Análisis de alteraciones moleculares de SPOP, FOXA1 e IDH1 en cáncer de próstata de población colombiana y sus posibles implicaciones en el pronóstico

dc.contributor.advisorSerrano López, Martha Lucía
dc.contributor.authorMontero Ovalle, Wendy Johana
dc.contributor.researchgroupBiología del Cáncer del Instituto Nacional de Cancerologíaspa
dc.coverage.countryColombia
dc.date.accessioned2021-08-18T22:28:23Z
dc.date.available2021-08-18T22:28:23Z
dc.date.issued2021-04-23
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl cáncer de próstata (CaP) es el tipo de cáncer con mayor incidencia y mortalidad en nuestro país. Los actuales marcadores del pronóstico de la enfermedad no diferencian los casos agresivos de los indolentes con suficiente certeza y por esto se ha trabajado en una caracterización por subtipos moleculares que permita tener una mejor clasificación. En CaP localizado de diferentes poblaciones se han detectado fusiones entre el gen regulado por andrógenos TMPRSS2 y ERG y mutaciones en genes como SPOP (speckle type POZ, el gen que codifica para una proteína adaptadora del complejo Cullin-3-RING-Box1), FOXA1 (factor de transcripción de Forkhead box-A1) e IDH1 (isocitrato deshidrogenasa 1), estas han sido relacionadas con el pronóstico; sin embargo, no se conoce la frecuencia y la relevancia de estas alteraciones en los pacientes con CaP en nuestro país. En el presente estudio fueron evaluadas la fusión TMPRSS2-ERG y las mutaciones en SPOP, FOXA1 e IDH1 en muestras de tejidos fijados en formalina y embebidos en parafina (FFPE) de prostatectomías radicales de 112 pacientes con CaP, para determinar la frecuencia de estos subtipos y correlacionarlos con parámetros clínico-patológicos. La fusión fue detectada en 71 pacientes (63,4%), esta frecuencia del subtipo ERG fue similar a la observada en población caucásica (40-66%). Se encontraron diferencias estadísticamente significativas en el tiempo de recurrencia bioquímica de acuerdo con el seguimiento, entre 1-3 meses una gran proporción de pacientes con presencia de fusión tuvieron recurrencia bioquímica (40%) comparados con pacientes con ausencia (4,8%) (p=0,014). No se encontraron diferencias significativas entre otras variables clínico- patológicas y el estado de fusión. En los 41 (36,6%) casos negativos para la fusión, dos pacientes (4,9%) presentaron mutaciones de cambio de sentido con pérdida de función, en el exón 6 (p.F102C - c.305T>G) y en el exón 7 (p.F133L - c.399C>G) de SPOP, teniendo en cuenta todos los casos del estudio la presencia de este subtipo fue del 1,8%. La baja frecuencia de este subtipo en colombianos se podría explicar por la reportada variabilidad en la frecuencia de estas mutaciones según la población (5%-20%). No se encontraron mutaciones en FOXA1 en ninguna de las muestras analizadas. No fue posible estandarizar las técnicas para el análisis de las mutaciones de IDH1 en las muestras FFPE. (Texto tomado de la fuente)spa
dc.description.abstractProstate cancer (PCa) is the type of cancer with the highest incidence and mortality in our country. Current disease prognostic markers do not differentiate aggressive from indolent cases with sufficient certainty, and for this reason a characterization by molecular subtypes has been worked on that allow for a better classification. In localized PCa from different populations, fusions have been detected between the gene regulated by androgens TMPRSS2 and ERG and mutations in genes such as SPOP (Speckle type POZ, the gene that codes for an adapter protein of the Cullin-3-RING-Box1 complex), FOXA1 (Forkhead box-A1 transcription factor) and IDH1 (Isocitrate dehydrogenase 1), these have been related to prognosis; however, the frequency and relevance of these alterations in patients with PCa in our country is not known. In the present study, the TMPRSS2-ERG fusion and the mutations in SPOP, FOXA1, and IDH1 were evaluated in samples of formalin-fixed and paraffin-embedded (FFPE) tissues from radical prostatectomies of 112 patients with PCa, to determine the frequency of these subtypes. and correlate them with clinicopathological parameters. Fusion was detected in 71 patients (63.4%), this frequency of the ERG subtype was similar to that observed in the Caucasian population (40-66%). Statistically significant differences were found in the time of biochemical recurrence according to the follow-up, between 1-3 months a large proportion of patients with presence of fusion had biochemical recurrence (40%) compared with patients with absence (4.8%) (p=0.014). No significant differences were found between other clinicopathological variables and the state of fusion. In the 41 (36.6%) fusion-negative cases, two patients (4.9%) had missense mutations with loss of function, in exon 6 (p.F102C - c.305T> G) and in exon 7 (p.F133L - c.399C> G) of SPOP, taking all cases in this study, the presence of this subtype was 1.8%. The low frequency of this subtype in Colombians could be explained by the reported variability in the frequency of these mutations according to the population (5%-20%). No FOXA1 mutations were found in any of the samples tested. Techniques for the analysis of IDH1 mutations in FFPE samples could not be standardized. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaEpidemiología molecular e identificación de biomarcadores en cáncerspa
dc.description.researchareaBiología celularspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79967
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.references1. Organización Mundial de la Salud OMS. Cáncer [Internet]. 2017 [cited 2018 Feb 28]. Available from: http://www.who.int/mediacentre/factsheets/fs297/es/.spa
dc.relation.references2. International Agency for Research on Cancer IARC. Estimated Prostate Cancer Incidence, Mortality, and Prevalence Worldwide [Internet]. 2018 [cited 2018 Mar 4]. Available from: https://www.iarc.fr/spa
dc.relation.references3. GLOBOCAN. Prostate - Estimated cancer incidence, all ages: both sexes [Internet]. 2018 [cited 2018 Aug 31]. Available from: http://globocan.iarc.fr/old/summary_table_pop-html.asp?selection=40170&title=Colombia&sex=0&type=0&window=1&sort=0&submit= Executespa
dc.relation.references4. Lilja H et al. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nat Rev Cancer. 2008;8(4):268–78.spa
dc.relation.references5. Adhyam M, Gupta AK. A Review on the Clinical Utility of PSA in Cancer Prostate. Indian J Surg Oncol. 2012;3(2):120–9.spa
dc.relation.references6. Barbieri CE et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2014;44(6):685–9.spa
dc.relation.references7. Chen N, Zhou Q. The evolving Gleason grading system. 2016;28(1):58–64.spa
dc.relation.references8. Epstein JI et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40(2):244–52.spa
dc.relation.references9. Magi-Galluzzi C et al. Contemporary Gleason grading and novel Grade Groups in clinical practice. Curr Opin Urol. 2016;26(5):488–92.spa
dc.relation.references10. D’Amico A V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. J Am Med Assoc. 1998;280(11):969–74.spa
dc.relation.references11. Hernandez DJ et al. Contemporary Evaluation of the D’Amico Risk Classification of Prostate Cancer. Urology. 2007;70(5):931–5.spa
dc.relation.references12. Schiffmann J et al. Heterogeneity in D’Amico classification-based low-risk prostate cancer: Differences in upgrading and upstaging according to active surveillance eligibility. Urol Oncol Semin Orig Investig [Online]. 2015;33(7):329.e13-329.e19. Available from: http://dx.doi.org/10.1016/j.urolonc.2015.04.004spa
dc.relation.references13. Sedarsky J et al. Ethnicity and ERG frequency in prostate cancer. Nat Publ Gr. 2017;15(2):125–31.spa
dc.relation.references14. Yoon N et al. SPOP mutation in prostate cancers in Korean population: Variation in its mutation frequency among ethnic groups. Int J Clin Exp Pathol. 2016;9(3):4123–8.spa
dc.relation.references15. Muruve NA. Prostate Anatomy [Internet]. Medscape. 2017 [cited 2018 Mar 20]. Available from: https://emedicine.medscape.com/article/1923122-overviewspa
dc.relation.references16. Yuan J et al. Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet [Online]. 2020;16(2):1–26. Available from: http://dx.doi.org/10.1371/journal.pgen.1008641spa
dc.relation.references17. The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–1025.spa
dc.relation.references18. Blattner M et al. SPOP Mutations in Prostate Cancer across Demographically Diverse Patient Cohorts. Neoplasia [Online]. 2014;16(1):14–20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1476558614800031spa
dc.relation.references19. Correa JJ et al. Mechanisms of Carcinogenesis in Prostate Cancer. 2015. 295–302 p.spa
dc.relation.references20. García-Flores M et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur J Cancer. 2014;50(17):2994–3002.spa
dc.relation.references21. Song C, Chen H. Predictive significance of TMRPSS2-ERG fusion in prostate cancer: A meta-analysis. Cancer Cell Int [Online]. 2018;18(1):1–12. Available from: https://doi.org/10.1186/s12935-018-0672-2spa
dc.relation.references22. Humphrey PA et al. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part B: Prostate and Bladder Tumours. Eur Urol [Online]. 2016;70(1):106–19. Available from: http://dx.doi.org/10.1016/j.eururo.2016.02.028spa
dc.relation.references23. Sizemore GM et al. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer [Online]. 2017;17(6):337–51. Available from: http://dx.doi.org/10.1038/nrc.2017.20spa
dc.relation.references24. An J et al. Destruction of Full-Length Androgen Receptor by Wild-Type SPOP, but Not Prostate-Cancer-Associated Mutants. Cell Rep [Online]. 2014;6(4):657–69. Available from: http://dx.doi.org/10.1016/j.celrep.2014.01.013spa
dc.relation.references25. Shoag J et al. Prognostic value of the SPOP mutant genomic subclass in prostate cancer. Urol Oncol Semin Orig Investig [Online]. 2020;000:1–5. Available from: https://doi.org/10.1016/j.urolonc.2020.02.011spa
dc.relation.references26. Geng C et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of cMYC oncoprotein. 2018;36(33):4767–77.spa
dc.relation.references27. Yan Y et al. Dual inhibition of AKT‐mTOR and AR signaling by targeting HDAC3 in PTEN or SPOP mutated prostate cancer. EMBO Mol Med. 2018;10(4):1–20.spa
dc.relation.references28. Zhang P et al. Intrinsic BET inhibitor resistance in SPOP -mutated prostate cancer is mediated by BET protein stabilization and AKT – mTORC1 activation. Nat Med. 2017;23(9):1055–62.spa
dc.relation.references29. Zhu H et al. SPOP E3 Ubiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Rep. 2015;13(6):1183–93.spa
dc.relation.references30. Marzahn MR et al. Higher‐order oligomerization promotes localization of SPOP to liquid nuclear speckles . EMBO J. 2016;35(12):1254–75.spa
dc.relation.references31. Zhang J et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Vol. 553, Nature. 2018. 91–95 p.spa
dc.relation.references32. Hernández-Llodrà S et al. SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer. Prostate. 2019;79(10):1156–65.spa
dc.relation.references33. Sahu B et al. Dual role of FoxA1 in androgen receptor binding to chromatin , androgen signalling and prostate cancer. EMBO J. 2011;30(19):3962–76.spa
dc.relation.references34. Yen KE et al. Cancer-associated IDH mutations: Biomarker and therapeutic opportunities. Oncogene. 2010;29(49):6409–17.spa
dc.relation.references35. Molenaar RJ et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene [Online]. 2018;2:1–12. Available from: http://dx.doi.org/10.1038/s41388-017-0077-zspa
dc.relation.references36. Ghiam AF et al. Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Rep [Online]. 2012;19(33):3826. Available from: http://dx.doi.org/10.1038/onc.2011.546spa
dc.relation.references37. Liu D et al. Impact of the SPOP Mutant Subtype on the Interpretation of Clinical Parameters in Prostate Cancer. JCO Precis Oncol. 2018;(2):1–13.spa
dc.relation.references38. Hu Y et al. Expression and clinical relevance of SPOPL in medulloblastoma. Oncol Lett. 2017;14(3):3051–6.spa
dc.relation.references39. Li JJ et al. Decreased expression of speckle-type POZ protein for the prediction of poor prognosis in patients with non-small cell lung cancer. Oncol Lett. 2017;14(3):2743–8.spa
dc.relation.references40. Cheng F et al. The association of speckle-type POZ protein with lymph node metastasis and prognosis in cancer patients: A meta-analysis. Med (United States). 2019;98(40).spa
dc.relation.references41. Gerhardt J et al. FOXA1 Promotes Tumor Progression in Prostate Cancer and Represents a Novel Hallmark of Castration-Resistant Prostate Cancer. AJPA [Online]. 2012;180(2):848–61. Available from: http://dx.doi.org/10.1016/j.ajpath.2011.10.021spa
dc.relation.references42. Tang L et al. NCOR1 may be a potential biomarker of a novel molecular subtype of prostate cancer. FEBS Open Bio. 2020;0–3.spa
dc.relation.references43. Adams EJ et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature [Online]. 2019;571(7765):408–12. Available from: http://dx.doi.org/10.1038/s41586-019-1318-9spa
dc.relation.references44. Boysen G et al. SPOP mutation leads to genomic instability in prostate cancer. Elife. 2015;4(September):1–4.spa
dc.relation.references45. Blattner M et al. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell [Online]. 2017;31(3):436–51. Available from: http://dx.doi.org/10.1016/j.ccell.2017.02.004spa
dc.relation.references46. Gordetsky J, Epstein J. Grading of prostatic adenocarcinoma : current state and prognostic implications. Diagn Pathol [Online]. 2016;11(25):2–9. Available from: http://dx.doi.org/10.1186/s13000-016-0478-2spa
dc.relation.references47. Acosta N et al. Biomarcadores de pronóstico en pacientes con cáncer de próstata localizado. Rev Colomb Cancerol. 2017;21(2):113–25.spa
dc.relation.references48. Khani F et al. Evidence for Molecular Differences in Prostate Cancer between African American and Caucasian Men. Clin Cancer Res. 2015;20(March 2012):4925–34.spa
dc.relation.references49. Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta - Mol Cell Res [Online]. 2016 Jun 1 [cited 2018 Mar 1];1863(6):1238–60. Available from: https://www.sciencedirect.com/science/article/pii/S0167488916300416spa
dc.relation.references50. Banerjee PP et al. Androgen action in prostate function and disease. Am J Clin Exp Urol [Online]. 2018;6(2):62–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29666834%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5902724spa
dc.relation.references51. Durán FR et al. El receptor a andrógenos en la fisiopatología prostática [Internet]. Vol. 2, Neurobiología Revista Electrónica. 2011 [cited 2020 Jun 1]. Available from: https://www.uv.mx/eneurobiologia/vols/2011/4/Rojas-etal/HTML.htmlspa
dc.relation.references52. Vickman RE et al. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol [Online]. 2019;7(3):192–202. Available from: https://doi.org/10.1016/j.ajur.2019.10.003spa
dc.relation.references53. American Society of Clinical Oncology (ASCO). Cáncer de próstata: Opciones de tratamiento [Internet]. Marzo. 2018. Available from: https://www.cancer.net/es/tipos-de-cáncer/cáncer-de-próstata/opciones-de-tratamientospa
dc.relation.references54. UK CR. Types of prostate cancer [Internet]. 2021. Available from: https://www.cancerresearchuk.org/about-cancer/prostate-cancer/stages/typesspa
dc.relation.references55. Society AC. ¿Qué es el cáncer de próstata? [Internet]. Agosto. 2019. Available from: https://www.cancer.org/es/cancer/cancer-de-prostata/acerca/que-es-cancer-de-prostata.htmlspa
dc.relation.references56. Ramírez-Balderrama L et al. Diferenciación neuroendocrina en adenocarcinoma de prostate. Gac Med Mex. 2013;149(6):639–45. 57. Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019;10(2):63–89. 58. Pardo C et al. Atlas de mortalidad por cáncer en Colombia [Internet]. 2017. 124 p. Available from: https://www.cancer.gov.co/ATLAS_de_Mortalidad_por_cancer_en_Colombia.pdfspa
dc.relation.references59. Pardo C, Cendales R. Incidencia, mortalidad y prevalencia de cáncer en Colombia, 2007-2011. Instituto Nacional de Cancerología-ESE Colombia. 2011. 1–150 p.spa
dc.relation.references60. Perdana NR et al. The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review. Acta Med Indones. 2016;48(3):228–38.spa
dc.relation.references61. Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries. Int J Urol. 2018;25(6):524–31.spa
dc.relation.references62. Fund WC research. Diet, nutrition, phyisical activity and prostate cancer. Nutr Food Sci. 2014;37(3):41–2. 63. Niclis C et al. Dietary habits and prostate cancer prevention: A review of observational studies by focusing on south America. Nutr Cancer. 2012;64(1):23–33.spa
dc.relation.references64. Huncharek M et al. Dairy products, dietary calcium and vitamin D intake as risk factors for prostate cancer: A meta-analysis of 26,769 cases from 45 observational studies. Nutr Cancer. 2008;60(4):421–41.spa
dc.relation.references65. Bouvard V et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol [Online]. 2015;16(16):1599–600. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204515004441spa
dc.relation.references66. Sierra MS, Forman D. Etiology of prostate cancer ( C 61 ) in Central and South America. Lyon Int Agency Res Cancer. 2016;1(1):1–11.spa
dc.relation.references67. De Marzo AM et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007;7(4):256–69.spa
dc.relation.references68. Alvarez-Cubero MJ et al. Prognostic role of genetic biomarkers in clinical progression of prostate cancer. Exp Mol Med [Online]. 2015;47(8):e176. Available from: http://dx.doi.org/10.1038/emm.2015.43spa
dc.relation.references69. De Marzo AM et al. Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am J Pathol. 1999;155(6):1985–92.spa
dc.relation.references70. Benedetti-Padrón, Reyes N. Atrofia Inflamatoria Proliferativa: Potencial Lesión Precursora De Adenocarcinoma Prostático. Rev Ciencias Biomédicas. 2013;5. 71. National Library of Medicine. PubMed [Internet]. 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/spa
dc.relation.references72. Aurilio G et al. Androgen Receptor Signaling Pathway in Prostate Cancer : From Genetics to Clinical Applications. :1–14.spa
dc.relation.references73. Garcia-Perdomo HA et al. Molecular alterations associated with prostate cancer. Cent Eur J Urol. 2018;71(2):168–76.spa
dc.relation.references74. Chuandong et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer. 2015;74(19):5631–43.spa
dc.relation.references75. Larisa N. Evidence for Field Cancerization of the Prostate. 2013;69(13):1470–9.spa
dc.relation.references76. Sistema General de Seguridad Social en Salud-Colombia I. Guía de práctica clínica (GPC) para la detección temprana , seguimiento y rehabilitación del cáncer de próstata. 2013. 1–718 p. 77. Ministerio de Salud y Protección Social, Instituto Nacional de Cancerología. Manual para la detección temprana del cáncer de próstata [Internet]. Instituto Nacional de Cancerología. 2015. 31–40, 43–61 p. Available from: http://www.cancer.gov.co/files/libros/archivos/Pielspa
dc.relation.references78. Uribe Arcila JF. La bioquímica del antígeno específico de próstata (AEP) y sus fracciones. Med Lab. 2008;14(03–04):153–66.spa
dc.relation.references79. Stephan C et al. Prostate-specific antigen ( PSA ) screening and new biomarkers for prostate cancer ( PCa ). J Int Fed Clin Chem Lab Med. 2014;25:55–78.spa
dc.relation.references80. Vigna-Taglianti R et al. Predictive value of Prostate Specific Antigen variations in the last week of salvage radiotherapy for biochemical recurrence of prostate cancer after surgery: A practical approach. Cancer Rep. 2020;3(6):1–6.spa
dc.relation.references81. Algaba F. Actualización de la patología del cáncer de próstata [Internet]. 2016. Available from: https://www.seap.es/documents/10157/1432467/Algaba+-+SEAP+2016.pdfspa
dc.relation.references82. Board CNE. Prostate Cancer: Stages and Grades [Internet]. 2018 [cited 2018 Jul 24]. p. 1. Available from: https://www.cancer.net/cancer-types/prostate-cancer/stages-and-gradesspa
dc.relation.references83. American Joint Committee on Cancer AJCC institución. Cancer Staging Manual. 2017.spa
dc.relation.references84. American Society of Clinical Oncology (ASCO). Prostate Cancer: Stages and Grades [Internet]. 2018. Available from: https://www.asco.org/spa
dc.relation.references85. Rodrigues G et al. Pre-treatment risk stratification of prostate cancer patients: A critical review. J Can Urol Assoc. 2012;6(2):121–7.spa
dc.relation.references86. Thompson I et al. Guideline for the Management of Clinically Localized Prostate Cancer: 2007 Update. J Urol. 2007;177(6):2106–31.spa
dc.relation.references87. Heidenreich A et al. EAU Guidelines on Prostate Cancer. Eur Urol. 2008;53:68–80.spa
dc.relation.references88. Bourke L et al. EAU-ESTRO-ESUR-SIOG GUIDELINES. 2018;(March):53–78.spa
dc.relation.references89. Graham J et al. Diagnosis and treatment of prostate cancer: Summary of NICE guidance. Bmj. 2008;336(7644):610–2.spa
dc.relation.references90. Various. NICE guideline NG131: Prostate Cancer: Biology, Diagnosis and Management. NICE Guidel. 2019;(May):701.spa
dc.relation.references91. Mohler JL et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17(5):479–505. 92. Aslam N, Nadeem K. Prostate Cancer Clinical Practice Guidelines in Oncology. Abeloff’s Clin Oncol 5/e [Online]. 2015;8(2):938–44. Available from: http://dx.doi.org/10.1016/B978-1-4557-2865-7.00084-9spa
dc.relation.references93. Freedland MG et al. Clinically Localized Prostate Cancer AUA/ASTRO/SUO Guideline. 2017.spa
dc.relation.references94. American Society of Clinical Oncology (ASCO). Prostate Cancer: Types of Treatment [Internet]. 2018. Available from: https://www.cancer.netspa
dc.relation.references95. Parker C. Treating prostate cancer. BMJ. 2012;345(7868):1–67.spa
dc.relation.references96. Laccetti AL et al. A clinical evaluation of enzalutamide in metastatic castration-sensitive prostate cancer: Guiding principles for treatment selection and perspectives on research. Onco Targets Ther. 2020;13:13247–63.spa
dc.relation.references97. Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local therapy: Evolving standards of care and new directions. Clin Adv Hematol Oncol. 2013;11(1):14–23.spa
dc.relation.references98. Li J et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020;580(April):93–9.spa
dc.relation.references99. Sha J et al. Downregulation of circ-TRPS1 suppressed prostatic cancer prognoses by regulating miR-124-3p / EZH2 axis-mediated stemness. Am J Cancer Res. 2020;10(12):4372–85.spa
dc.relation.references100. Chen J et al. Long Non-Coding RNA SNHG1 Regulates the Wnt/β-Catenin and PI3K/AKT/mTOR Signaling Pathways via EZH2 to Affect the Proliferation, Apoptosis, and Autophagy of Prostate Cancer Cell. Front Oncol. 2020;10(October):1–12. 101. Kong Y et al. Inhibition of EZH2 Enhances the Antitumor Efficacy of Metformin in Prostate Cancer. Mol Cancer Ther. 2020;19(12):2490–501.spa
dc.relation.references102. Burkhart DL et al. Evidence that EZH2 Deregulation is an Actionable Therapeutic Target for Prevention of Prostate Cancer. Cancer Prev Res. 2020;13(12):979–88.spa
dc.relation.references103. Zhu J et al. Coexpression analysis of the EZH2 gene using the cancer genome atlas and oncomine databases identifies coexpressed genes involved in biological networks in breast cancer, glioblastoma, and prostate cancer. Med Sci Monit. 2020;26:1–12.spa
dc.relation.references104. Koh CM et al. Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2011;2(9):669–83.spa
dc.relation.references105. Huang KC et al. SPINK1 Overexpression in Localized Prostate Cancer: a Rare Event Inversely Associated with ERG Expression and Exclusive of Homozygous PTEN Deletion. Pathol Oncol Res [Online]. 2017;23(2):399–407. Available from: http://dx.doi.org/10.1007/s12253-016-0119-9spa
dc.relation.references106. Stenman UH. Therapeutic targeting of SPINK1-positive prostate cancer. Eur Urol. 2012;62(4):733–4.spa
dc.relation.references107. Kunderfranco P et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One. 2010;5(5).spa
dc.relation.references108. Chen H et al. NKX-3.1 interacts with prostate-derived Ets factor and regulates the activity of the PSA promoter. Cancer Res. 2002;62(2):338–40.spa
dc.relation.references109. Shen JZ et al. NKX3.1 Identifies Prostatic Origin of Dural Metastasis in the Setting of Negative Prostate-Specific Antigen Stain. Neurohospitalist. 2020;10(4):314–7.spa
dc.relation.references110. Rescigno P et al. Characterizing CDK12-Mutated Prostate Cancers. Clin Cancer Res. 2021;27(2):566–74.spa
dc.relation.references111. Yi-Mi W et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell [Online]. 2018;8(7):1770–82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084431/pdf/nihms-983138.pdfspa
dc.relation.references112. Gan W et al. SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Mol Cell. 2015;59(6):917–30.spa
dc.relation.references113. Tomlins SA et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science (80- ). 2005;310(5748):644–8.spa
dc.relation.references114. Perner S et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66(17):8337–41.spa
dc.relation.references115. Magi-Galluzzi C et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate. 2011;71(5):489–97.spa
dc.relation.references116. Segura-Moreno Y. Análisis molecular de la multifocalidad en cáncer de próstata com proceso de entendimiento del modelo de carcinogénesis de la enfermedad. 2019;1–87.spa
dc.relation.references117. Kim SH et al. Overexpression of ERG and wild-type PTEN are associated with favorable clinical prognosis and low biochemical recurrence in prostate cancer. PLoS One. 2015;10(4):1–13.spa
dc.relation.references118. An J et al. Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation. Mol Cell. 2015;59(6):904–16.spa
dc.relation.references119. Lapointe J et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod Pathol. 2007;20(4):467–73.spa
dc.relation.references120. Attard G et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27(3):253–63.spa
dc.relation.references121. Saramäki OR et al. TMPRSS2.ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res. 2008;14(11):3395–400.spa
dc.relation.references122. Kulda V et al. Prognostic significance of TMPRSS2-ERG fusion gene in prostate cancer. Anticancer Res. 2016;36(9):4787–93.spa
dc.relation.references123. Zhou CK et al. TMPRSS2:ERG gene fusions in prostate cancer of west African men and aMeta-analysis of racial differences. Am J Epidemiol. 2017;186(12):1352–61.spa
dc.relation.references124. Chen R et al. Prevalence and clinical application of TMPRSS2-ERG fusion in Asian prostate cancer patients: a large-sample study in Chinese people and a systematic review. Asian J Androl. 2019;21(July):1–4. 125. Nagai Y et al. Identification of a novel nuclear speckle-type protein, SPOP. FEBS Lett [Online]. 1997;418(1–2):23–6. Available from: http://dx.doi.org/10.1016/S0014-5793(97)01340-9spa
dc.relation.references126. NCBI. SPOP speckle type BTB/POZ protein [ Homo sapiens (human) ] [Internet]. 2019. Available from: https://www.ncbi.nlm.nih.gov/gene/8405spa
dc.relation.references127. Errington WJ et al. Adaptor Protein Self-Assembly Drives the Control of a Cullin-RING Ubiquitin Ligase. Cell. 2012;3:1141–53.spa
dc.relation.references128. Zhuang M et al. Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Mol Cell. 2010;36(1):39–50.spa
dc.relation.references129. Zhang P et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23(9):1055–62.spa
dc.relation.references130. Jung-Eun K et al. Multiple weak linear motifs enhance recruitment and processivity in SPOP-mediated substrate ubiquitination. Physiol Behav. 2017;176(3):139–48.spa
dc.relation.references131. Blattner M et al. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling Article SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K / mTOR and AR Signaling. Cancer Cell. 2017;31(3):436–51.spa
dc.relation.references132. Wu F et al. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. 2018;207–14.spa
dc.relation.references133. Gallo M Le et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. 2013;44(12):1310–5.spa
dc.relation.references134. Zhang P et al. Endometrial cancer-associated mutants of SPOP are defective in regulating estrogen receptor-α protein turnover. Cell Death Dis. 2015;6:e1687.spa
dc.relation.references135. Montero-Ovalle W; Sanabria-Salas C; Serrano-López ML. Speckle type poz adaptor protein (SPOP) and its role in cancer. Rev Colomb Cancerol. 2020;25(3).spa
dc.relation.references136. Bouchard JJ et al. Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Mol Cell [Online]. 2018;72(1):19-36.e8. Available from: https://doi.org/10.1016/j.molcel.2018.08.027spa
dc.relation.references138. Cuneo MJ, Mittag T. The ubiquitin ligase adaptor SPOP in cancer. FEBS J. 2019;286(20):3946–58.spa
dc.relation.references139. Ciulli EB and A. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J. 2015;386:365–86.spa
dc.relation.references140. Bulatov E, Ciulli A. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J [Online]. 2015;467(3):365–86. Available from: http://biochemj.org/lookup/doi/10.1042/BJ20141450spa
dc.relation.references141. Ma J et al. SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. J Exp Clin Cancer Res. 2018;37(1):1–13.spa
dc.relation.references142. Kim B et al. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3-SPOP E3 ubiquitin ligase complex. Biochem Biophys Res Commun [Online]. 2011;415(4):720–6. Available from: http://dx.doi.org/10.1016/j.bbrc.2011.10.154spa
dc.relation.references143. Tan P et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10(11).spa
dc.relation.references144. Theurillat JP et al. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. 2014;346(6205):85–9.spa
dc.relation.references145. Wang X et al. AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Dev Cell [Online]. 2019;48(3):345-360.e7. Available from: https://doi.org/10.1016/j.devcel.2018.11.033spa
dc.relation.references146. Zeng C et al. SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2014;33(1):1–12.spa
dc.relation.references147. Janouskova H et al. Opposing effects of cancer-Type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat Med [Online]. 2017;23(9):1046–54. Available from: http://dx.doi.org/10.1038/nm.4372spa
dc.relation.references148. Papers JB et al. BTB Domain-containing Speckle-type POZ Protein ( SPOP ) Serves as an Adaptor of Daxx for Ubiquitination by Cul3-based Ubiquitin Ligase. 2006;281(18):12664–72.spa
dc.relation.references149. Zhu K et al. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res. 2017;45(1):92–105.spa
dc.relation.references150. Jin X et al. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet. 2017;13(4):1–24.spa
dc.relation.references151. Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res. 2019;47(15):7734–52.spa
dc.relation.references152. Luo J et al. SPOP promotes FADD degradation and inhibits NF-κB activity in non-small cell lung cancer. Biochem Biophys Res Commun [Online]. 2018;504(1):289–94. Available from: https://doi.org/10.1016/j.bbrc.2018.08.176spa
dc.relation.references153. Raina K et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016;113(26):7124–9.spa
dc.relation.references154. Yan Y et al. The novel BET‐CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild‐type prostate cancer. EMBO Mol Med. 2019;11(11):1–19.spa
dc.relation.references155. Wang F et al. LncRNA ADAMTS9-AS2 suppresses the proliferation of gastric cancer cells and the tumorigenicity of cancer stem cells through regulating SPOP. J Cell Mol Med. 2020;(August 2019):1–9.spa
dc.relation.references156. Fong K wing et al. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun [Online]. 2018;9(1). Available from: http://dx.doi.org/10.1038/s41467-018-07475-5spa
dc.relation.references157. Groner AC et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. 2017;29(6):846–58.spa
dc.relation.references158. Gao K et al. Tumor suppressor SPOP mediates the proteasomal degradation of progesterone receptors (PRs) in breast cancer cells. Am J Cancer Res. 2015;5(10):3210–20.spa
dc.relation.references159. Dai X et al. Prostate cancer – associated SPOP mutations confer resistance to BET inhibitors through stabilization of. Nat Publ Gr [Online]. 2017;23(9):1063–71. Available from: http://dx.doi.org/10.1038/nm.4378spa
dc.relation.references160. An J et al. Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation. Mol Cell [Online]. 2015;59(6):904–16. Available from: http://dx.doi.org/10.1016/j.molcel.2015.07.025spa
dc.relation.references161. Gan W et al. SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Mol Cell [Online]. 2015;59(6):917–30. Available from: http://dx.doi.org/10.1016/j.molcel.2015.07.026spa
dc.relation.references162. Coquenlorge S et al. GLI2 Modulated by SUFU and SPOP Induces Intestinal Stem Cell Niche Signals in Development and Tumorigenesis. Cell Rep [Online]. 2019;27(10):3006-3018.e4. Available from: https://doi.org/10.1016/j.celrep.2019.05.016spa
dc.relation.references163. Jin X et al. SPOP targets oncogenic protein ZBTB3 for destruction to suppress endometrial cancer. 2019;9(12):2797–812.spa
dc.relation.references164. Yuan LJ et al. SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ [Online]. 2019;1156–68. Available from: http://dx.doi.org/10.1038/s41418-018-0198-0spa
dc.relation.references165. Shi Q et al. Prostate Cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol Cancer. 2019;18(1):1–14.spa
dc.relation.references166. Lund AH et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3 ͞ SPOP ubiquitin E3 ligase. 2005;102(21):7635–40.spa
dc.relation.references167. Luo J et al. SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth. Biochem Biophys Res Commun [Online]. 2017;483(2):880–4. Available from: http://dx.doi.org/10.1016/j.bbrc.2017.01.027spa
dc.relation.references168. Claiborn KC et al. Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. 2010;120(10):3713–21.spa
dc.relation.references169. Bawa-Khalfe T et al. Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2012;109(43):17466–71. 170. Ostertag MS et al. The Structure of the SPOP-Pdx1 Interface Reveals Insights into the Phosphorylation-Dependent Binding Regulation. Struct Des [Online]. 2019;27(2):327-334.e3. Available from: https://doi.org/10.1016/j.str.2018.10.005spa
dc.relation.references171. Pathogens S. Tumor Suppressor Role for the SPOP Ubiquitin Ligase in Signal- Dependent Proteolysis of the Oncogenic Coactivator SRC-3/ AIB1. 2016;1848(42):3047–54.spa
dc.relation.references172. Torres-Arzayus MI et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell. 2004;6(3):263–74.spa
dc.relation.references173. Dai X et al. Prostate cancer-Associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med [Online]. 2017;23(9):1063–71. Available from: http://dx.doi.org/10.1038/nm.4378spa
dc.relation.references174. Jeffrey R. Wozniak, Edward P. Riley MEC. SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Physiol Behav. 2019;176(1):139–48. 175. Zhi X et al. Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating hedgehog signaling pathway in colorectal cancer. Cell Death Dis [Online]. 2016;7(12):1–11. Available from: http://dx.doi.org/10.1038/cddis.2016.435spa
dc.relation.references176. Zhu H et al. SPOP E3 Ubiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Rep [Online]. 2015;13(6):1183–93. Available from: http://dx.doi.org/10.1016/j.celrep.2015.09.083spa
dc.relation.references177. Ji P et al. Speckle-type POZ protein suppresses hepatocellular carcinoma cell migration and invasion via ubiquitin-dependent proteolysis of SUMO1/sentrin specific peptidase 7. Biochem Biophys Res Commun [Online]. 2018;502(1):30–42. Available from: https://doi.org/10.1016/j.bbrc.2018.05.115spa
dc.relation.references178. Zhang D et al. Speckle-type POZ protein, SPOP, is involved in the DNA damage response. Carcinogenesis. 2014;35(8):1691–7.spa
dc.relation.references179. Dong Y et al. SPOP regulates the DNA damage response and lung adenocarcinoma cell response to radiation. Am J Cancer Res [Online]. 2019;9(7):1469–83. Available from: www.ajcr.us/spa
dc.relation.references180. Hjorth-Jensen K et al. SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res. 2018;46(18):9484–95.spa
dc.relation.references181. Memorial Sloan Kettering Cancer Center (MSK), Princess Margaret Cancer Centre in Toronto, Children’s Hospital of Philadelphia TH in the N and BU in A. cBioPortal for Cancer Genomics [Internet]. 2020. Available from: https://www.cbioportal.org/spa
dc.relation.references182. Catalogue of Somatic Mutation in Cancer COSMIC. SPOP Gene [Internet]. 2020 [cited 2018 Mar 10]. Available from: http://cancer.sanger.ac.uk/cosmic/gene/analysis?coords=bp%3AAA&wgs=off&id=6661&ln=SPOP&start=1&end=375spa
dc.relation.references183. Li G et al. SPOP Promotes Tumorigenesis by Acting as a Key Regulatory Hub in Kidney Cancer. Cancer Cell [Online]. 2014;25(4):455–68. Available from: http://dx.doi.org/10.1016/j.ccr.2014.02.007spa
dc.relation.references184. Wang L et al. SPOP Promotes Ubiquitination and Degradation of LATS1 to Enhance Kidney Cancer Progression. EBioMedicine [Online]. 2020;56:102795. Available from: https://doi.org/10.1016/j.ebiom.2020.102795spa
dc.relation.references185. Zhao W et al. SPOP promotes tumor progression via activation of catenin/ TCF4 complex in clear cell renal cell carcinoma. Int J Oncol. 2016;49(3):1001–8.spa
dc.relation.references186. Harb OA et al. SPOP, ZEB-1 and E-cadherin expression in clear cell renal cell carcinoma (cc-RCC): Clinicopathological and prognostic significance. Pathophysiology [Online]. 2018;25(4):335–45. Available from: https://doi.org/10.1016/j.pathophys.2018.05.004spa
dc.relation.references187. Ostertag MS et al. Structural Insights into BET Client Recognition of Endometrial and Prostate Cancer-Associated SPOP Mutants. J Mol Biol [Online]. 2019;431(11):2213–21. Available from: https://doi.org/10.1016/j.jmb.2019.04.017spa
dc.relation.references188. Lythgoe C et al. Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer. Prostate Cancer Sci Clin Pract Second Ed. 2016;74(9):141–7.spa
dc.relation.references189. Zhuang M et al. Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. 2010;36(1):39–50.spa
dc.relation.references190. Riisnaes R et al. SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity. Clin Cancer Res. 2019;24(22):5585–93.spa
dc.relation.references191. Cramer LR y S. SPOP the mutation. Elife. 2015;4:e11760:1–4.spa
dc.relation.references192. Shenoy TR et al. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol Off J Eur Soc Med Oncol. 2017;28(7):1495–507.spa
dc.relation.references193. Bezawy R et al. SPOP deregulation improves the radiation response of prostate cancer models by impairing DNA damage repair. Cancers (Basel). 2020;12(6):1–15.spa
dc.relation.references194. Watanabe R et al. SPOP is essential for DNA-protein cross-link repair in prostate cancer cells: SPOP-dependent removal of topoisomerase 2A from the topoisomerase 2A-DNA cleavage complex. Mol Biol Cell. 2020;31(6):478–90.spa
dc.relation.references195. Jiao C et al. TGF- β s ignaling regulates SPOP expression and promotes prostate cancer cell stemness. 2020;12:1–14.spa
dc.relation.references196. Xu J et al. Properties and Clinical Relevance of Speckle-Type POZ Protein in Human Colorectal Cancer. J Gastrointest Surg. 2015;19(8):1484–96.spa
dc.relation.references197. Zhang S et al. Speckle‑Type POZ Protein Down‑Regulates Matrix Metalloproteinase 2 Expression via Sp1/PI3K/Akt Signaling Pathway in Colorectal Cancer. Dig Dis Sci [Online]. 2017;(0123456789). Available from: https://doi.org/10.1007/s10620-017-4884-4spa
dc.relation.references198. Salami J et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol [Online]. 2018;1(1):1–9. Available from: http://dx.doi.org/10.1038/s42003-018-0105-8spa
dc.relation.references199. Han X et al. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J Med Chem. 2019;62(2):941–64.spa
dc.relation.references200. Neklesa TK et al. Targeted protein degradation by PROTACs. Pharmacol Ther [Online]. 2017;174:138–44. Available from: http://dx.doi.org/10.1016/j.pharmthera.2017.02.027spa
dc.relation.references201. NCBI. FOXA1 forkhead box A1 [Homo sapiens (human)] [Internet]. 21 feb 2021. 2021 [cited 2021 Feb 26]. Available from: https://www.ncbi.nlm.nih.gov/gene/3169spa
dc.relation.references202. Ghajar CM. FOXA1: a transcription factor with parallel functions in development and cancer. 2012;32(2):1–2.spa
dc.relation.references203. Clark KL et al. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993;364(6436):412–20.spa
dc.relation.references204. Wang LL et al. The transcription factor FOXA1 induces epithelial ovarian cancer tumorigenesis and progression. Tumor Biol. 2017;39(5):1–7.spa
dc.relation.references205. Shah N, Brown M. The Sly Oncogene: FOXA1 Mutations in Prostate Cancer. Cancer Cell [Online]. 2019;36(2):119–21. Available from: https://doi.org/10.1016/j.ccell.2019.07.005spa
dc.relation.references206. Teng M, Cai C. Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell [Online]. 2021;12(1):29–38. Available from: https://doi.org/10.1007/s13238-020-00786-8spa
dc.relation.references207. Gao S et al. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet [Online]. Available from: http://dx.doi.org/10.1038/s41588-020-0681-7spa
dc.relation.references208. Pomerantz MM et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52:790–799.spa
dc.relation.references209. Hirotsu C et al. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015;8(3):143–52.spa
dc.relation.references210. Kim J et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene. 2017;36(28):4072–80.spa
dc.relation.references211. Imamura Y et al. FOXA1 Promotes Tumor Progression in Prostate Cancer via the Insulin-Like Growth Factor Binding Protein 3 Pathway. PlosOne. 2012;7(8):1–14.spa
dc.relation.references212. Hong-Jian J et al. Cooperativity and Equilibrium with FOXA1 Define the Androgen Receptor Transcriptional Program. Nat Commun. 2014;5:39–72.spa
dc.relation.references213. Yang Y, Yu J. Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. Genes Dis [Online]. 2015;2(2):144–51. Available from: http://dx.doi.org/10.1016/j.gendis.2015.01.003spa
dc.relation.references214. To L, Editor THE. Altered chromatin recruitment by FOXA1 mutations promotes androgen independence and prostate cancer progression. Cell Res. 2019;29:773–5.spa
dc.relation.references215. To L, Editor THE. Forkhead domain mutations in FOXA1 drive prostate cancer progression. Nature. 2019;29:770–772.spa
dc.relation.references216. Parolia A et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature [Online]. 2019;571(7765):413–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31243372/spa
dc.relation.references217. Badve RK et al. High‐level expression of forkhead‐box protein A1 in metastatic prostate cancer. Histopathology [Online]. 2011;58(5):766–72. Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2559.2011.03796.xspa
dc.relation.references218. Dang C V et al. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer [Online]. 2017;17:502–508. Available from: http://dx.doi.org/10.1038/nrc.2017.36spa
dc.relation.references219. National Center for Biotechnology Information NCBI. IDH1 isocitrate dehydrogenase (NADP(+)) 1 [ Homo sapiens (human) ] [Internet]. Abril. 2021. Available from: https://www.ncbi.nlm.nih.gov/gene/3417spa
dc.relation.references220. Xu X et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem [Online]. 2004;279(32):33946–57. Available from: http://dx.doi.org/10.1074/jbc.M404298200spa
dc.relation.references221. Xu H et al. Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFβ1/p-Smad2/3 signaling. Cancer Lett [Online]. 2019;472:151–64. Available from: https://doi.org/10.1016/j.canlet.2019.12.014spa
dc.relation.references222. Cairns RA, Mak TW. Oncogenic Isocitrate Dehydrogenase Mutations : Mechanisms , Models , and Clinical Opportunities. Cancer Discov. 2013;3(7):730–42.spa
dc.relation.references223. Ghiam AF et al. IDH mutation status in prostate cancer. Oncogene [Online]. 2012;31(33):3826. Available from: http://dx.doi.org/10.1038/onc.2011.546spa
dc.relation.references224. Gonthier K et al. Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen Receptor in Prostate Cancer. Mol cancer Res. 2019;17(8):1699–710.spa
dc.relation.references225. Armenia J et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet [Online]. 2018; Available from: http://www.nature.com/articles/s41588-018-0078-zspa
dc.relation.references226. Hinsch A et al. Immunohistochemically detected IDH1 R132H mutation is rare and mostly heterogeneous in prostate cancer. World J Urol [Online]. 2018;36(6):877–882. Available from: https://link.springer.com/article/10.1007%2Fs00345-018-2225-7spa
dc.relation.references227. Ricaurte O et al. Estudio de mutaciones en los genes IDH 1 y 2 en una muestra de gliomas en población colombiana. Biomedica. 2018;38:1–22.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsNeoplasias de la Próstata
dc.subject.decsProstatic Neoplasms
dc.subject.proposalSPOPeng
dc.subject.proposalFOXA1eng
dc.subject.proposalIDH1eng
dc.subject.proposalAlteraciones molecularesspa
dc.subject.proposalCáncerspa
dc.subject.proposalNeoplasia prostáticaspa
dc.subject.proposalBiomarcadorspa
dc.subject.proposalPronósticospa
dc.subject.proposalMolecular alterationseng
dc.subject.proposalCancereng
dc.subject.proposalProstatic neoplasiaeng
dc.subject.proposalBiomarkereng
dc.subject.proposalPrognosiseng
dc.titleAnálisis de alteraciones moleculares de SPOP, FOXA1 e IDH1 en cáncer de próstata de población colombiana y sus posibles implicaciones en el pronósticospa
dc.title.translatedAnalysis of molecular alterations of SPOP, FOXA1 and IDH1 in prostate cancer of the Colombian population and their possible implications in the prognosiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializada
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleAnálisis de alteraciones moleculares de SPOP, FOXA1 e IDH1 en cáncer de próstata de población colombiana y sus posibles implicaciones en el pronósticospa
oaire.fundernameInstituto Nacional de Cancerologíaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022378082.2021.pdf
Tamaño:
13.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: