La purificación de los conjugados peptídicos se realizó empleando RP-SPE y los productos puros fueron caracterizados por RP-HPLC y LC-MS. La evaluación de la actividad anticancerosa se realizó en células HeLa y el tipo de muerte celular inducida por citometría de flujo. En este trabajo se obtuvieron péptidos híbridos con Naproxeno e Ibuprofeno que exhiben actividad anticancerosa en células HeLa y poseen un perfil de seguridad promisorio. Los resultados revelan que la conjugación del péptido palindrómico con AINES es una estrategia útil para optimizar la actividad anticancerosa. También se logró dilucidar un proceso de degradación de los péptidos organometálicos el cual contribuye al estudio de la estabilidad de estas moléculas hibridas. Finalmente se lograron obtener péptidos conjugados con Rodamina B útiles para el análisis por microscopia de fluorescencia de la interacción del péptido con las células HeLa. Los resultados obtenidos muestran que la conjugación de la secuencia palindrómica con AINES es una estrategia eficaz para incrementar la actividad citotóxica in vitro y que esta conjugación no afecta el tipo de muerte celular, siendo esta por la vía apoptótica. Además, se videnció los puntos críticos en la conjugación de la secuencia con moléculas fluorescentes y se estableció su utilidad para estudiar la interacción péptido célula (Texto tomado de la fuente).spa
dc.description.abstractThe incidence of a variety of cancer types, such as cervical cancer, has risen in the last years. Despite the current advancements in diagnostic and therapeutical tools, selectivity is still limited. The current therapies led to numerous side effects at local and systemic sites. Due to this, it is necessary to develop new therapeutic agents that could exhibit a favorable selectivity profile. Recently, some polyvalent synthetic peptides derived from Bovine Lactoferricin (LfcinB) have exhibited in vitro anticancer activity. Among these peptides, the palindromic sequence RWQWRWQWR has shown a promissory selective cytotoxic activity against breast, cervical, and colon cancer cell lines. This research is based on the development of new hybrid entities based on the palindromic peptide conjugated to non-peptide motifs. These motifs have been proven to be useful for optimizing the biological activity of promissory peptides. Therefore, this research explored the conjugation of the palindromic sequence with molecules aimed at enhancing its anticancer activity and/or employing the peptide as a bioanalytical tool for unravelling its possible mechanism of action. To accomplish this, peptides conjugated with i) NonSteroidal Antiinflamatory Drugs (NSAID) ii) ferrocene, and iii) fluorescent molecules were designed and obtained via SPPS and Fmoc/tBu strategy. The purification of the peptide conjugates was performed using RP-SPE, and its characterization was done employing RPHPLC and LC-MS. The cytotoxic activity testing of the peptides was conducted in HeLa cells as a model of cervical adenocarcinoma, and the most promising peptides were tested in selectivity assays. The type of cell death of these peptides was assessed using flow cytometry. The results show that conjugation of the palindromic sequence to NSAID is a useful strategy for optimizing anticancer activity. Naproxen and Ibuprofen conjugates exhibiting enhanced cytotoxic activity in HeLa cells and a good selectivity profile were obtained. Moreover, a degradation reaction of the ferrocene conjugates was studied, which contributes to understanding the stability of these molecules. Finally, Rhodamine B peptides were obtained and evaluated in fluorescent microscopy of HeLa cells, confirming its utility as a bioanalytical tool in cancer cell imaging.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister Ciencias Farmaceúticas
dc.description.methodsCon el fin de explorar nuevas aplicaciones tanto a nivel terapéutico como a nivel bioanalítico de péptidos sintéticos derivados de la LfcinB con actividad anticancerígena, se seleccionó la secuencia RWQWRWQWR como base para el diseño de nuevas moléculas peptídicas conjugadas con motivos no proteicos (fármacos pequeños y compuestos organometálicos) para potenciar su actividad y/o obtener sondas fluorescentes para el análisis por microscopía de fluorescencia.
dc.description.researchareaSíntesis y evaluación biológica de péptidos anticancerígenos
dc.format.extent146 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88663
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.relation.referencesSung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209–249 (2021).
dc.relation.referencesHarbeck, N. et al. Breast cancer. Nat Rev Dis Primers 5, (2019).
dc.relation.referencesPsimadas, D., Georgoulias, P., Valotassiou, V. & Loudos, G. Molecular Nanomedicine Towards Cancer : J Pharm Sci 101, 2271–2280 (2012).
dc.relation.referencesHuszno, J. & Kolosza, Z. Molecular characteristics of breast cancer according to clinicopathological factors. Mol Clin Oncol 11, 192–200 (2019).
dc.relation.referencesYayan, J., Franke, K. J., Berger, M., Windisch, W. & Rasche, K. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review. Molecular Biology Reports vol. 51 Preprint at https://doi.org/10.1007/s11033-023-08920-5 (2024).
dc.relation.referencesTommasi, C. et al. Long-Term Effects of Breast Cancer Therapy and Care: Calm after the Storm? Journal of Clinical Medicine vol. 11 Preprint at https://doi.org/10.3390/jcm11237239 (2022).
dc.relation.referencesRosendo-Chalma, P. et al. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. Biology vol. 13 Preprint at https://doi.org/10.3390/biology13020077 (2024).
dc.relation.referencesTabatabaei, F. S. et al. Evaluation of Survival Rate and Associated Factors in Patients with Cervical Cancer: A Retrospective Cohort Study. J Res Health Sci 22, (2022).
dc.relation.referencesAna Lozano, N. R. A.-Z. , L. M. M. , H. E.-L. L. F. V.-G. , Y. A.-P. , R. B.-I. , A. S.-W. , R. H.-H. N. J. A.-Z. J. Z.-S. Características de los pacientes diagnosticados con neoplasias malignas sólidas en un centro oncológico de Cartagena, Colombia (2015-2020). Revista Colombiana de Cancerolgía 27, 342–354 (2023).
dc.relation.referencesArdila-Chantré, N. et al. Hybrid peptides inspired by the RWQWRWQWR sequence inhibit cervical cancer cells growth in vitro. Exploration of Drug Science 614–631 (2024) doi:10.37349/eds.2024.00064.
dc.relation.referencesAl Musaimi, O. Peptide Therapeutics: Unveiling the Potential against Cancer—A Journey through 1989. Cancers vol. 16 Preprint at https://doi.org/10.3390/cancers16051032 (2024).
dc.relation.referencesGarcía-Montoya, I. A., Cendón, T. S., Arévalo-Gallegos, S. & Rascón-Cruz, Q. Lactoferrin a multiple bioactive protein: An overview. Biochim Biophys Acta Gen Subj 1820, 226–236 (2012).
dc.relation.referencesFang, B., Guo, H. Y., Zhang, M., Jiang, L. & Ren, F. Z. The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA. FEBS Journal 280, 1007–1017 (2013).
dc.relation.referencesBeloor, J., Zeller, S., Choi, C. S., Lee, S. K. & Kumar, P. Cationic cell-penetrating peptides as vehicles for siRNA delivery. Therapeutic Delivery vol. 6 491–507 Preprint at https://doi.org/10.4155/tde.15.2 (2015).
dc.relation.referencesAgoni, C. et al. Cell-Penetrating Milk-Derived Peptides with a Non-Inflammatory Profile. Molecules 28, (2023).
dc.relation.referencesFang, B., Guo, H. Y., Zhang, M., Jiang, L. & Ren, F. Z. The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA. FEBS Journal 280, 1007–1017 (2013).
dc.relation.referencesBarragán-Cárdenas, A. et al. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect 5, 9691–9700 (2020).
dc.relation.referencesBarragán-Cárdenas, A. C. et al. Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines. ACS Omega 8, 2712–2722 (2023).
dc.relation.referencesAl-Ostoot, F. H., Salah, S., Khamees, H. A. & Khanum, S. A. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treatment and Research Communications vol. 28 Preprint at https://doi.org/10.1016/j.ctarc.2021.100422 (2021).
dc.relation.referencesXie, M., Liu, D. & Yang, Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 10, (2020).
dc.relation.referencesAl Shaer, D., Al Musaimi, O., Albericio, F. & de la Torre, B. G. 2023 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals vol. 17 Preprint at https://doi.org/10.3390/ph17020243 (2024).
dc.relation.referencesBarragán-Cárdenas, A. et al. Enhanced breast cancer cell targeting: RGD integrin ligand potentiates RWQWRWQWR’s cytotoxicity and inhibits migration. Exploration of Drug Science 369–388 (2024) doi:10.37349/eds.2024.00052.
dc.relation.referencesIoele, G. et al. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules vol. 27 Preprint at https://doi.org/10.3390/molecules27175436 (2022).
dc.relation.referencesChen, X., Zhao, Z., Laster, K. V., Liu, K. & Dong, Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochimica et Biophysica Acta - Reviews on Cancer vol. 1879 Preprint at https://doi.org/10.1016/j.bbcan.2024.189197 (2024).
dc.relation.referencesRamírez-Sánchez DA, A.-B. I. C.-R. A. F.-V. H. N. K. B. J. L.-S. N. Bovine lactoferrin and lactoferrin peptides affect endometrial and cervical cancer cell lines. Biochem Cell Biol. 99, 149–158 (2021).
dc.relation.referencesRichardson, A., de Antueno, R., Duncan, R. & Hoskin, D. W. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem Biophys Res Commun 388, 736–741 (2009).
dc.relation.referencesBarros, C. A. et al. Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon 7, (2021).
dc.relation.referencesHuertas Méndez, N. D. J. et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 22, (2017).
dc.relation.referencesZappavigna, S. et al. Anti-inflammatory drugs as anticancer agents. Int J Mol Sci 21, (2020).
dc.relation.referencesBoaro, A., Ageitos, L., Torres, M., Bartoloni, F. H. & de la Fuente-Nunez, C. Light-Emitting Probes for Labeling Peptides. Cell Reports Physical Science vol. 1 Preprint at https://doi.org/10.1016/j.xcrp.2020.100257 (2020).
dc.relation.referencesInsuasty Cepeda, D. S. et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules 24, (2019).
dc.relation.referencesWang, M. et al. Peptide-drug conjugates: A new paradigm for targeted cancer therapy. European Journal of Medicinal Chemistry vol. 265 Preprint at https://doi.org/10.1016/j.ejmech.2023.116119 (2024).
dc.relation.referencesShokri, B., Zarghi, A., Shahhoseini, S., Mohammadi, R. & Kobarfard, F. Design, synthesis and biological evaluation of peptide-NSAID conjugates for targeted cancer therapy. Arch Pharm (Weinheim) 352, (2019).
dc.relation.referencesHoppenz, P., Els-Heindl, S. & Beck-Sickinger, A. G. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Frontiers in Chemistry vol. 8 Preprint at https://doi.org/10.3389/fchem.2020.00571 (2020).
dc.relation.referencesDuan, Z. et al. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv 24, 752–764 (2017).
dc.relation.referencesJervis, P. J., Amorim, C., Pereira, T., Martins, J. A. & Ferreira, P. M. T. Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels. Soft Matter vol. 16 10001–10012 Preprint at https://doi.org/10.1039/d0sm01198c (2020).
dc.relation.referencesLi, J. et al. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry 9, 908–917 (2013).
dc.relation.referencesTudor, D. V. et al. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biology and Medicine vol. 17 20–31 Preprint at https://doi.org/10.20892/j.issn.2095-3941.2019.0339 (2020).
dc.relation.referencesHashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. & Mortezaee, K. Cyclooxygenase-2 in cancer: A review. Journal of Cellular Physiology vol. 234 5683–5699 Preprint at https://doi.org/10.1002/jcp.27411 (2019).
dc.relation.referencesKolawole, O. R. & Kashfi, K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. International Journal of Molecular Sciences vol. 23 Preprint at https://doi.org/10.3390/ijms23031432 (2022).
dc.relation.referencesSmith, C. E. et al. Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors. Cell Chem Biol 24, 281–292 (2017).
dc.relation.referencesKassab, A. E. & Gedawy, E. M. Repurposing of Indomethacin and Naproxen as anticancer agents: progress from 2017 to present. RSC Advances vol. 14 40031–40057 Preprint at https://doi.org/10.1039/d4ra07581a (2024).
dc.relation.referencesQiao, Z. et al. Effect of Ibuprofen as an Albumin Binder on Melanoma-Targeting Properties of 177Lu-Labeled Ibuprofen-Conjugated Alpha-Melanocyte-Stimulating Hormone Peptides. Mol Pharm 21, 4004–4011 (2024).
dc.relation.referencesErckes, V. & Steuer, C. A story of peptides, lipophilicity and chromatography - back and forth in time. RSC Medicinal Chemistry vol. 13 676–687 Preprint at https://doi.org/10.1039/d2md00027j (2022).
dc.relation.referencesTetko, I. V. et al. Virtual computational chemistry laboratory - Design and description. J Comput Aided Mol Des 19, 453–463 (2005).
dc.relation.referencesFauchtre, J.-L. 20 Lipophilicity in Peptide Chemistry and Peptide Drug Design.
dc.relation.referencesDeberle, L. M. et al. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics 10, 1678–1693 (2020).
dc.relation.referencesAdochitei, A. & Drochioiu, G. RAPID CHARACTERIZATION OF PEPTIDE SECONDARY STRUCTURE BY FT-IR SPECTROSCOPY. Rev. Roum. Chim vol. 56 (2011).
dc.relation.referencesShen, W. et al. Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br J Cancer 123, 730–741 (2020).
dc.relation.referencesBarragán-Cárdenas, A. et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv 10, 17593–17601 (2020).
dc.relation.referencesCárdenas-Martínez, K. J. et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther 27, 1751–1762 (2021).
dc.relation.referencesPriebe, M. K. Differential responses of human melanoma cells to c-Rel down regulation. (Georg-August-Universität zu Göttingen , Göttingen , 2019).
dc.relation.referencesChan, E. W. L., Yee, Z. Y., Raja, I. & Yap, J. K. Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist 10, 70–74 (2017).
dc.relation.referencesMcCloskey, A. P. et al. Self-assembling ultrashort NSAID-peptide nanosponges: multifunctional antimicrobial and anti-inflammatory materials. RSC Adv 6, 114738–114749 (2016).
dc.relation.referencesUpadhyay, A. et al. Ibuprofen Induces Mitochondrial-Mediated Apoptosis Through Proteasomal Dysfunction. Mol Neurobiol 53, 6968–6981 (2016).
dc.relation.referencesTyagi, A. et al. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res 43, D837–D843 (2015).
dc.relation.referencesWang, G., Li, X. & Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44, D1087–D1093 (2016).
dc.relation.referencesNasrolahi Shirazi, A., Tiwari, R., Chhikara, B. S., Mandal, D. & Parang, K. Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Mol Pharm 10, 488–499 (2013).
dc.relation.referencesNasrolahi Shirazi, A., Tiwari, R., Chhikara, B. S., Mandal, D. & Parang, K. Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Mol Pharm 10, 488–499 (2013).
dc.relation.referencesMojžišová, G., Mojžiš, J. & Vašková, J. Organometallic Iron Complexes as Potential Cancer Therapeutics. www.actabp.pl.
dc.relation.referencesLiou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radical Research vol. 44 479–496 Preprint at https://doi.org/10.3109/10715761003667554 (2010).
dc.relation.referencesChaudhary, A. & Poonia, K. The redox mechanism of ferrocene and its phytochemical and biochemical compounds in anticancer therapy: A mini review. Inorg Chem Commun 134, (2021).
dc.relation.referencesArdila-Chantré, N. et al. Short peptides conjugated to non-peptidic motifs exhibit antibacterial activity. RSC Adv 10, 29580–29586 (2020).
dc.relation.referencesLudwig, B. S. et al. The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins. Biomaterials 271, (2021).
dc.relation.referencesChantré, N. A. Síntesis y Evaluación de La Actividad Antibacteriana de Potenciales Fármacos Basados En Péptidos Derivados de Buforina y Lactoferricina Bovina Funcionalizados Con Moléculas Antimicrobianas. (2019).
dc.relation.referencesKumpan, N., Poonsawat, T., Chaicharoenwimolkul, L., Pornsuwan, S. & Somsook, E. Ferrocenated nanocatalysts derived from the decomposition of ferrocenium in basic solution and their aerobic activities for the rapid decolorization of methylene blue and the facile oxidation of phenylboronic acid. RSC Adv 7, 5759–5763 (2017).
dc.relation.referencesLiu, F. et al. Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 212, (2020).
dc.relation.referencesCavaco, M. et al. To What Extent Do Fluorophores Bias the Biological Activity of Peptides? A Practical Approach Using Membrane-Active Peptides as Models. Front Bioeng Biotechnol 8, (2020).
dc.relation.referencesHintzen, J. C. J. et al. Fluorescence Labeling of Peptides: Finding the Optimal Protocol for Coupling Various Dyes to ATCUN-like Structures. ACS Organic and Inorganic Au (2024) doi:10.1021/acsorginorgau.4c00030.
dc.relation.referencesLaxman, P., Ansari, S., Gaus, K. & Goyette, J. The Benefits of Unnatural Amino Acid Incorporation as Protein Labels for Single Molecule Localization Microscopy. Frontiers in Chemistry vol. 9 Preprint at https://doi.org/10.3389/fchem.2021.641355 (2021).
dc.relation.referencesCheng, Z., Kuru, E., Sachdeva, A. & Vendrell, M. Fluorescent amino acids as versatile building blocks for chemical biology. Nature Reviews Chemistry vol. 4 275–290 Preprint at https://doi.org/10.1038/s41570-020-0186-z (2020).
dc.relation.referencesElia, N. Using unnatural amino acids to selectively label proteins for cellular imaging: a cell biologist viewpoint. FEBS Journal vol. 288 1107–1117 Preprint at https://doi.org/10.1111/febs.15477 (2021).
dc.relation.referencesZoldák, G. et al. A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases. Biochemistry 48, 10423–10436 (2009).
dc.relation.referencesZhao, C. et al. Searching for the Optimal Fluorophore to Label Antimicrobial Peptides. ACS Comb Sci 18, 689–696 (2016).
dc.relation.referencesMendive-Tapia, L., Wang, J. & Vendrell, M. Fluorescent cyclic peptides for cell imaging. Peptide Science 113, (2021).
dc.relation.referencesBirtalan, E. et al. Investigating rhodamine B-labeled peptoids: scopes and limitations of its applications. Biopolymers 96, 694–701 (2011).
dc.relation.referencesTodorov, P. et al. Synthesis of new modified with rhodamine b peptides for antiviral protection of textile materials. Molecules 26, (2021).
dc.relation.referencesDeng, W., Wang, Q., Xue, S. & Wang, P. A colorimetric and fluorescent dual-signals probe based on Rhodamine B and tripeptide for highly sensitive detection of trivalent ions and its application in living cells imaging. J Photochem Photobiol A Chem 445, (2023).
dc.relation.referencesCárdenas-Martínez, K. J. et al. Evaluating the In Vitro Activity and Safety of Modified LfcinB Peptides as Potential Colon Anticancer Agents: Cell Line Studies and Insect-Based Toxicity Assessments. ACS Omega 8, 37948–37957 (2023).
dc.relation.referencesInsuasty-Cepeda, D. S. et al. Non-natural amino acids into LfcinB-derived peptides: Effect in their (i) proteolytic degradation and (ii) cytotoxic activity against cancer cells. R Soc Open Sci 10, (2023).
dc.relation.referencesSebák, F. et al. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS Omega 6, 34470–34484 (2021).
dc.relation.referencesBirch, D., Christensen, M. V., Staerk, D., Franzyk, H. & Nielsen, H. M. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochim Biophys Acta Biomembr 1859, 2483–2494 (2017).
dc.relation.referencesYin, H. et al. The hybrid oncolytic peptide NTP-385 potently inhibits adherent cancer cells by targeting the nucleus. Acta Pharmacol Sin 44, 201–210 (2023).
dc.relation.referencesTucker, A. N., Carlson, T. J. & Sarkar, A. Challenges in drug discovery for intracellular bacteria. Pathogens 10, (2021).
dc.relation.referencesLuzi, C. et al. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells. Cell Biochem Funct 35, 33–41 (2017).
dc.relation.referencesZhang, H. et al. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics vol. 15 Preprint at https://doi.org/10.3390/pharmaceutics15082093 (2023).
dc.relation.referencesSuzuki, Y. A., Wong, H., Ashida, K. Y., Schryvers, A. B. & Lönnerdal, B. The N1 domain of human lactoferrin is required for internalization by caco-2 cells and targeting to the nucleus. Biochemistry 47, 10915–10920 (2008).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.decsNeoplasias del Cuello Uterinospa
dc.subject.decsUterine Cervical Neoplasmseng
dc.subject.decsEnfermedades del Cuello del Úterospa
dc.subject.decsUterine Cervical Diseaseseng
dc.subject.decsTécnicas y Procedimientos Diagnósticosspa
dc.subject.decsDiagnostic Techniques and Procedureseng
dc.subject.decsAntineoplásicosspa
dc.subject.decsAntineoplastic Agentseng
dc.subject.decsMapeo Peptídicospa
dc.subject.decsPeptide Mappingeng
dc.subject.decsRepeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadasspa
dc.subject.decsClustered Regularly Interspaced Short Palindromic Repeatseng
dc.subject.proposalPalindromic Peptideeng
dc.subject.proposalNSAIDeng
dc.subject.proposalFerroceneeng
dc.subject.proposalRhodamine Beng
dc.subject.proposalCervical adenocarcinamaeng
dc.subject.proposalLfinBeng
dc.subject.proposalPeptido Palindrómicospa
dc.subject.proposalRodamina Bspa
dc.subject.proposalAINESspa
dc.subject.proposalFerrocenospa
dc.subject.proposalAdenocarcinoma cervicalspa
dc.titleFuncionalización de Péptidos derivados de LfcinB con motivos no proteicos : una estrategia para la optimización de fármacos peptídicos con aplicaciones terapéuticas y de diagnósticospa
dc.title.translatedFunctionalization of LfcinB derived peptides with non peptidic motifs : a strategy for optimizing peptide drugs with therapeutic and diagnostic applicationseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1000076579.Castellar_Daniel.2025.pdf
Tamaño:
5.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: