Óxidos mixtos CoOx-MnOx sintetizados por autocombustión/MW para la oxidación de tolueno en presencia de agua

dc.contributor.advisorMoreno Guaqueta, Soniaspa
dc.contributor.authorCañón Gómez, Jhonnspa
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2020-08-26T22:34:41Zspa
dc.date.available2020-08-26T22:34:41Zspa
dc.date.issued2020-01-31spa
dc.description.abstractLos compuestos orgánicos volátiles (COVs) constituyen uno de los más importantes contaminantes del aire puesto que actúan como agentes precursores del smog fotoquímico, la lluvia ácida y otros compuestos nocivos. La oxidación catalítica se destaca como método de eliminación de COVs gracias a su alta eficiencia y bajos requerimientos energéticos. Dentro de esta estrategia, son muy importantes los catalizadores a base de cobalto y manganeso debido a sus excelentes propiedades redox y a la movilidad de oxígeno dentro de las estructuras. En este trabajo, se sintetizaron catalizadores tipo CoMnMgAl-Ox a través de una autocombustión asistida por microondas y variando la relación molar Co/Mn entre 0 y 1. Los catalizadores fueron caracterizados (DRX, isotermas de adsorción-desorción de N2, HR-TEM y XPS) y evaluados en la oxidación catalítica de tolueno en fase gaseosa diluida y a presión atmosférica. Todos los catalizadores preparados en este trabajo presentaron mayores actividades que sus equivalentes preparados por autocombustión tradicional, demostrando que el uso de microondas en la síntesis, independientemente de la potencia de irradiación, potencia la actividad catalítica de los materiales en la oxidación. Adicionalmente, se encontró que la relación molar Co/Mn = 0.6, es la que da lugar al catalizador más activo, presentando conversiones comparables a las de los catalizadores de metales nobles, lo cual evidencia el efecto cooperativo entre estos metales.spa
dc.description.abstractVolatile organic compounds (VOCs) are one of the most critical air pollutants since they act as precursor agents for photochemical smog, acid rain, and other harmful compounds. Catalytic oxidation stands out as a method of VOC elimination thanks to its high efficiency and low energy requirements. Within this strategy, the catalysts based on cobalt and manganese stand out due to their excellent redox properties and the mobility of oxygen within the structures. In this work, CoMnMgAl-Ox type catalysts were synthesized through a microwave-assisted self-combustion and varying the Co / Mn molar ratio between 0 and 1. The catalysts were characterized (DRX, N2 adsorption-desorption isotherms, HR-TEM and XPS) and evaluated in the catalytic oxidation of toluene in the diluted gas phase and at atmospheric pressure. All the catalysts prepared in this research presented higher activities than their equivalents prepared by a traditional self-combustion, thus demonstrating that the use of microwaves in the synthesis (regardless of the irradiation power) enhances the catalytic activity in the oxidation. Additionally, it was found that the Co / Mn = 0.6 molar ratio gives rise to the most active catalyst, which has conversions comparable to those of noble metal catalysts.spa
dc.description.additionalLínea Investigación: Catálisis Heterogéneaspa
dc.description.degreelevelMaestríaspa
dc.description.projectProyecto Hermes 41779 de la Universidad Nacional de Colombia – Sede Bogotá y Proyecto Colciencias código 1115-745-58773.spa
dc.format.extent83spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78241
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] C. Jia, S. Batterman, and C. Godwin, "VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers," Atmospheric Environment, vol. 42, pp. 2083-2100, 2008/03/01/ 2008.spa
dc.relation.references[2] J. Thomas, "Handbook Of Heterogeneous Catalysis. 2., completely revised and enlarged Edition. Vol. 1–8. Edited by G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp," Angewandte Chemie International Edition, vol. 48, 04/27 2009.spa
dc.relation.references[3] H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, and S. N. Li, "Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications," Environmental Science & Technology, vol. 43, pp. 2216-2227, 2009/04/01 2009.spa
dc.relation.references[4] U. Pöschl and M. Shiraiwa, "Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene," Chemical Reviews, vol. 115, pp. 4440-4475, 2015/05/27 2015.spa
dc.relation.references[5] S. Zhang, J. You, C. Kennes, Z. Cheng, J. Ye, D. Chen, et al., "Current advances of VOCs degradation by bioelectrochemical systems: A review," Chemical Engineering Journal, vol. 334, pp. 2625-2637, 2018/02/15/ 2018.spa
dc.relation.references[6] M. S. Kamal, S. A. Razzak, and M. M. Hossain, "Catalytic oxidation of volatile organic compounds (VOCs) – A review," Atmospheric Environment, vol. 140, pp. 117-134, 2016/09/01/ 2016.spa
dc.relation.references[7] Á. M. d. V. d. A. Universidad Pontificia Bolivariana, "Proyecto Red de Monitoreo de la Calidad del Aire en el Valle de Aburrá, Convenio Marco de Asociación No. 543 de 2008," 2010.spa
dc.relation.references[8] V. y. D. T.-M. Ministerio de Ambiente, Ministerio de Minas y Energía, Ministerio de Transporte, Ministerio de Protección Social, "Lineamientos para la formulación de la politica de prevención y control de la contaminación del aire," D. N. d. P. Consejo Nacional de Política Económica y Social (CONPES), República de Colombia, Ed., ed, 2005.spa
dc.relation.references[9] M. H. Castaño, R. Molina, and S. Moreno, "Mn–Co–Al–Mg mixed oxides by auto-combustion method and their use as catalysts in the total oxidation of toluene," Journal of Molecular Catalysis A: Chemical, vol. 370, pp. 167-174, 2013/04/01/ 2013.spa
dc.relation.references[10] J. Prado-Gonjal and E. Morán, "Síntesis asistida por microondas de sólidos inorgánicos," Anales de la Real Sociedad Española de Química, vol. 107, pp. 129-136, 04/01 2011.spa
dc.relation.references[11] J. Mo, Y. Zhang, and Q. Xu, "Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation," Applied Catalysis B: Environmental, vol. 132-133, pp. 212-218, 2013/03/27/ 2013.spa
dc.relation.references[12] R. Kikuchi, S. Maeda, K. Sasaki, S. Wennerström, and K. Eguchi, "Low-temperature methane oxidation over oxide-supported Pd catalysts: inhibitory effect of water vapor," Applied Catalysis A: General, vol. 232, pp. 23-28, 2002/06/10/ 2002.spa
dc.relation.references[13] H. Pan, M. Xu, Z. Li, S. Huang, and C. He, "Catalytic combustion of styrene over copper based catalyst: Inhibitory effect of water vapor," Chemosphere, vol. 76, pp. 721-6, 06/01 2009.spa
dc.relation.references[14] X. Li, L. Wang, Q. Xia, Z. Liu, and Z. Li, "Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor," Catalysis Communications, vol. 14, pp. 15-19, 2011/10/25/ 2011.spa
dc.relation.references[15] M. Esmaeilirad, M. Zabihi, J. Shayegan, and F. Khorasheh, "Oxidation of Toluene in Humid Air by Metal Oxides Supported on γ-Alumina," Journal of Hazardous Materials, vol. 333, 03/01 2017.spa
dc.relation.references[16] W. A. Giraldo Aristizabal and M. V. Toro Gómez, "Estimación de la emisión de contaminantes por motocicletas en el valle de aburrá," Dyna, vol. 75, pp. 241-250, 2008.spa
dc.relation.references[17] U. S. E. P. Agency. (2017, 28/10/2017). Technical Overview of Volatile Organic Compounds. Available: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#3spa
dc.relation.references[18] C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, "Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources," Chemical Reviews, vol. 119, pp. 4471-4568, 2019/04/10 2019.spa
dc.relation.references[19] H.-T. Liao, C. C. K. Chou, J. C. Chow, J. G. Watson, P. K. Hopke, and C.-F. Wu, "Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data," Environmental Pollution, vol. 205, pp. 121-130, 2015/10/01/ 2015.spa
dc.relation.references[20] S. Sillman, "11.11 - Tropospheric Ozone and Photochemical Smog," in Treatise on Geochemistry (Second Edition), H. D. Holland and K. K. Turekian, Eds., ed Oxford: Elsevier, 2014, pp. 415-437.spa
dc.relation.references[21] R. Carmona-Cabezas, J. Gómez-Gómez, E. Gutiérrez de Ravé, and F. J. Jiménez-Hornero, "Checking complex networks indicators in search of singular episodes of the photochemical smog," Chemosphere, vol. 241, p. 125085, 2020/02/01/ 2020.spa
dc.relation.references[22] J. Widhalm, R. Jaini, J. Morgan, and N. Dudareva, "Rethinking how volatiles are released from plant cells," Trends in plant science, vol. 20, 07/16 2015.spa
dc.relation.references[23] N. Dudareva, F. Negre, D. A. Nagegowda, and I. Orlova, "Plant Volatiles: Recent Advances and Future Perspectives," Critical Reviews in Plant Sciences, vol. 25, pp. 417-440, 2006/10/01 2006.spa
dc.relation.references[24] Z. Klimont, D. G. Streets, S. Gupta, J. Cofala, F. Lixin, and Y. Ichikawa, "Anthropogenic emissions of non-methane volatile organic compounds in China," Atmospheric Environment, vol. 36, pp. 1309-1322, 2002/03/01/ 2002.spa
dc.relation.references[25] J. Theloke and R. Friedrich, "Compilation of a database on the composition of anthropogenic VOC emissions for atmospheric modeling in Europe," Atmospheric Environment, vol. 41, pp. 4148-4160, 2007/06/01/ 2007.spa
dc.relation.references[26] M. Zang, C. Zhao, Y. Wang, and S. Chen, "A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts," Journal of Saudi Chemical Society, vol. 23, pp. 645-654, 2019/09/01/ 2019.spa
dc.relation.references[27] Y. Dumanoglu, M. Kara, H. Altiok, M. Odabasi, T. Elbir, and A. Bayram, "Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region," Atmospheric Environment, vol. 98, pp. 168-178, 2014/12/01/ 2014.spa
dc.relation.references[28] U. S. E. P. A. (EPA). (2016, 30/10/2019). The original list of hazardous air pollutants. Available: https://www3.epa.gov/ttn/atw/188polls.htmlspa
dc.relation.references[29] Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, "Source profiles of volatile organic compounds (VOCs) measured in China: Part I," Atmospheric Environment, vol. 42, pp. 6247-6260, 2008/08/01/ 2008.spa
dc.relation.references[30] B. Yuan, M. Shao, S. Lu, and B. Wang, "Source profiles of volatile organic compounds associated with solvent use in Beijing, China," Atmospheric Environment, vol. 44, pp. 1919-1926, 2010/05/01/ 2010.spa
dc.relation.references[31] M. Anić, N. Radić, B. Grbić, V. Dondur, L. Damjanović, D. Stoychev, et al., "Catalytic activity of Pt catalysts promoted by MnOx for n-hexane oxidation," Applied Catalysis B: Environmental, vol. 107, pp. 327-332, 2011/09/21/ 2011.spa
dc.relation.references[32] V. Y. Bychkov, Y. P. Tyulenin, A. Y. Gorenberg, S. Sokolov, and V. N. Korchak, "Evolution of Pd catalyst structure and activity during catalytic oxidation of methane and ethane," Applied Catalysis A: General, vol. 485, pp. 1-9, 2014/09/05/ 2014.spa
dc.relation.references[33] J. Okal and M. Zawadzki, "Catalytic combustion of butane on Ru/γ-Al2O3 catalysts," Applied Catalysis B: Environmental, vol. 89, pp. 22-32, 2009/07/03/ 2009.spa
dc.relation.references[34] H. A. Almukhlifi and R. C. Burns, "The complete oxidation of isobutane over CeO2 and Au/CeO2, and the composite catalysts MOx/CeO2 and Au/MOx/CeO2 (Mn+=Mn, Fe, Co and Ni): the effects of gold nanoparticles obtained from n-hexanethiolate-stabilized gold nanoparticles," Journal of Molecular Catalysis A: Chemical, vol. 415, pp. 131-143, 2016/05/01/ 2016.spa
dc.relation.references[35] B. Solsona, T. Garcia, S. Agouram, G. J. Hutchings, and S. H. Taylor, "The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane," Applied Catalysis B: Environmental, vol. 101, pp. 388-396, 2011/01/14/ 2011.spa
dc.relation.references[36] M. Narayanappa, V. D. B. C. Dasireddy, and H. B. Friedrich, "Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.90Co0.10O2−δ) catalysts," Applied Catalysis A: General, vol. 447-448, pp. 135-143, 2012/12/07/ 2012.spa
dc.relation.references[37] Y. Xie, Y. Guo, Y. Guo, L. Wang, W. Zhan, Y. Wang, et al., "A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide," RSC Advances, vol. 6, pp. 50228-50237, 2016.spa
dc.relation.references[38] P. Concepción, P. Botella, and J. M. L. Nieto, "Catalytic and FT-IR study on the reaction pathway for oxidation of propane and propylene on V- or Mo–V-based catalysts," Applied Catalysis A: General, vol. 278, pp. 45-56, 2004/12/28/ 2004.spa
dc.relation.references[39] B. Solsona, T. García, R. Sanchis, M. D. Soriano, M. Moreno, E. Rodríguez-Castellón, et al., "Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method," Chemical Engineering Journal, vol. 290, pp. 273-281, 2016/04/15/ 2016.spa
dc.relation.references[40] D. A. Aguilera, A. Perez, R. Molina, and S. Moreno, "Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs," Applied Catalysis B: Environmental, vol. 104, pp. 144-150, 2011/04/27/ 2011.spa
dc.relation.references[41] M. Guiotto, M. Pacella, G. Perin, A. Iovino, N. Michelon, M. M. Natile, et al., "Washcoating vs. direct synthesis of LaCoO3 on monoliths for environmental applications," Applied Catalysis A: General, vol. 499, pp. 146-157, 2015/06/25/ 2015.spa
dc.relation.references[42] B. Faure and P. Alphonse, "Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature," Applied Catalysis B: Environmental, vol. 180, pp. 715-725, 2016/01/01/ 2016.spa
dc.relation.references[43] Z. Jiang, L. Kong, Z. Chu, L. J. France, T. Xiao, and P. P. Edwards, "Catalytic combustion of propane over mixed oxides derived from CuxMg3−xAl hydrotalcites," Fuel, vol. 96, pp. 257-263, 2012/06/01/ 2012.spa
dc.relation.references[44] M. H. Castaño, R. Molina, and S. Moreno, "Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: Influence of the synthesis method," Applied Catalysis A: General, vol. 492, pp. 48-59, 2015/02/25/ 2015.spa
dc.relation.references[45] F. Alonso, I. P. Beletskaya, and M. Yus, "Metal-Mediated Reductive Hydrodehalogenation of Organic Halides," Chemical Reviews, vol. 102, pp. 4009-4092, 2002/11/01 2002.spa
dc.relation.references[46] A. Aranzabal, B. Pereda-Ayo, M. P. González-Marcos, J. González-Marcos, R. Lopez-Fonseca, and J. González-Velasco, "State of the art in catalytic oxidation of chlorinated volatile organic compounds," Chemical Papers, vol. 68, 09/01 2014.spa
dc.relation.references[47] J. W. Li, K. L. Pan, S. J. Yu, S. Y. Yan, and M. B. Chang, "Removal of formaldehyde over MnxCe1−xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation," Journal of Environmental Sciences, vol. 26, pp. 2546-2553, 2014/12/01/ 2014.spa
dc.relation.references[48] S. Scirè and L. F. Liotta, "Supported gold catalysts for the total oxidation of volatile organic compounds," Applied Catalysis B: Environmental, vol. 125, pp. 222-246, 2012/08/21/ 2012.spa
dc.relation.references[49] V. P. Santos, M. F. R. Pereira, J. J. M. Órfão, and J. L. Figueiredo, "Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst," Journal of Hazardous Materials, vol. 185, pp. 1236-1240, 2011/01/30/ 2011.spa
dc.relation.references[50] Z. Zhu and R. J. Wu, "The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature," Journal of the Taiwan Institute of Chemical Engineers, vol. 50, 01/05 2015.spa
dc.relation.references[51] Z. Özçelik, G. S. P. Soylu, and İ. Boz, "Catalytic combustion of toluene over Mn, Fe and Co-exchanged clinoptilolite support," Chemical Engineering Journal, vol. 155, pp. 94-100, 2009/12/01/ 2009.spa
dc.relation.references[52] S. C. Kim, "The catalytic oxidation of aromatic hydrocarbons over supported metal oxide," Journal of Hazardous Materials, vol. 91, pp. 285-299, 2002/04/26/ 2002.spa
dc.relation.references[53] X. Liang, X. Chen, J. Zhang, T. Shi, X. Sun, L. Fan, et al., "Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China," Atmospheric Environment, vol. 162, pp. 115-126, 2017/08/01/ 2017.spa
dc.relation.references[54] C. Liaud, N. T. Nguyen, R. Nasreddine, and S. Le Calvé, "Experimental performances study of a transportable GC-PID and two thermo-desorption based methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air," Talanta, vol. 127, pp. 33-42, 2014/09/01/ 2014.spa
dc.relation.references[55] C. Lee, Y.-G. Shul, and H. Einaga, "Silver and manganese oxide catalysts supported on mesoporous ZrO2 nanofiber mats for catalytic removal of benzene and diesel soot," Catalysis Today, vol. 281, pp. 460-466, 2017/03/01/ 2017.spa
dc.relation.references[56] J. Li, W. Tang, G. Liu, W. Li, Y. Deng, J. Yang, et al., "Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds," Catalysis Today, vol. 278, pp. 203-208, 2016/12/01/ 2016.spa
dc.relation.references[57] S. Zuo, Y. Du, F. Liu, D. Han, and C. Qi, "Influence of ceria promoter on shell-powder-supported Pd catalyst for the complete oxidation of benzene," Applied Catalysis A: General, vol. 451, pp. 65-70, 2013/01/31/ 2013.spa
dc.relation.references[58] Y. Chen, B. Li, Q. Niu, L. Li, J. Kan, S. Zhu, et al., "Combined promoting effects of low-Pd-containing and Cu-doped LaCoO3 perovskite supported on cordierite for the catalytic combustion of benzene," Environmental Science and Pollution Research, vol. 23, 04/20 2016.spa
dc.relation.references[59] J. Zeng, X. Liu, J. Wang, H. Lv, and T. Zhu, "Catalytic oxidation of benzene over MnOx/TiO2 catalysts and the mechanism study," Journal of Molecular Catalysis A: Chemical, vol. 408, pp. 221-227, 2015/11/01/ 2015.spa
dc.relation.references[60] B. Li, Q. Huang, X. K. Yan, X. L. Xu, Y. Qiu, B. Yang, et al., "Low-temperature catalytic combustion of benzene over Ni–Mn/CeO2/cordierite catalysts," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 2359-2363, 2014/07/25/ 2014.spa
dc.relation.references[61] Y. Luo, K. Wang, Y. Xu, X. Wang, Q. Qian, and Q. Chen, "Role of Cu species in electrospun CuO-CeO2 nanofibers for total benzene oxidation," New J. Chem., vol. 39, 11/13 2014.spa
dc.relation.references[62] Y. Ke and S.-Y. Lai, "Comparison of the catalytic benzene oxidation activity of mesoporous ceria prepared via hard-template and soft-template," Microporous and Mesoporous Materials, vol. 198, pp. 256-262, 2014/11/01/ 2014.spa
dc.relation.references[63] A. G. M. da Silva, H. V. Fajardo, R. Balzer, L. F. D. Probst, N. T. Prado, P. H. C. Camargo, et al., "Efficient ceria–silica catalysts for BTX oxidation: Probing the catalytic performance and oxygen storage," Chemical Engineering Journal, vol. 286, pp. 369-376, 2016/02/15/ 2016.spa
dc.relation.references[64] A. Aranda, B. Puertolas, B. Solsona, S. Agouram, R. Murillo, A. Mastral, et al., "Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates," Catalysis Letters, vol. 134, 01/01 2009.spa
dc.relation.references[65] Z. Zhao, H. Dai, J. Deng, Y. Du, Y. Liu, and L. Zhang, "Three-dimensionally ordered macroporous La0.6Sr0.4FeO3−δ: High-efficiency catalysts for the oxidative removal of toluene," Microporous and Mesoporous Materials, vol. 163, pp. 131-139, 2012/11/15/ 2012.spa
dc.relation.references[66] A. Giroir-Fendler, M. Alves-Fortunato, M. Richard, C. Wang, J. A. Díaz, S. Gil, et al., "Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion," Applied Catalysis B: Environmental, vol. 180, pp. 29-37, 2016/01/01/ 2016.spa
dc.relation.references[67] D. Li, Y. Fan, Y. Ding, X. Wei, and Y. Xiao, "Preparation of cobalt-copper-aluminum spinel mixed oxides from layered double hydroxides for total oxidation of benzene," Catalysis Communications, vol. 88, pp. 60-63, 2017/01/05/ 2017.spa
dc.relation.references[68] S. Mo, S. Li, J. Li, S. peng, J. Chen, and Y. Chen, "Promotional effects of Ce on the activity of MnAl oxide catalysts derived from hydrotalcites for low temperature benzene oxidation," Catalysis Communications, vol. 87, pp. 102-105, 2016/12/05/ 2016.spa
dc.relation.references[69] C. Gennequin, S. Kouassi, L. Tidahy, R. Cousin, J.-F. Lamonier, G. Garcon, et al., "Co–Mg–Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds. Identification and toxicological impact of the by-products," Comptes Rendus Chimie, vol. 13, pp. 494-501, 2010/05/01/ 2010.spa
dc.relation.references[70] S. Mo, S. Li, J. Li, Y. Deng, S. Peng, J. Chen, et al., "Rich surface Co(III) ions enhanced Co nanocatalyst benzene /toluene oxidation performance derived from CoIICoIII layered double hydroxide," Nanoscale, vol. 8, 08/17 2016.spa
dc.relation.references[71] J. Ran, H. Qiu, S. Sun, and L. Tian, "Short-term effects of ambient benzene and TEX (toluene, ethylbenzene, and xylene combined) on cardiorespiratory mortality in Hong Kong," Environment International, vol. 117, pp. 91-98, 2018/08/01/ 2018.spa
dc.relation.references[72] O. S. A. H. A. (OSHA). (2017, 31/10/2019). Occupational Exposure Limits - Toluene. Available: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000TABLEZ2spa
dc.relation.references[73] J. Li, M. Li, J. Zhang, D. Ye, X. Zhu, and Q. Liao, "A microbial fuel cell capable of converting gaseous toluene to electricity," Biochemical Engineering Journal, vol. 75, pp. 39-46, 2013/06/15/ 2013.spa
dc.relation.references[74] K.-H. Kim, J. E. Szulejko, N. Raza, V. Kumar, K. Vikrant, D. C. W. Tsang, et al., "Identifying the best materials for the removal of airborne toluene based on performance metrics - A critical review," Journal of Cleaner Production, vol. 241, p. 118408, 2019/12/20/ 2019.spa
dc.relation.references[75] S. Saqer, D. Kondarides, and X. Verykios, "Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation," Topics in Catalysis, vol. 52, pp. 517-527, 05/01 2009.spa
dc.relation.references[76] H. L. Tidahy, S. Siffert, F. Wyrwalski, J. F. Lamonier, and A. Aboukaïs, "Catalytic activity of copper and palladium based catalysts for toluene total oxidation," Catalysis Today, vol. 119, pp. 317-320, 2007/01/15/ 2007.spa
dc.relation.references[77] K. Ji, H. Dai, J. Deng, X. Li, Y. Wang, B. Gao, et al., "A comparative study of bulk and 3DOM-structured Co3O4, Eu0.6Sr0.4FeO3, and Co3O4/Eu0.6Sr0.4FeO3: Preparation, characterization, and catalytic activities for toluene combustion," Applied Catalysis A: General, vol. 447-448, pp. 41-48, 2012/12/07/ 2012.spa
dc.relation.references[78] G. Li, C. Zhang, Z. Wang, H. Huang, H. Peng, and X. Li, "Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation," Applied Catalysis A: General, vol. 550, pp. 67-76, 2018/01/25/ 2018.spa
dc.relation.references[79] D. Baojuan, L. Shumin, L. Deliang, Z. Ruozhu, L. Jingge, H. Qinglan, et al., "Catalytic oxidation of ethyl acetate and toluene over Cu–Ce–Zr supported ZSM-5/TiO2 catalysts," RSC Advances, vol. 6, pp. 53852-53859, 2016.spa
dc.relation.references[80] I. H. Kim, E. J. Park, C. H. Park, S. W. Han, H. O. Seo, and Y. D. Kim, "Activity of catalysts consisting of Fe2O3 nanoparticles decorating entire internal structure of mesoporous Al2O3 bead for toluene total oxidation," Catalysis Today, vol. 295, pp. 56-64, 2017/10/15/ 2017.spa
dc.relation.references[81] R. Sanchis, J. A. Cecilia, M. D. Soriano, M. I. Vázquez, A. Dejoz, J. M. López Nieto, et al., "Porous clays heterostructures as supports of iron oxide for environmental catalysis," Chemical Engineering Journal, vol. 334, pp. 1159-1168, 2018/02/15/ 2018.spa
dc.relation.references[82] R. Sanchis, D. Alonso-Domínguez, A. Dejoz, M. P. Pico, I. Álvarez-Serrano, T. García, et al., "Eco-Friendly Cavity-Containing Iron Oxides Prepared by Mild Routes as Very Efficient Catalysts for the Total Oxidation of VOCs," Materials (Basel, Switzerland), vol. 11, p. 1387, 2018.spa
dc.relation.references[83] X. Li, H. Dai, J. Deng, Y. Liu, S. Xie, Z. Zhao, et al., "Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene," Chemical Engineering Journal, vol. 228, pp. 965–975, 07/01 2013.spa
dc.relation.references[84] "Chapter IV: General Trends in the Mechanisms of Heterogeneous Catalytic Reactions Involving Molecular Oxygen," in Studies in Surface Science and Catalysis. vol. 15, G. I. Golodets, Ed., ed: Elsevier, 1983, pp. 104-125.spa
dc.relation.references[85] L. Wang, C. Zhang, H. Huang, X. Li, W. Zhang, M. Lu, et al., "Catalytic oxidation of toluene over active MnOxcatalyst prepared via an alkali-promoted redox precipitation method," Reaction Kinetics, Mechanisms and Catalysis, vol. 118, pp. 605-619, 2016/08/01 2016.spa
dc.relation.references[86] J. Li, L. Li, W. Cheng, F. Wu, X. Lu, and Z. Li, "Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide," Chemical Engineering Journal, vol. 244, pp. 59-67, 2014/05/15/ 2014.spa
dc.relation.references[87] J. Li, L. Li, F. Wu, L. Zhang, and X. Liu, "Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants," Catalysis Communications, vol. 31, pp. 52-56, 2013/01/10/ 2013.spa
dc.relation.references[88] G. Cheng, L. Yu, B. Lan, M. Sun, T. Lin, Z. Fu, et al., "Controlled synthesis of α-MnO2 nanowires and their catalytic performance for toluene combustion," Materials Research Bulletin, vol. 75, pp. 17-24, 2016/03/01/ 2016.spa
dc.relation.references[89] W. Si, Y. Wang, Y. Peng, X. Li, K. Li, and J. Li, "A high-efficiency γ-MnO2-like catalyst in toluene combustion," Chemical Communications, vol. 51, pp. 14977-14980, 2015.spa
dc.relation.references[90] Y. Liao, M. Fu, L. Chen, J. Wu, B. Huang, and D. Ye, "Catalytic oxidation of toluene over nanorod-structured Mn–Ce mixed oxides," Catalysis Today, vol. 216, pp. 220-228, 2013/11/01/ 2013.spa
dc.relation.references[91] D. Yu, Y. Liu, and Z. Wu, "Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol–gel method," Catalysis Communications, vol. 11, pp. 788-791, 2010/03/31/ 2010.spa
dc.relation.references[92] Y. Liu, H. Dai, J. Deng, L. Zhang, Z. Zhao, X. Li, et al., "Controlled Generation of Uniform Spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 Nanoparticles and Their High Catalytic Performance for Carbon Monoxide and Toluene Oxidation," Inorganic Chemistry, vol. 52, pp. 8665-8676, 2013/08/05 2013.spa
dc.relation.references[93] M. Alifanti, M. Florea, G. Filotti, V. Kuncser, V. Cortes-Corberan, and V. I. Parvulescu, "In situ structural changes during toluene complete oxidation on supported EuCoO3 monitored with 151Eu Mössbauer spectroscopy," Catalysis Today, vol. 117, pp. 329-336, 2006/09/30/ 2006.spa
dc.relation.references[94] X. Weng, W. L. Wang, Q. Meng, and Z. Wu, "An ultrafast approach for the syntheses of defective nanosized lanthanide perovskites for catalytic toluene oxidation," Catalysis Science & Technology, vol. 8, pp. 4364-4372, 2018.spa
dc.relation.references[95] S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J. P. Deloume, and P. Vernoux, "La(1−x)SrxCo1−yFeyO3 perovskites prepared by sol–gel method: Characterization and relationships with catalytic properties for total oxidation of toluene," Applied Catalysis B: Environmental, vol. 88, pp. 438-447, 2009/05/20/ 2009.spa
dc.relation.references[96] S. Jiang and S. Song, "Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs," Applied Catalysis B: Environmental, vol. 140-141, pp. 1-8, 2013/08/01/ 2013.spa
dc.relation.references[97] L.-Y. Lin and H. Bai, "Salt-induced formation of hollow and mesoporous CoOx/SiO2 spheres and their catalytic behavior in toluene oxidation," RSC Advances, vol. 6, pp. 24304-24313, 2016.spa
dc.relation.references[98] Q. H. Xia, K. Hidajat, and S. Kawi, "Adsorption and catalytic combustion of aromatics on platinum-supported MCM-41 materials," Catalysis Today, vol. 68, pp. 255-262, 2001/07/01/ 2001.spa
dc.relation.references[99] Y. Jiang, S. Xie, H. Yang, J. Deng, Y. Liu, and H. Dai, "Mn3O4-Au/3DOM La0.6Sr0.4CoO3: High-performance catalysts for toluene oxidation," Catalysis Today, vol. 281, pp. 437-446, 2017/03/01/ 2017.spa
dc.relation.references[100] "Decreto-Ley 2811 de 18 de Diciembre de 1974," P. d. l. R. d. Colombia, Ed., ed. República de Colombia, 1974.spa
dc.relation.references[101] "Resolución No. 2254 del 01 de noviembre de 2017," M. d. A. y. D. Sostenible, Ed., ed. República de Colombia, 2017.spa
dc.relation.references[102] S. Behar, N.-A. Gómez-Mendoza, M.-Á. Gómez-García, D. Świerczyński, F. Quignard, and N. Tanchoux, "Study and modelling of kinetics of the oxidation of VOC catalyzed by nanosized Cu–Mn spinels prepared via an alginate route," Applied Catalysis A: General, vol. 504, pp. 203-210, 2015/09/05/ 2015.spa
dc.relation.references[103] K. L. Pan, G. T. Pan, S. Chong, and M. B. Chang, "Removal of VOCs from gas streams with double perovskite-type catalysts," Journal of Environmental Sciences, vol. 69, pp. 205-216, 2018/07/01/ 2018.spa
dc.relation.references[104] J. M. Gatica, J. Castiglioni, C. de los Santos, M. P. Yeste, G. Cifredo, M. Torres, et al., "Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs," Catalysis Today, vol. 296, pp. 84-94, 2017/11/01/ 2017.spa
dc.relation.references[105] D. Widmann and R. J. Behm, "Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2," Journal of Catalysis, vol. 357, pp. 263-273, 2018/01/01/ 2018.spa
dc.relation.references[106] K. Everaert and J. Baeyens, "Catalytic combustion of volatile organic compounds," Journal of Hazardous Materials, vol. 109, pp. 113-139, 2004/06/18/ 2004.spa
dc.relation.references[107] E. V. Boikov, M. V. Vishnetskaya, A. N. Emel’yanov, I. S. Tomskii, and N. V. Shcherbakov, "The selective catalytic oxidation of toluene," Russian Journal of Physical Chemistry A, Focus on Chemistry, vol. 82, pp. 2233-2237, 2008/12/01 2008.spa
dc.relation.references[108] S. L. T. Andersson, "Reaction networks in the catalytic vapor-phase oxidation of toluene and xylenes," Journal of Catalysis, vol. 98, pp. 138-149, 1986/03/01/ 1986.spa
dc.relation.references[109] J. Kujawa, S. Cerneaux, and W. Kujawski, "Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes," Journal of Membrane Science, vol. 474, pp. 11-19, 2015/01/15/ 2015.spa
dc.relation.references[110] E. C. Moretti, "Reduce VOC and HAP emissions," Chemical Engineering Progress, vol. 98, pp. 30-40, 06/01 2002.spa
dc.relation.references[111] S. A. C. Carabineiro, X. Chen, O. Martynyuk, N. Bogdanchikova, M. Avalos-Borja, A. Pestryakov, et al., "Gold supported on metal oxides for volatile organic compounds total oxidation," Catalysis Today, vol. 244, pp. 103-114, 2015/04/15/ 2015.spa
dc.relation.references[112] X. Chen, S. A. C. Carabineiro, P. B. Tavares, J. J. M. Órfão, M. F. R. Pereira, and J. L. Figueiredo, "Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides," Journal of Environmental Chemical Engineering, vol. 2, pp. 344-355, 2014/03/01/ 2014.spa
dc.relation.references[113] M. Konsolakis, S. A. C. Carabineiro, P. B. Tavares, and J. L. Figueiredo, "Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1−xSmxOδ mixed oxides," Journal of Hazardous Materials, vol. 261, pp. 512-521, 2013/10/15/ 2013.spa
dc.relation.references[114] P.-O. Larsson and A. Andersson, "Complete Oxidation of CO, Ethanol, and Ethyl Acetate over Copper Oxide Supported on Titania and Ceria Modified Titania," Journal of Catalysis, vol. 179, pp. 72-89, 1998/10/01/ 1998.spa
dc.relation.references[115] S. S. T. Bastos, J. J. M. Órfão, M. M. A. Freitas, M. F. R. Pereira, and J. L. Figueiredo, "Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol," Applied Catalysis B: Environmental, vol. 93, pp. 30-37, 2009/11/25/ 2009.spa
dc.relation.references[116] L. F. Liotta, "Catalytic oxidation of volatile organic compounds on supported noble metals," Applied Catalysis B: Environmental, vol. 100, pp. 403-412, 2010/10/20/ 2010.spa
dc.relation.references[117] N. Radic, B. Grbic, and A. Terlecki-Baricevic, "Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: Platinum crystallite size effect," Applied Catalysis B: Environmental, vol. 50, pp. 153-159, 2004/07/08/ 2004.spa
dc.relation.references[118] D. Delimaris and T. Ioannides, "VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method," Applied Catalysis B: Environmental, vol. 84, pp. 303-312, 2008/10/25/ 2008.spa
dc.relation.references[119] J. I. Gutiérrez-Ortiz, B. de Rivas, R. López-Fonseca, and J. R. González-Velasco, "Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions," Applied Catalysis B: Environmental, vol. 65, pp. 191-200, 2006/06/06/ 2006.spa
dc.relation.references[120] T. Garcia, B. Solsona, and S. H. Taylor, "The Oxidative Destruction of Hydrocarbon Volatile Organic Compounds Using Palladium–Vanadia–Titania Catalysts," Catalysis Letters, vol. 97, pp. 99-103, 2004/08/01 2004.spa
dc.relation.references[121] P. M. Heynderickx, J. W. Thybaut, H. Poelman, D. Poelman, and G. B. Marin, "The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides," Journal of Catalysis, vol. 272, pp. 109-120, 2010/05/25/ 2010.spa
dc.relation.references[122] W. B. Li, J. X. Wang, and H. Gong, "Catalytic combustion of VOCs on non-noble metal catalysts," Catalysis Today, vol. 148, pp. 81-87, 2009/10/30/ 2009.spa
dc.relation.references[123] T. Mitsui, K. Tsutsui, T. Matsui, R. Kikuchi, and K. Eguchi, "Catalytic abatement of acetaldehyde over oxide-supported precious metal catalysts," Applied Catalysis B: Environmental, vol. 78, pp. 158-165, 2008/01/17/ 2008.spa
dc.relation.references[124] F. Wyrwalski, J. F. Lamonier, M. J. Perez-Zurita, S. Siffert, and A. Aboukaïs, "Influence of the Ethylenediamine Addition on the Activity, Dispersion and Reducibility of Cobalt Oxide Catalysts Supported over ZrO2 for Complete VOC Oxidation," Catalysis Letters, vol. 108, pp. 87-95, 2006/04/01 2006.spa
dc.relation.references[125] S. H. Taylor, C. S. Heneghan, G. J. Hutchings, and I. D. Hudson, "The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds," Catalysis Today, vol. 59, pp. 249-259, 2000/06/25/ 2000.spa
dc.relation.references[126] W. Tang, X. Wu, S. Li, W. Li, and Y. Chen, "Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs," Catalysis Communications, vol. 56, pp. 134–138, 11/01 2014.spa
dc.relation.references[127] M. Răciulete, G. Layrac, F. Papa, C. Negrilă, D. Tichit, and I.-C. Marcu, "Influence of Mn content on the catalytic properties of Cu-(Mn)-Zn-Mg-Al mixed oxides derived from LDH precursors in the total oxidation of methane," Catalysis Today, vol. 306, pp. 276-286, 2018/05/15/ 2018.spa
dc.relation.references[128] S. C. Kim and W. G. Shim, "Catalytic combustion of VOCs over a series of manganese oxide catalysts," Applied Catalysis B: Environmental, vol. 98, pp. 180-185, 2010/08/01/ 2010.spa
dc.relation.references[129] A. V. Salker and R. K. Kunkalekar, "Palladium doped manganese dioxide catalysts for low temperature carbon monoxide oxidation," Catalysis Communications, vol. 10, pp. 1776-1780, 2009/07/25/ 2009.spa
dc.relation.references[130] Q. Liu, L.-C. Wang, M. Chen, Y. Cao, H.-Y. He, and K.-N. Fan, "Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane," Journal of Catalysis, vol. 263, pp. 104-113, 2009/04/01/ 2009.spa
dc.relation.references[131] M. Konsolakis, S. A. C. Carabineiro, G. E. Marnellos, M. F. Asad, O. S. G. P. Soares, M. F. R. Pereira, et al., "Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides," Journal of Colloid and Interface Science, vol. 496, pp. 141-149, 2017/06/15/ 2017.spa
dc.relation.references[132] M. Tsvetkov, J. Zaharieva, G. Issa, Z. Cherkezova-Zheleva, M. Nedyalkov, D. Paneva, et al., "Cobalt ferrite modified with Hf(IV) as a catalyst for oxidation of ethyl acetate," Catalysis Today, 2019/06/03/ 2019.spa
dc.relation.references[133] W. Tang, X. Wu, S. Li, W. Li, and Y. Chen, "Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs," Catalysis Communications, vol. 56, pp. 134-138, 2014/11/05/ 2014.spa
dc.relation.references[134] A. Pérez, R. Molina, and S. Moreno, "Enhanced VOC oxidation over Ce/CoMgAl mixed oxides using a reconstruction method with EDTA precursors," Applied Catalysis A: General, vol. 477, pp. 109-116, 2014/05/05/ 2014.spa
dc.relation.references[135] H. M. S. Al-Aani, E. Iro, P. Chirra, I. Fechete, M. Badea, C. Negrilă, et al., "CuxCeMgAlO mixed oxide catalysts derived from multicationic LDH precursors for methane total oxidation," Applied Catalysis A: General, vol. 586, p. 117215, 2019/09/25/ 2019.spa
dc.relation.references[136] K. V. Manukyan, "Solution Combustion Synthesis of Catalysts," in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, and A. S. Rogachev, Eds., ed Amsterdam: Elsevier, 2017, pp. 347-348.spa
dc.relation.references[137] Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, and S. Wang, "A review on photocatalysis for air treatment: From catalyst development to reactor design," Chemical Engineering Journal, vol. 310, pp. 537-559, 2017/02/15/ 2017.spa
dc.relation.references[138] F. Zhang, Y. Zhang, L. Yuan, K. A. M. Gasem, J. Chen, F. Chiang, et al., "Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods," Molecular Catalysis, vol. 441, pp. 190-198, 2017/11/01/ 2017.spa
dc.relation.references[139] A. Afshar Taromi and S. Kaliaguine, "Hydrodeoxygenation of triglycerides over reduced mesostructured Ni/γ-alumina catalysts prepared via one-pot sol-gel route for green diesel production," Applied Catalysis A: General, vol. 558, pp. 140-149, 2018/05/25/ 2018.spa
dc.relation.references[140] A. V. Nakhate and G. D. Yadav, "Cu2O nanoparticles supported hydrothermal carbon microspheres as catalyst for propargylamine synthesis," Molecular Catalysis, vol. 451, pp. 209-219, 2018/05/01/ 2018.spa
dc.relation.references[141] K. Urasaki, S. Kado, A. Kiryu, K.-i. Imagawa, K. Tomishige, R. Horn, et al., "Synthesis gas production by catalytic partial oxidation of natural gas using ceramic foam catalyst," Catalysis Today, vol. 299, pp. 219-228, 2018/01/01/ 2018.spa
dc.relation.references[142] Z. Wang, Q. Zhang, X. Lu, S. Chen, and C. Liu, "Ru-Zn catalysts for selective hydrogenation of benzene using coprecipitation in low alkalinity," Chinese Journal of Catalysis, vol. 36, pp. 400-407, 2015/03/01/ 2015.spa
dc.relation.references[143] O. H. Laguna, M. A. Centeno, M. Boutonnet, and J. A. Odriozola, "Au-supported on Fe-doped ceria solids prepared in water-in-oil microemulsions: Catalysts for CO oxidation," Catalysis Today, vol. 278, pp. 140-149, 2016/12/01/ 2016.spa
dc.relation.references[144] M. Schubert, L. Schubert, A. Thomé, L. Kiewidt, C. Rosebrock, J. Thöming, et al., "Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts," Journal of Colloid and Interface Science, vol. 477, pp. 64-73, 2016/09/01/ 2016.spa
dc.relation.references[145] J. C. Toniolo, A. S. Takimi, and C. P. Bergmann, "Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method," Materials Research Bulletin, vol. 45, pp. 672-676, 2010/06/01/ 2010.spa
dc.relation.references[146] K. H. Wu, Y. C. Chang, and G. P. Wang, "Preparation of NiZn ferrite/SiO2 nanocomposite powders by sol–gel auto-combustion method," Journal of Magnetism and Magnetic Materials, vol. 269, pp. 150-155, 2004/02/01/ 2004.spa
dc.relation.references[147] K. V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A. S. Rogachev, E. E. Wolf, et al., "Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies," The Journal of Physical Chemistry C, vol. 117, pp. 24417-24427, 2013/11/21 2013.spa
dc.relation.references[148] M. H. Castaño, R. Molina, and S. Moreno, "Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion," Journal of Molecular Catalysis A: Chemical, vol. 398, pp. 358-367, 2015/03/01/ 2015.spa
dc.relation.references[149] A. Mukasyan and P. Dinka, "Novel approaches to solution-combustion synthesis of nanomaterials," International Journal of Self-Propagating High-Temperature Synthesis, vol. 16, pp. 23-35, 03/01 2007.spa
dc.relation.references[150] K. Patil, M. S. Hegde, T. Rattan, and S. T. Aruna, "Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications," 01/01 2008.spa
dc.relation.references[151] A. Civera, M. Pavese, G. Saracco, and V. Specchia, "Combustion synthesis of perovskite-type catalysts for natural gas combustion," Catalysis Today, vol. 83, pp. 199-211, 2003/08/15/ 2003.spa
dc.relation.references[152] M. H. Castaño, R. Molina, and S. Moreno, "Effect of Mg and Al on manganese oxides as catalysts for VOC oxidation," Molecular Catalysis, vol. 443, pp. 117-124, 2017/12/01/ 2017.spa
dc.relation.references[153] S. Z. Qiao, J. Liu, and G. Q. Max Lu, "Chapter 21 - Synthetic Chemistry of Nanomaterials," in Modern Inorganic Synthetic Chemistry (Second Edition), R. Xu and Y. Xu, Eds., ed Amsterdam: Elsevier, 2017, pp. 613-640.spa
dc.relation.references[154] J. C. Fariñas, R. Moreno, A. Pérez, M. A. García, M. García-Hernández, M. D. Salvador, et al., "Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite," Journal of the European Ceramic Society, vol. 38, pp. 2360-2368, 2018/05/01/ 2018.spa
dc.relation.references[155] A. Mirzaei and G. Neri, "Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review," Sensors and Actuators B: Chemical, vol. 237, pp. 749-775, 2016/12/01/ 2016.spa
dc.relation.references[156] S. A. Klein, "An Explanation for Observed Compression Ratios in Internal Combustion Engines," Journal of Engineering for Gas Turbines and Power, vol. 113, pp. 511-513, 1991.spa
dc.relation.references[157] M. B. Alonso, "La emisión de aerosoles de partículas y gases en motores de diésel," Seguridad y Salud en el Trabajo, vol. 73, pp. 14-26, 2013.spa
dc.relation.references[158] S. M. Saqer, D. I. Kondarides, and X. E. Verykios, "Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3," Applied Catalysis B: Environmental, vol. 103, pp. 275-286, 2011/04/05/ 2011.spa
dc.relation.references[159] S. Zhang, X.-S. Li, B. Chen, X. Zhu, C. Shi, and A.-M. Zhu, "CO Oxidation Activity at Room Temperature over Au/CeO2 Catalysts: Disclosure of Induction Period and Humidity Effect," ACS Catalysis, vol. 4, pp. 3481-3489, 2014/10/03 2014.spa
dc.relation.references[160] N. An, Q. Yu, G. Liu, S. Li, M. Jia, and W. Zhang, "Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method," Journal of Hazardous Materials, vol. 186, pp. 1392-1397, 2011/02/28/ 2011.spa
dc.relation.references[161] H. Flaschka, "Complexation in analytical chemistry (Ringbom, Anders)," Journal of Chemical Education, vol. 41, p. A474, 1964/06/01 1964.spa
dc.relation.references[162] S. Li, H. Wang, W. Li, X. Wu, W. Tang, and Y. Chen, "Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor," Applied Catalysis B: Environmental, vol. 166-167, pp. 260-269, 2015/05/01/ 2015.spa
dc.relation.references[163] J. Zhu and S. L. T. Andersson, "Effect of water on the catalytic oxidation of toluene over vanadium oxide catalysts," Applied Catalysis, vol. 53, pp. 251-262, 1989/09/01/ 1989.spa
dc.relation.references[164] S. Xie, J. Deng, Y. Liu, Z. Zhang, H. Yang, Y. Jiang, et al., "Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au–Pd alloy nanoparticles for the complete oxidation of toluene," Applied Catalysis A: General, vol. 507, pp. 82-90, 2015/10/25/ 2015.spa
dc.relation.references[165] B.-b. Chen, X.-b. Zhu, M. Crocker, Y. Wang, and C. Shi, "FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature," Applied Catalysis B: Environmental, vol. 154-155, pp. 73-81, 2014/07/01/ 2014.spa
dc.relation.references[166] E. J. Park, H. O. Seo, and Y. D. Kim, "Influence of humidity on the removal of volatile organic compounds using solid surfaces," Catalysis Today, vol. 295, pp. 3-13, 2017/10/15/ 2017.spa
dc.relation.references[167] S. Li, M. Jia, J. Gao, P. Wu, M. Yang, S. Huang, et al., "Infrared Studies of the Promoting Role of Water on the Reactivity of Pt/FeOx Catalyst in Low-Temperature Oxidation of Carbon Monoxide," The Journal of Physical Chemistry C, vol. 119, pp. 2483-2490, 2015/02/05 2015.spa
dc.relation.references[168] H. Huang, X. Ye, H. Huang, L. Zhang, and D. Y. C. Leung, "Mechanistic study on formaldehyde removal over Pd/TiO2 catalysts: Oxygen transfer and role of water vapor," Chemical Engineering Journal, vol. 230, pp. 73-79, 2013/08/15/ 2013.spa
dc.relation.references[169] Z. Abdelouahab-Reddam, R. E. Mail, F. Coloma, and A. Sepúlveda-Escribano, "Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs," Applied Catalysis A: General, vol. 494, pp. 87-94, 2015/03/25/ 2015.spa
dc.relation.references[170] S. Xie, H. Dai, J. Deng, H. Yang, W. Han, H. Arandiyan, et al., "Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene," Journal of Hazardous Materials, vol. 279, pp. 392–401, 08/01 2014.spa
dc.relation.references[171] E. J. Park, J. H. Lee, K.-D. Kim, D. H. Kim, M.-G. Jeong, and Y. D. Kim, "Toluene oxidation catalyzed by NiO/SiO2 and NiO/TiO2/SiO2: Towards development of humidity-resistant catalysts," Catalysis Today, vol. 260, pp. 100-106, 2016/02/01/ 2016.spa
dc.relation.references[172] J. Chi-Sheng Wu and T.-Y. Chang, "VOC deep oxidation over Pt catalysts using hydrophobic supports," Catalysis Today, vol. 44, pp. 111-118, 1998/09/30/ 1998.spa
dc.relation.references[173] F. Deganello and A. K. Tyagi, "Solution combustion synthesis, energy and environment: Best parameters for better materials," Progress in Crystal Growth and Characterization of Materials, vol. 64, pp. 23-61, 2018/06/01/ 2018.spa
dc.relation.references[174] H. H. Nersisyan, J. H. Lee, J.-R. Ding, K.-S. Kim, K. V. Manukyan, and A. S. Mukasyan, "Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives," Progress in Energy and Combustion Science, vol. 63, pp. 79-118, 2017/11/01/ 2017.spa
dc.relation.references[175] S. Specchia, G. Ercolino, S. Karimi, C. Italiano, and A. Vita, "Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control," International Journal of Self-Propagating High-Temperature Synthesis, vol. 26, pp. 166-186, 2017/07/01 2017.spa
dc.relation.references[176] S. T. Aruna and A. S. Mukasyan, "Combustion synthesis and nanomaterials," Current Opinion in Solid State and Materials Science, vol. 12, pp. 44-50, 2008/06/01/ 2008.spa
dc.relation.references[177] A. Khort, K. Podbolotov, R. Serrano-García, and Y. K. Gun’ko, "One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect," Journal of Solid State Chemistry, vol. 253, pp. 270-276, 2017/09/01/ 2017.spa
dc.relation.references[178] T. Pine, X. Lu, D. Mumm, G. Samuelsen, and J. Brouwer, "Emission of Pollutants from Glycine–Nitrate Combustion Synthesis Processes," Journal of the American Ceramic Society, vol. 90, pp. 3735-3740, 10/19 2007.spa
dc.relation.references[179] K. Podbolotov, A. Khort, A. Tarasov, G. Trusov, S. Roslyakov, and A. Mukasyan, "Solution Combustion Synthesis of Copper Nanopowders: The Fuel Effect," Combustion Science and Technology, p. null, 06/08 2017.spa
dc.relation.references[180] S. Specchia, C. Galletti, and V. Specchia, "Solution Combustion Synthesis as intriguing technique to quickly produce performing catalysts for specific applications," in Studies in Surface Science and Catalysis. vol. 175, E. M. Gaigneaux, M. Devillers, S. Hermans, P. A. Jacobs, J. A. Martens, and P. Ruiz, Eds., ed: Elsevier, 2010, pp. 59-67.spa
dc.relation.references[181] S. Hadke, M. T. Kalimila, S. Rathkanthiwar, S. Gour, R. Sonkusare, and A. Ballal, "Role of fuel and fuel-to-oxidizer ratio in combustion synthesis of nano-crystalline nickel oxide powders," Ceramics International, vol. 41, pp. 14949-14957, 2015/12/01/ 2015.spa
dc.relation.references[182] G. Mitran, S. Chen, and D.-K. Seo, "Role of oxygen vacancies and Mn4+/Mn3+ ratio in oxidation and dry reforming over cobalt-manganese spinel oxides," Molecular Catalysis, p. 110704, 2019/11/09/ 2019.spa
dc.relation.references[183] Z. Chen, S. Wang, W. Liu, X. Gao, D. Gao, M. Wang, et al., "Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion," Applied Catalysis A: General, vol. 525, pp. 94-102, 2016/09/05/ 2016.spa
dc.relation.references[184] R. Itteboina and T. K. Sau, "Sol-gel synthesis and characterizations of morphology-controlled Co3O4 particles," Materials Today: Proceedings, vol. 9, pp. 458-467, 2019/01/01/ 2019.spa
dc.relation.references[185] S. Carbonin, F. Martignago, G. Menegazzo, and A. Dal Negro, "X-ray single-crystal study of spinels: in situ heating," Physics and Chemistry of Minerals, vol. 29, pp. 503-514, 2002/09/01 2002.spa
dc.relation.references[186] F. Bosi, U. Hålenius, G. B. Andreozzi, H. Skogby, and S. Lucchesi, "Structural refinement and crystal chemistry of Mn-doped spinel: A case for tetrahedrally coordinated Mn3+ in an oxygen-based structure," American Mineralogist, vol. 92, pp. 27-33, 2007.spa
dc.relation.references[187] G. I. Golodets, "Chapter XXI: The Oxidation of Aromatic Hydrocarbons," in Studies in Surface Science and Catalysis. vol. 15, G. I. Golodets, Ed., ed: Elsevier, 1983, pp. 650-742.spa
dc.relation.references[188] J.-J. Li, S.-C. Cai, E.-Q. Yu, B. Weng, X. Chen, J. Chen, et al., "Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites," Applied Catalysis B: Environmental, vol. 233, pp. 260-271, 2018/10/05/ 2018.spa
dc.relation.references[189] E. Yu, J. Li, J. Chen, J. Chen, Z. Hong, and H. Jia, "Enhanced photothermal catalytic degradation of toluene by loading Pt nanoparticles on manganese oxide: photoactivation of lattice oxygen," Journal of Hazardous Materials, p. 121800, 2019/11/30/ 2019.spa
dc.relation.references[190] S. S. Jamali, D. Singh, H. Tavakkoli, F. Kaveh, and T. Tabari, "Microwave-assisted synthesis of nanostructured perovskite-type oxide with efficient photocatalytic activity against organic reactants in gaseous and aqueous phases," Materials Science in Semiconductor Processing, vol. 64, pp. 47-54, 2017/06/15/ 2017.spa
dc.relation.references[191] W. Walerczyk and M. Zawadzki, "Structural and catalytic properties of Pt/ZnAl2O4 as catalyst for VOC total oxidation," Catalysis Today, vol. 176, pp. 159-162, 2011/11/01/ 2011.spa
dc.relation.references[192] A. Kaddouri and S. Ifrah, "Microwave-assisted synthesis of La1−xBxMnO3.15 (B=Sr, Ag; x=0 or 0.2) via manganese oxides susceptors and their activity in methane combustion," Catalysis Communications, vol. 7, pp. 109-113, 2006/02/01/ 2006.spa
dc.relation.references[193] N. Miniajluk, J. Trawczyński, and M. Zawadzki, "Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: Effect of solvent diols," Applied Catalysis A: General, vol. 531, pp. 119-128, 2017/02/05/ 2017.spa
dc.relation.references[194] X. Fei, S. Cao, W. Ouyang, Y. Wen, H. Wang, and Z. Wu, "A convenient synthesis of core-shell Co3O4@ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2)," Chemical Engineering Journal, p. 123411, 2019/11/07/ 2019.spa
dc.relation.references[195] Y. Liao, L. He, M. Zhao, and D. Ye, "Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation," Journal of Environmental Chemical Engineering, vol. 5, pp. 5054-5060, 2017/10/01/ 2017.spa
dc.relation.references[196] C. A. Serhal, I. Mallard, C. Poupin, M. Labaki, S. Siffert, and R. Cousin, "Ultraquick synthesis of hydrotalcite-like compounds as efficient catalysts for the oxidation of volatile organic compounds," Comptes Rendus Chimie, vol. 21, pp. 993-1000, 2018/11/01/ 2018.spa
dc.relation.references[197] C. A. Serhal, I. Mallard, C. Poupin, M. Labaki, S. Siffert, and R. Cousin, "Effect of Microwave Irradiation Parameters on Co/Fe Hydrotalcite Nanocatalysts for the Total Oxidation of VOCs," European Journal of Inorganic Chemistry, vol. 2019, pp. 3218-3227, 2019.spa
dc.relation.references[198] J.-R. Li, F.-K. Wang, C. He, C. Huang, and H. Xiao, "Catalytic total oxidation of toluene over carbon-supported CuCo oxide catalysts derived from Cu-based metal organic framework," Powder Technology, vol. 363, pp. 95-106, 2020/03/01/ 2020.spa
dc.relation.references[199] Y. Luo, D. Lin, Y. Zheng, X. Feng, Q. Chen, K. Zhang, et al., "MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation," Applied Surface Science, vol. 504, p. 144481, 2020/02/28/ 2020.spa
dc.relation.references[200] C. Zhang, H. Huang, G. Li, L. Wang, L. Song, and X. Li, "Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts," Catalysis Today, vol. 327, pp. 374-381, 2019/05/01/ 2019.spa
dc.relation.references[201] C. Zhang, C. Wang, H. Huang, K. Zeng, Z. Wang, H.-p. Jia, et al., "Insights into the size and structural effects of zeolitic supports on gaseous toluene oxidation over MnOx/HZSM-5 catalysts," Applied Surface Science, vol. 486, pp. 108-120, 2019/08/30/ 2019.spa
dc.relation.references[202] J. He, D. Chen, N. Li, Q. Xu, H. Li, J. He, et al., "Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene," Applied Catalysis B: Environmental, vol. 265, p. 118560, 2020/05/15/ 2020.spa
dc.relation.references[203] W. Pei, Y. Liu, J. Deng, K. Zhang, Z. Hou, X. Zhao, et al., "Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion," Applied Catalysis B: Environmental, vol. 256, p. 117814, 2019/11/05/ 2019.spa
dc.relation.references[204] X. Yang, X. Ma, X. Yu, and M. Ge, "Exploration of strong metal-support interaction in zirconia supported catalysts for toluene oxidation," Applied Catalysis B: Environmental, vol. 263, p. 118355, 2020/04/01/ 2020.spa
dc.relation.references[205] T. Gan, X. Chu, H. Qi, W. Zhang, Y. Zou, W. Yan, et al., "Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: Promotional synergistic effect of Pt nanoparticles and Al2O3 support," Applied Catalysis B: Environmental, vol. 257, p. 117943, 2019/11/15/ 2019.spa
dc.relation.references[206] H. Yang, J. Deng, Y. Liu, S. Xie, P. Xu, and H. Dai, "Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion," Chinese Journal of Catalysis, vol. 37, pp. 934-946, 2016/06/01/ 2016.spa
dc.relation.references[207] H. Yang, J. Deng, Y. Liu, S. Xie, Z. Wu, and H. Dai, "Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation," Journal of Molecular Catalysis A: Chemical, vol. 414, pp. 9-18, 2016/04/01/ 2016.spa
dc.relation.references[208] R. Peng, S. Li, X. Sun, Q. Ren, L. Chen, M. Fu, et al., "Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts," Applied Catalysis B: Environmental, vol. 220, pp. 462-470, 2018/01/01/ 2018.spa
dc.relation.references[209] X. Weng, B. Shi, A. Liu, J. Sun, Y. Xiong, H. Wan, et al., "Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: Role of basic sites and mechanism insight," Applied Surface Science, vol. 497, p. 143747, 2019/12/15/ 2019.spa
dc.relation.references[210] S. Huang, C. Zhang, and H. He, "Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature," Journal of Environmental Sciences, vol. 25, pp. 1206-1212, 2013/06/01/ 2013.spa
dc.relation.references[211] X. Zhang, J. Zhao, Z. Song, W. Liu, H. Zhao, M. Zhao, et al., "The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes," Journal of Colloid and Interface Science, vol. 562, pp. 170-181, 2020/03/07/ 2020.spa
dc.relation.references[212] N. A. Merino, B. P. Barbero, P. Eloy, and L. E. Cadús, "La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS," Applied Surface Science, vol. 253, pp. 1489-1493, 2006/11/30/ 2006.spa
dc.relation.references[213] J. Zhang, D. Tan, Q. Meng, X. Weng, and Z. Wu, "Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance," Applied Catalysis B: Environmental, vol. 172-173, pp. 18-26, 2015/08/01/ 2015.spa
dc.relation.references[214] X. Yang, X. Yu, M. Lin, M. Ge, Y. Zhao, and F. Wang, "Interface effect of mixed phase Pt/ZrO2 catalysts for HCHO oxidation at ambient temperature," Journal of Materials Chemistry A, vol. 5, pp. 13799-13806, 2017.spa
dc.relation.references[215] C. Zhang, C. Wang, W. Zhan, Y. Guo, Y. Guo, G. Lu, et al., "Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts," Applied Catalysis B: Environmental, vol. 129, pp. 509-516, 2013/01/17/ 2013.spa
dc.relation.references[216] X. Zhang, M. Zhao, Z. Song, H. Zhao, W. Liu, J. Zhao, et al., "The effect of different metal oxides on the catalytic activity of a Co3O4 catalyst for toluene combustion: importance of the structure–property relationship and surface active species," New Journal of Chemistry, vol. 43, pp. 10868-10877, 2019.spa
dc.relation.references[217] J. Deng, L. Zhang, H. Dai, H. He, and C. T. Au, "Strontium-Doped Lanthanum Cobaltite and Manganite: Highly Active Catalysts for Toluene Complete Oxidation," Industrial & Engineering Chemistry Research, vol. 47, pp. 8175-8183, 2008/11/05 2008.spa
dc.relation.references[218] J. Zhong, Y. Zeng, D. Chen, S. Mo, M. Zhang, M. Fu, et al., "Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS," Journal of Hazardous Materials, vol. 386, p. 121957, 2020/03/15/ 2020.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc541 - Química físicaspa
dc.subject.proposalself-combustioneng
dc.subject.proposalautocombustiónspa
dc.subject.proposalcompuestos orgánicos volátilesspa
dc.subject.proposalvolatile organic compoundseng
dc.subject.proposalmicrowaveseng
dc.subject.proposalmicroondasspa
dc.subject.proposalmixed oxideseng
dc.subject.proposalóxidos mixtosspa
dc.titleÓxidos mixtos CoOx-MnOx sintetizados por autocombustión/MW para la oxidación de tolueno en presencia de aguaspa
dc.title.alternativeCoOx-MnOx mixed oxides prepared by self-combustión/MW for toluene total oxidation in the presence of waterspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis-JC.pdf
Tamaño:
2.3 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: