Variantes genéticas, expresión génica, metilación y búsqueda de blancos terapéuticos en vías de respuesta inflamatoria en una muestra de población universitaria colombiana con problemas de consumo de alcohol

dc.contributor.advisorAristizábal Gutiérrez, Fabio Ancizarspa
dc.contributor.authorRey Buitrago, Mauriciospa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000589004spa
dc.contributor.googlescholarhttps://scholar.google.cl/citations?hl=es&user=nyGPDOIAAAAJ&view_op=list_works&gmla=AHoSzlVOSAyt4NYTrjTrIIq3ClUxGDka6IjPHad-tGLyv1pR_VWQp6O0n9uTJbpaP_LFg6-_qXfD3BkbypDimP2-k6tOc7PnImIS9NMDspa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Rey-Mauriciospa
dc.contributor.researchgroupFarmacogenética del Cáncerspa
dc.contributor.researchgroupGenética Clínicaspa
dc.coverage.countryColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2023-06-21T19:57:02Z
dc.date.available2023-06-21T19:57:02Z
dc.date.issued2022-10-27
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractIntroducción La dependencia al alcohol y fenotipos relacionados poseen patrones de herencia del tipo multifactorial. El componente genético es muy variable étnicamente hablando y muy dependiente de la evolución personal de la enfermedad. Aunque se han identificado múltiples loci, las variantes funcionales no se han identificado en la mayoría de los casos. En este trabajo seleccionamos genes candidatos de la vía de respuesta inflamatoria y determinamos variantes genéticas en la región promotora, su estado de metilación y expresión en forma de ARNm y proteína comparando controles y casos con uso problemático del alcohol de una población universitaria de la sede Bogotá de la Universidad Nacional de Colombia. Con estos datos proponemos candidatos a diana terapéutica, los cuales se caracterizaron. Métodos Para la selección de la muestra se realizó una convocatoria dentro de la sede de la Universidad y se aplicaron estrictos criterios de inclusión y exclusión. Se realizaron extracciones de ADN y ARN total. Empleamos la PCR convencional seguida de secuencia de Sanger para la determinación de polimorfismos e identificar las variantes génicas asociadas con el uso problemático del alcohol. Con el empleo de diversas herramientas bioinformáticas se realizó el estudio de haplotipos, desequilibrio de ligamiento y epistasis. La expresión diferencial de ARNm se determinó por RT-q-PCR mientras la proteica por ELISA. El estado de metilación se evaluó indirectamente por modificación del ADN por la técnica del bisulfito seguida PCR, marcaje fluorescente y electroforesis capilar. La obtención y caracterización de los candidatos a blanco terapéutico se realizó por modelado por homología y docking molecular, además del empleo de numerosas herramientas bioinformáticas adicionales. Resultados En el presente estudio se obtuvo la información genética de un marcador STR, de 28 variantes de nucleótido simple (SNV) en once genes relacionados con respuesta inflamatoria, reportando por primera vez sus frecuencias alélicas y genotípicas para población colombiana. Además de encontrar haplotipos asociados a la protección contra la enfermedad e interacciones génicas con efectos acumulativos que se asocian con el fenotipo bebedor. De esta primera parte del estudio se perfilaron como candidatos a seguir con el estudio, los genes SNCA, TNFR1, INFGR1 y MIF. Seguidamente se determinaron los niveles de proteínas y ARNm evidenciando una expresión diferencial hacia la baja en forma de ARNm para los genes TNFR1 y MIF y proteica para MIF, mientras se detecta expresión diferencial de las proteínas SNCA, IL6R1 y MIF dependiendo del sexo de los participantes, en hombres hacia la baja. Nuestros datos indican que hay cambios del estado de metilación en el promotor de los genes MIF en los casos de la muestra general y en SNCA de los casos de sexo masculino que conllevarían a disminución en la síntesis de mARN y proteína. Se seleccionaron las proteínas MIF y SNCA como blancos terapéuticos y se generó modelos que se caracterizaron y así proporcionar una base útil para proponer vías para mejorar la terapia dirigida contra esta patología. Conclusión Los haplotipos en los genes SNCA, TNFR1 e INFGR1 identificados son variantes funcionales que pueden afectar la susceptibilidad al consumo de riesgo de alcohol y fenotipos relacionados. Además, que su interacción parece ser fundamental para el establecimiento de estos fenotipos. Nuestro estudio proporciona información sobre la expresión y regulación de estos genes de respuesta inflamatoria en estos fenotipos de consumo problemático de alcohol y se propone dos proteínas candidatas como blanco terapéutico. (Texto tomado de la fuente).spa
dc.description.abstractIntroduction Alcohol dependence and related phenotypes have multifactorial inheritance patterns. The genetic component is very variable ethnically speaking and highly dependent on the personal evolution of the disease. Although multiple loci have been identified, functional variants have not been identified in most cases. In this work, we select candidate genes of the inflammatory response pathway and determine genetic variants in the promoter region, their methylation status and expression in the form of mRNA and protein, comparing controls and cases with problematic alcohol use in a university population from the Bogotá campus. from the National University of Colombia. With these data we propose candidates for therapeutic targets, which were characterized. Methods For the selection of the sample, a call was made within the University headquarters and strict inclusion and exclusion criteria were applied. DNA and total RNA extractions were performed. We used conventional PCR followed by Sanger sequencing to determine polymorphisms and identify gene variants associated with problematic alcohol use. With the use of various bioinformatic tools, the study of haplotypes, linkage disequilibrium and epistasis was carried out. The differential expression of mRNA was determined by RT-q-PCR while protein expression was determined by ELISA. Methylation status was indirectly assessed by DNA modification by the bisulfite technique followed by PCR, fluorescent labeling, and capillary electrophoresis. The obtaining and characterization of the therapeutic target candidates was carried out by homology modeling and molecular docking, in addition to the use of numerous additional bioinformatic tools. Results In the present study, the genetic information of a STR marker of 28 single nucleotide variants (SNV) in eleven genes related to inflammatory response was obtained, reporting for the first time its allelic and genotypic frequencies for the Colombian population. In addition to finding haplotypes associated with protection against disease and gene interactions with cumulative effects that are associated with the drinking phenotype. From this first part of the study, the SNCA, TNFR1, INFGR1 and MIF genes were outlined as candidates to continue with the study. Next, protein and mRNA levels were determined, showing a downward differential expression in the form of mRNA for the TNFR1 and MIF genes and protein for MIF, while differential expression of the SNCA, IL6R1 and MIF proteins was detected depending on the sex of the participants. , in men downwards. Our data indicate that there are changes in the methylation state in the promoter of the MIF genes in the cases of the general sample and in the SNCA of the male cases that would lead to a decrease in the synthesis of mRNA and protein. The MIF and SNCA proteins were selected as therapeutic targets and models were generated that were characterized and thus provide a useful basis for proposing ways to improve targeted therapy against this pathology. Conclusion The haplotypes in the SNCA, TNFR1, and INFGR1 genes identified are functional variants that may affect susceptibility to hazardous drinking and related phenotypes. Furthermore, their interaction seems to be fundamental for the establishment of these phenotypes. Our study provides information on the expression and regulation of these inflammatory response genes in these phenotypes of problematic alcohol consumption and two candidate proteins are proposed as therapeutic targets.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaGenética de las adiccionesspa
dc.format.extentxxi, 209 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84041
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.references1. OCDE. Panorama de la Salud: Latinoamérica y el Caribe 2020. 2020.spa
dc.relation.references2. Winstock A. Global Drug Survey 2019Executive Summary. 2019;8.spa
dc.relation.references3. Protección M de S y, Social. ESTRATEGIA NACIONAL DE RESPUESTA INTEGRAL FRENTE AL CONSUMO DE.spa
dc.relation.references4. Méndez C, Rey M. Caracterización de polimorfismos de los genes ADH2, ADH3, ALDH2 y CYP2E1 y su relación con el alcoholismo en una población colombiana. Colomb Med. 2015;46(4):176–82.spa
dc.relation.references5. Ximena T, Matiz C, Aristizabal FA, Buitrago MR. Determination of Genetic Polymorphism Taqia ( Ankk1 ) Taqib ( Drd2 ), -141c Ins / Del ( Drd2 ) And 40 Bp Vntr ( Slc6a3 ) in the Colombian Population and Evaluation of their Associations with Alcoholism. J Subst Abus Alcohol. 2015;3:1–9.spa
dc.relation.references7. World Health Organization. Glosario de términos de alcohol y drogas. In: Glosario de términos de alcohol y drogas. 2nd ed. Organización Mundial de la Salud; 1994. p. 60.spa
dc.relation.references8. Babor TF, Higgins-biddle JC, Saunders JB, Monteiro MG. Cuestionario de Identificación de los Transtornos debidos al Consumo de Alcohol. In: Organización Mundial de la Salud [Internet]. 2001. p. 1–40. Available from: http://www.who.int/substance_abuse/activities/en/AUDITmanualSpanish.pdfspa
dc.relation.references9. organización panamericana de la salud. CIE-10 clasificacion estadistica internacional de enfermedades y problemas relacionados con la salud. 554 [Internet]. 2008;3(554):758. Available from: http://ais.paho.org/classifications/Chapters/pdf/Volume3.pdfspa
dc.relation.references10. Organización Panamericana de la Salud. Alcohol y salud publica en las Americas Un Caso Para La Accion. Organ Panam La Salud World Heal Organ. 2007;64.spa
dc.relation.references11. Szerman N, Roncero C, Casas M. Protocolos de intervención. In: PROTOCOLOS DE INTERVENCIÓN EN PATOLOGÍA DUAL. Sociedad española de patología dual; 2016. p. 297.spa
dc.relation.references12. Kreek MJ, Nielsen DA, Laforge KS. Genes Associated With Addiction. NeuroMolecular Med. 2004;85(5).spa
dc.relation.references13. Higuchi S, Matsushita S, Masaki T, Yokoyama A, Kimura M, Go S, et al. Influence of genetic variations of ethanol-metabolizing enzymes on phenotypes of alcohol-related disorders. In: Annals of the New York Academy of Sciences. 2004. p. 472–80.spa
dc.relation.references14. Vigilancia I De. Microarrays y Biochips de ADN. Vol. 1, Revista Panamericana de Salud P. 2002. 56 p.spa
dc.relation.references15. Daudén Tello E. Farmacogen??tica II. M??todos moleculares de estudio, bioinform??tica y aspectos ??ticos. Vol. 98, Actas Dermo-Sifiliograficas. 2007. p. 3–13.spa
dc.relation.references16. Rey M, Gutiérrez A, Schroeder B, Usaquén W, Carracedo A, Bustos I, et al. Allele frequencies for 13 STR’s from two Colombian populations: Bogotá and Boyacá. Forensic Sci Int. 2003;136(1–3):83–5.spa
dc.relation.references17. Enoch M-A. Genetic Influences on the Development of Alcoholism. Curr Psychiatry Rep [Internet]. 2013;15(11):412. Available from: http://link.springer.com/10.1007/s11920-013-0412-1spa
dc.relation.references18. Heinz a. Dopaminergic dysfunction in alcoholism and schizophrenia--psychopathological and behavioral correlates. Eur Psychiatry. 2002;17(1):9–16.spa
dc.relation.references19. Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Vol. 47, Neuropharmacology. 2004. p. 3–13.spa
dc.relation.references20. Flatscher-Bader T, Harrison E, Matsumoto I, Wilce PA. Genes associated with alcohol abuse and tobacco smoking in the human nucleus accumbens and ventral tegmental area. Alcohol Clin Exp Res. 2010;34(7):1291–302.spa
dc.relation.references21. Kimura M, Higuchi S. Genetics of alcohol dependence. Vol. 65, Psychiatry and Clinical Neurosciences. 2011. p. 213–25.spa
dc.relation.references22. Köhnke MD, Batra A, Kolb W, Köhnke AM, Lutz U, Schick S, et al. Association of the dopamine transporter gene with alcoholism. Alcohol Alcohol. 2005;40(5):339–42.spa
dc.relation.references23. Enoch M-A, Xu K, Ferro E, Harris CR, Goldman D. Genetic origins of anxiety in women: a role for a functional catechol-O-methyltransferase polymorphism. Psychiatr Genet. 2003;13:33–41.spa
dc.relation.references24. Choi IG, Kee BS, Son HG, Ham BJ, Yang BH, Kim SH, et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenase, dopamine and serotonin transporters in familial and non-familial alcoholism. Eur Neuropsychopharmacol. 2006;16(2):123–8.spa
dc.relation.references25. Huang CLC. The role of serotonin and possible interaction of serotonin-related genes with alcohol dehydrogenase and aldehyde dehydrogenase genes in alcohol dependence-a review. Am J Transl Res. 2010;2(2):190–9.spa
dc.relation.references26. Xuei X, Dick D, Flury-Wetherill L, Tian H-J, Agrawal A, Bierut L, et al. Association of the kappa-opioid system with alcohol dependence. Mol Psychiatry. 2006;11(11):1016–24.spa
dc.relation.references27. Izquierdo M. Intoxicaci??n alcoh??lica aguda. Vol. 14, Adicciones. 2002. p. 175–93.spa
dc.relation.references28. Gelernter J, Kranzler HR, Sherva R, Almasy L, Koesterer R, Smith AH, et al. Genome-wide association study of alcohol dependence:significant findings in African- and European-Americans including novel risk loci. Mol Psychiatry. 2014;19(1):41–9.spa
dc.relation.references29. Barrios De Tomasi E, Juárez-González J. Antagonistas opioides y consumo de alcohol. Vol. 45, Revista de Neurologia. 2007. p. 155–62.spa
dc.relation.references30. Ayesta FJ. Bases bioquímicas y neurobiológicas de la adicción al alcohol. Vol. 14, Adicciones. 2002. p. 63–78.spa
dc.relation.references31. Ron D, Wang J. The NMDA Receptor and Alcohol Addiction [Internet]. Biology of the NMDA Receptor. 2009. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21204417spa
dc.relation.references32. Sander T, Ostapowicz A, Samochowiec J, Smolka M, Winterer G, Schmidt LG. Genetic variation of the glutamate transporter EAAT2 gene and vulnerability to alcohol dependence [Internet]. Vol. 10, Psychiatric Genetics. 2000. p. 103–7. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-0034508242&partnerID=tZOtx3y1spa
dc.relation.references33. Heilig M, Goldman D, Berrettini W, O’Brien CP. Pharmacogenetic approaches to the treatment of alcohol addiction. Nat Rev Neurosci. 2011;12(11):670–84.spa
dc.relation.references34. Wong CCY, Mill J, Fernandes C. Drugs and addiction: An introduction to epigenetics. Addiction. 2011;106(3):480–9.spa
dc.relation.references35. Hodgkinson CA, Yuan Q, Xu K, Shen P, Heinz E, Lobos EA, et al. Addictions Biology : Haplotype-Based Analysis for 130 Candidate Genes on a Single Array. 2008;43(5):505–15.spa
dc.relation.references36. Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, et al. Genome-wide association study of alcohol dependence. Arch Gen Psychiatry. 2009;66(7):773–84.spa
dc.relation.references37. Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, et al. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol. 2009;7:70.spa
dc.relation.references38. Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, et al. A genome-wide association study of alcohol dependence. Proc Natl Acad Sci U S A. 2010;107(11):5082–7.spa
dc.relation.references39. Foroud T, Ph D, Edenberg HJ, Ph D, Crabbe JC, Ph D. MAA Publications. Am Math Mon. 1967;74(4):482–3.spa
dc.relation.references40. Kapoor M, Wang J, Wetherill L, Le N, Bertelsen S, Hinrichs AL, et al. Identify Novel Loci for Maximum Number of Alcoholic Drinks. 2014;132(10):1141–51.spa
dc.relation.references41. Zhang R, Miao Q, Wang C, Zhao R, Li W, Haile CN, et al. Genome-wide DNA methylation analysis in alcohol dependence. Addict Biol. 2013;18(2):392–403.spa
dc.relation.references42. Lossie AC, Muir WM, Lo CL, Timm F, Liu Y, Gray W, et al. Implications of genomic signatures in the differential vulnerability to fetal alcohol exposure in C57BL/6 and DBA/2 mice. Front Genet. 2014;5(JUN).spa
dc.relation.references43. Levey DF, Le-Niculescu H, Frank J, Ayalew M, Jain N, Kirlin B, et al. Genetic risk prediction and neurobiological understanding of alcoholism. Transl Psychiatry. 2014;4(January).spa
dc.relation.references44. Zuo L, Tan Y, Zhang X, Wang X, Krystal J, Zhong C, et al. dependence. 2017;39(8):1388–95.spa
dc.relation.references45. Gelernter J, Renato P, Stein MB. Genome-wide Association Study of Maximum Habitual Alcohol Intake in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol Psychiatry. 2019;86(5):365–76.spa
dc.relation.references46. Kapoor M, Wang J, Farris SP, Liu Y, Mcclintick J, Gupta I, et al. Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. 2019;spa
dc.relation.references47. Kranzler, HR, Zhou, H., Kember R y col. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations _ Enhanced Reader.pdf. 2019.spa
dc.relation.references48. Zhou H, Sealock JM, Sanchez-roige S, Clarke T, Daniel F, Cheng Z, et al. Nature neuroscience. Nat Neurosci. 2020;23(7):809–18.spa
dc.relation.references49. Kapoor M, Chao MJ, Johnson EC, Novikova G, Lai D, Meyers JL, et al. Multi-omics integration analysis identi fi es novel genes for alcoholism with potential overlap with neurodegenerative diseases. (2021):1–12.spa
dc.relation.references50. Singh SM, Treadwell J, Kleiber ML, Harrison M, Uddin RK. Analysis of behavior using genetical genomics in mice as a model: From alcohol preferences to gene expression differences. Genome. 2007;50(10):877–97.spa
dc.relation.references51. Alfred J. Robison and Eric J. Nestler. Transcriptional and Epigenetic Mechanisms of Addiction. Nat Rev Neurosci. 2012;12(11):623–37.spa
dc.relation.references52. Vagga A, Meshram A, Kanyal L, Meshram K. Gene expression regulation by epigenetic mechanism an emerging way in alcoholics. Int J Curr Res Rev. 2021;13(3). .spa
dc.relation.references53. Jing Li1, Yunhui Cheng, Weiliang Bian, Xiaojun Liu1, Chunxiang Zhang and JY. Region-specific Induction of FosB/ΔFosB by Voluntary Alcohol Intake: Effects of Naltrexone. Alcohol Clin Exp Res. 2011;34(10):1742–50.spa
dc.relation.references54. Nennig SE, Schank JR. The role of NFkB in drug addiction: Beyond inflammation. Alcohol Alcohol. 2017;52(2):172–9.spa
dc.relation.references55. Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. 2017;8(67):112152–65.spa
dc.relation.references56. Wand G. The anxious amygdala : CREB signaling and predisposition to anxiety and alcoholism. J Clin Invest. 2005;115(10):2697–9.spa
dc.relation.references57. Kevin Range and DMYAM. 基因的改变NIH Public Access. Bone. 2012;23(1):1–7.spa
dc.relation.references58. Sohma H, Hashimoto E, Shirasaka T, Tsunematsu R, Ozawa H, Boissl KW, et al. Quantitative reduction of type I adenylyl cyclase in human alcoholics. Biochim Biophys Acta - Mol Basis Dis. 1999;1454(1):11–8.spa
dc.relation.references59. Zhang H, Herman AI, Kranzler HR, Anton RF, Zhao H, Zheng W, et al. Array-based profiling of dna methylation changes associated with alcohol dependence. Alcohol Clin Exp Res. 2013;37(SUPPL.1):1–13.spa
dc.relation.references60. Franklin TB, Mansuy IM. Epigenetic inheritance in mammals: Evidence for the impact of adverse environmental effects. Neurobiol Dis [Internet]. 2010;39(1):61–5. Available from: http://dx.doi.org/10.1016/j.nbd.2009.11.012spa
dc.relation.references61. Lian G, Peng S, Zhao Q, Xu Y, Lin X. Reversing Epigenetic Alterations Caused by Alcohol : A Promising Therapeutic Direction for Alcoholic Liver. 2018;42(10):1863–73.spa
dc.relation.references62. Popescu A, Marian M, Drăgoi A, Costea R-V. Understanding the genetics and neurobiological pathways behind addiction (Review). Exp Ther Med. 2021;21(5):1–10.spa
dc.relation.references63. Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Su J, et al. NIH Public Access. 2015;23(2):223–33.spa
dc.relation.references64. Girardot M, Feil R, & David Llères. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics. 2013;5(6):715–728.spa
dc.relation.references65. Kerton O. DNA Methylation - From Genomics to Technology. DNA Methylation - From Genomics to Technology. 2012.spa
dc.relation.references66. NIAAA. Epigenetics: A New Frontier for Alcohol Research In. Nih. 2002;86(58):1–6.spa
dc.relation.references67. Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: A novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321(4):591–9.spa
dc.relation.references68. Lehrmann E, Colantuoni C, Deep-Soboslay A, Becker KG, Lowe R, Huestis MA, et al. Transcriptional changes common to human cocaine cannabis and phencyclidine abuse. PLoS One. 2006;1(1).spa
dc.relation.references69. Amul J Sakharkar, Huaibo Zhang, Lei Tang, Guangbin Shi and SCP. Histone Deacetylases (HDAC)-Induced Histone Modifications in the Amygdala: A Role in Rapid Tolerance to the Anxiolytic Effects of Ethanol. Alcohol Clin Exp Res. 2012;36(1):61–71.spa
dc.relation.references70. Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol Res Curr Rev. 2012;35(1):6–16.spa
dc.relation.references71. Meng, F., Glaser, S. S., Francis, H., Yang, F., Han, Y., Stokes, A., Staloch, D., McCarra, J., Liu, J., Venter, J., Zhao, H., Liu, X., Francis, T., Swendsen, S., Liu, C. G., Tsukamoto, H., & Alpini G. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am J Pathol. 2012;181(3):804–17.spa
dc.relation.references72. Hamilton PJ, Nestler EJ. Epigenetics and addiction. Curr Opin Neurobiol. 2019;59:128–36.spa
dc.relation.references73. Wasielewski JA, Holloway FA. Alcohol’s interactions with circadian rhythms - A focus on body temperature. Alcohol Res Heal. 2001;25(2):94–100.spa
dc.relation.references74. Andrés G, Ashour N, Sánchez-Chapado M, Ropero S, Angulo JC. The study of DNA methylation in urological cancer: Present and future. Actas Urol Esp [Internet]. 2013;37(6):368–75. Available from: http://dx.doi.org/10.1016/j.acuro.2013.03.001spa
dc.relation.references75. McKay HRKR. Personalized treatment of alcohol dependence. Curr Psychiatry Rep. 2012;14(5):486–493.spa
dc.relation.references76. Becerril-Villanueva E, Moreno-Aguilar J, Mendieta-Cabrera D, González-Cruz D, Natera-Rey G, Pavón-Romero L, et al. Estudio preliminar de la expresión del mensaje genético del transportador de serotonina en células mononucleares de sangre periférica en pacientes con dependencia al alcohol con y sin depresión mayor comórbida. Salud Ment. 2011;34(2):139–47.spa
dc.relation.references77. Agrawal RG, Owen JA, Levin PS, Hewetson A, Berman AE, Franklin R, et al. NIH Public Access. 2015;38(2):428–37.spa
dc.relation.references78. Fuller RK, Branchey L, Brightwell DR, Derman RM, Emrick CD, Iber FL, et al. Disulfiram Treatment of Alcoholism: A Veterans Administration Cooperative Study. JAMA J Am Med Assoc. 1986;256(11):1449–55.spa
dc.relation.references79. Caputo F, Vignoli T, Grignaschi A, Cibin M, Addolorato G, Bernardi M. Pharmacological management of alcohol dependence: From mono-therapy to pharmacogenetics and beyond. Eur Neuropsychopharmacol [Internet]. 2014;24(2):181–91. Available from: http://dx.doi.org/10.1016/j.euroneuro.2013.10.004spa
dc.relation.references80. Whitworth AB, Fischer F, Lesch OM, Nimmerrichter A, Oberbauer H, Platz T, et al. Comparison of acamprosate and placebo in long-term treatment of alcohol dependence. Lancet. 1996;347(9013):1438–42.spa
dc.relation.references81. Kranzler HR, Van Kirk J. Efficacy of naltrexone and acamprosate for alcoholism treatment: A meta-analysis. Alcohol Clin Exp Res. 2001;25(9):1335–spa
dc.relation.references82. Selin J. Implementation of substitution treatment in Finland: Beyond rationalisation and medicalisation. NAD Publ. 2011;28(1):29–42.spa
dc.relation.references83. Camilleri M. Pharmacogenomics and serotonergic agents: Research observations and potential clinical practice implications. Neurogastroenterol Motil. 2007;19(SUPPL.2):40–5.spa
dc.relation.references84. Pettinati HM, Volpicelli JR, Kranzler HR, Luck G, Rukstalis MR, Cnaan A. Sertraline treatment for alcohol dependence: Interactive effects of medication and alcoholic subtype. Alcohol Clin Exp Res. 2000;24(7):1041–9.spa
dc.relation.references85. Caputo F, Francini S, Brambilla R, Vigna-Taglianti F, Stoppo M, Del Re A, et al. Sodium oxybate in maintaining alcohol abstinence in alcoholic patients with and without psychiatric comorbidity. Eur Neuropsychopharmacol [Internet]. 2011;21(6):450–6. Available from: http://dx.doi.org/10.1016/j.euroneuro.2010.12.005spa
dc.relation.references86. Johnson BA, Ait-Daoud N, Bowden CL, DiClemente CC, Roache JD, Lawson K, et al. Oral topiramate for treatment of alcohol dependence: A randomised controlled trial. Lancet. 2003;361(9370):1677–85.spa
dc.relation.references87. Martinotti G, Di Nicola M, Di Giannantonio M, Janiri L. Aripiprazole in the treatment of patients with alcohol dependence: A double-blind, comparison trial vs. Naltrexone. J Psychopharmacol. 2009;23(2):123–9.spa
dc.relation.references88. Colombo G, Orrù A, Lai P, Cabras C, Maccioni P, Rubio M, et al. The cannabinoid CB1 receptor antagonist, rimonabant, as a promising pharmacotherapy for alcohol dependence: Preclinical evidence. Mol Neurobiol. 2007;36(1):102–12.spa
dc.relation.references89. Lawford BR, Young RM, Rowell JA, Qualichefski J, Fletcher BH, Syndulko K, et al. Bromocriptine in the treatment of alcoholics with the D2dopamine receptor A1 allele. Nat Med. 1995;1(4):337–41.spa
dc.relation.references90. Furieri FA N-PE. Gabapentin reduces alcohol consumption and craving: a randomized, double-blind, placebo-controlled trial. Clin Psychiatry. 2007;68(11):691–700.spa
dc.relation.references91. Kast RE. Bupropion : pharmacology and therapeutic applications. 2014;(October 2006).spa
dc.relation.references92. Méndez M MM. Role of mu and delta opioid receptors in alcohol drinking behaviour. Curr Drug Abus Rev. 2008;1(2):239–52.spa
dc.relation.references93. Kalivas PW, Volkow ND. The neural basis of addiction: A pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13.spa
dc.relation.references94. Kashem Abul Mohammed , Šerý Omar , Pow V. David , Rowlands D. Benjamin RDC and BJV. Actions of Alcohol in Brain: Genetics, Metabolomics, GABA Receptors, Proteomics and Glutamate Transporter GLAST/EAAT1. Curr Mol Pharmacol. 2021;14(2):138–49.spa
dc.relation.references95. Ilveskoski E, Kajander OA, Lehtimäki T, Kunnas T, Karhunen PJ, Heinälä P, et al. Association of neuropeptide Y polymorphism with the occurrence of type 1 and type 2 alcoholism. Alcohol Clin Exp Res. 2001;25(10):1420–2.spa
dc.relation.references96. Méplan C, Dragsted LO, Ravn-Haren G, Tjønneland A, Vogel U, Hesketh J. Association between Polymorphisms in Glutathione Peroxidase and Selenoprotein P Genes, Glutathione Peroxidase Activity, HRT Use and Breast Cancer Risk. Coleman WB, editor. PLoS One [Internet]. 2013 Sep 10 [cited 2017 Mar 15];8(9):e73316. Available from: http://dx.plos.org/10.1371/journal.pone.0073316spa
dc.relation.references97. Tesoriere L, Attanzio A, Allegra M, Gentile C, Livrea M a. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells. Br J Nutr [Internet]. 2014;111(03):415–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23931157%5Cnhttp://www.journals.cambridge.org/abstract_S0007114513002663spa
dc.relation.references98. González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol. 2014;20(40):14660–71.spa
dc.relation.references99. Crews FT. Immune function genes, genetics, and the neurobiology of addiction. Alcohol Res [Internet]. 2012;34(3):355–61. Available from: http://doi.wiley.com/10.1111/j.1369-1600.2010.00284.x%5Cnpapers3://publication/doi/10.1111/j.1369-1600.2010.00284.xspa
dc.relation.references100. Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl). 2016;233(9):1543–57.spa
dc.relation.references101. Crews FT, Lawrimore CJ, Walter TJ, Coleman LG. The role of neuroimmune signaling in alcoholism. Neuropharmacology. 2017;122:56–73.spa
dc.relation.references102. He J and FTC. Increased MCP-1 and Microglia in Various Regions of the HumanAlcoholic Brain. Exp Neurol. 2008;210(2):349–58.spa
dc.relation.references103. Dantzer KWK and R. Alcoholism and Inflammation: Neuroimmunology of Behavioral and Mood Disorders. Brain Behav Immun. 2011;25(01):S13–S20.spa
dc.relation.references104. Rajeshwara N. Achur, Willard M. Freeman and KEV. Circulating Cytokines as Biomarkers of Alcohol Abuse and Alcoholism. J Neuroimmune Pharmacol. 2010;5(1):83–91.spa
dc.relation.references105. Kim YK, Lee BC, Ham BJ, Yang BH, Roh S, Choi J, et al. Increased transforming growth factor-beta1 in alcohol dependence. J Korean Med Sci. 2009;24(5):941–4.spa
dc.relation.references106. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Heal. 2003;27(4):277–84.spa
dc.relation.references107. Coleman LG, Zou J, Crews FT. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation. 2017;14(1):1–15.spa
dc.relation.references108. Mayfield J, Ferguson L, Harris RA. Neuroimmune signaling: A key component of alcohol abuse. Curr Opin Neurobiol. 2013;23(4):513–20.spa
dc.relation.references109. UniProtKB. No Title [Internet]. UniProtKB - P37840 (SYUA_HUMAN). Available from: http://www.uniprot.org/uniprot/P37840spa
dc.relation.references110. Organización Mundial de la Salud. Neurociencia del consumo y dependencia de sustancias psicoactivas. Neurocienc del Consum y Depend Sust psicoactivas-resumen. 2005;236–58.spa
dc.relation.references111. Emamzadeh FN. Alpha-synuclein structure, functions, and interactions. J Res Med Sci. 2016;21(29):e-collection.spa
dc.relation.references112. Janeczek P, Lewohl JM. The role of α-synuclein in the pathophysiology of alcoholism. Neurochem Int [Internet]. 2013;63(3):154–62. Available from: http://dx.doi.org/10.1016/j.neuint.2013.06.007spa
dc.relation.references113. Ziolkowska B, Gieryk A, Wawrzczak-Bargiela A, Krowka T, Kaminska D, Korkosz A, et al. α-Synuclein expression in the brain and blood during abstinence from chronic alcohol drinking in mice. Neuropharmacology. 2008;54(8):1239–46.spa
dc.relation.references114. Caplan IF, Maguire-Zeiss KA. Toll-like receptor 2 signaling and current approaches for therapeutic modulation in synucleinopathies. Front Pharmacol. 2018;9(MAY):1–18.spa
dc.relation.references115. Janeczek P, Mackay RK, Lea RA, Dodd PR, Lewohl JM. Reduced expression of a -synuclein in alcoholic brain : influence of SNCA -Rep1 genotype. Addict Biol. 2014;19(3):509–15.spa
dc.relation.references116. Nunez YO, Mayfield RD. Understanding alcoholism through microRNA signatures in brains of human alcoholics. Front Genet. 2012;3(APR):1–13.spa
dc.relation.references117. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb Perspect Biol. 2014;6:1–16.spa
dc.relation.references118. Nguyen HN, Noss EH, Mizoguchi F, Huppertz C, Wei KS, Watts GFM, et al. Autocrine Loop Involving IL-6 Family Member LIF, LIF Receptor, and STAT4 Drives Sustained Fibroblast Production of Inflammatory Mediators. Immunity. 2017;46(2):220–32.spa
dc.relation.references119. Barnes TC, Anderson ME, Moots RJ. The Many Faces of Interleukin-6: The Role of IL-6 in Inflammation, Vasculopathy, and Fibrosis in Systemic Sclerosis. Int J Rheumatol. 2011;1–6.spa
dc.relation.references120. Mukamal KJ, Jenny NS, Tracy RP, Siscovick DS. Alcohol consumption, interleukin-6 and apolipoprotein E genotypes, and concentrations of interleukin-6 and serum amyloid P in older adults. Am J Clin Nutr. 2008;86(2):444–50.spa
dc.relation.references121. Carnota JJG. El papel del factor de necrosis tum oral en la inflam ación y el daño articular en la artritis reum atoide. Rev Española Reumatol. 2002;1-suplemen(1):2–4.spa
dc.relation.references122. Kashem MA, Šerý O, Pow DV, Rowlands BD, Rae CD BV. Actions of Alcohol in Brain: Genetics, Metabolomics, GABA Receptors, Proteomics and Glutamate Transporter GLAST/EAAT1. Curr Mol Pharmacol. 2021;14(2):138–49.spa
dc.relation.references123. Heberlein A, Käser M, Lichtinghagen R, Rhein M, Lenz B, Kornhuber J, et al. TNF-α and IL-6 serum levels: Neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol. 2014;48(7):671–6.spa
dc.relation.references124. Sprowl JA, Reed K, Armstrong SR, Lanner C, Guo B, Kalatskaya I, et al. Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: A study in isogenic resistant tumor cells. Breast Cancer Res. 2012;14(1):R2.spa
dc.relation.references125. Fiers W. Tumor necrosis factor Characterization at the molecular, cellular and in vivo level. FEBS Lett. 1991;285(2):199–212.spa
dc.relation.references126. Carrasco LO. CITOQUINAS : DE FIELES ALIADAS A TEMIBLES ENEMIGAS. Real Acad Ciencias Vet Andalucía Orient. 2011;24(1):75–90.spa
dc.relation.references127. Shimizu K, Nakajima A, Sudo K, Liu Y. IL-1 Receptor Type 2 Suppresses Collagen-Induced Arthritis by Inhibiting IL-1 Signal on Macrophages. J Immunol. 2015;194:3156–68.spa
dc.relation.references128. Pastor IJ, Laso FJ, Romero A. INTERLEUKIN-1 GENE CLUSTER POLYMORPHISMS AND ALCOHOLISM IN SPANISH MEN. 2005;40(3):181–6.spa
dc.relation.references129. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: Relationship with ethanol intake and liver disease. Cytom Part B - Clin Cytom. 2007;72(5):408–15.spa
dc.relation.references130. Ciudad J, Laso FJ, Iglesias MC, Lo A, Miguel FS, Orfao A. Increased interleukin-12 serum levels in chronic alcoholism. 1998;1(17):771–7.spa
dc.relation.references131. Solà CA. Interferones : tipos y acciones. 2006;29(Supl 2):125–8.spa
dc.relation.references132. Davidson S, Mccabe TM, Crotta S, Gad HH, Hessel EM, Beinke S, et al. IFN k is a potent anti-influenza therapeutic without the inflammatory side effects of IFN a treatment. 2016;8(9):1099–112.spa
dc.relation.references133. Szabo, G., Catalano, D., Bellerose, G. and Mandrekar P. Interferon α and Alcohol Augment Nuclear Regulatory Factor‐κB Activation in HepG2 Cells, and Interferon α Increases Pro‐Inflammatory Cytokine Production. Alcohol Clin Exp Res. 2001;25(1188–1197).spa
dc.relation.references134. Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J. 2012;33(7):829–37.spa
dc.relation.references135. Steffen Stenger, Heike Thüring, Martin Röllinghoff, Pamela Manning CB. l-N6-(1-Iminoethyl)-lysine potently inhibits inducible nitric oxide synthase and is superior to NG-monomethyl-arginine in vitro and in vivo. Eur J Pharmacol. 1995;294(2–3):703–12.spa
dc.relation.references136. Roger T, Ding X, Chanson A, Renner P. Regulation of constitutive and microbial pathogen-induced human macrophage migration inhibitory factor ( MIF ) gene expression.spa
dc.relation.references137. Wang F, Huang X, Shen N, Leng L, Bucala R, Chen S, et al. A genetic role for macrophage migration inhibitory factor ( MIF ) in adult-onset Still ’ s disease. 2013;spa
dc.relation.references138. Petralia M, Mazzon E, Mangano K, Fagone P, Di Marco R, Falzone L, et al. Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders. Exp Ther Med. 2020;1755–62.spa
dc.relation.references139. Moynagh PN. The NF-κB pathway. J Cell Sci. 2005;118(20):4589–92.spa
dc.relation.references140. Edenberg HJ, Xuei X, Wetherill LF, Bierut L, Bucholz K, Dick DM, et al. Association of NFKB1, which encodes a subunit of the transcription factor NF-κB, with alcohol dependence. Hum Mol Genet. 2008;17(7):963–70.spa
dc.relation.references141. Peng C, Ouyang Y, Lu N, Li N. The NF-κB Signaling Pathway, the Microbiota, and Gastrointestinal Tumorigenesis: Recent Advances. Front Immunol. 2020;11(June):1–13.spa
dc.relation.references142. Li G, Liang X, Lotze MT. HMGB1: The central cytokine for all lymphoid cells. Front Immunol. 2013;4(MAR):1–9.spa
dc.relation.references143. Liu Y, Prasad R, Wilson SH. HMGB1: Roles in base excision repair and related function. Biochim Biophys Acta - Gene Regul Mech. 2010;1799(1–2):119–30.spa
dc.relation.references144. Coleman LG, Zou J, Qin L, Crews FT. HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun. 2018;72:61–77.spa
dc.relation.references145. Iaomin LIUX, Englin CAOF, Ianmin HUOJ, Uzhi SHIY, Insheng GONGB, Ingmei ZHY. Correlation Between Genetic Polymorphism of Cytokine Genes , Plasma Protein Levels and Bronchial Asthma in the Han People in Northern China. 2008;583–9.spa
dc.relation.references146. Campo-arias A, Villamil-vargas M, Herazo E. Confiabilidad y dimensionalidad del audit en estudiantes de medicina. Psicol desde el Caribe. 2013;30(1):21–35.spa
dc.relation.references147. Juan Manuel Ospina-Díaz, Fred Gustavo Manrique - Abril NEAR. Confiabilidad y dimensionalidad del Cuestionario para Identificación de Trastornos Debidos al Consumo de Alcohol (AUDIT) en estudiantes universitarios de Tunja (Colombia). Rev Científica Salud Uninorte. 2012;28(2):276–82.spa
dc.relation.references148. Scoppetta O. mediante análisis de correspondencias múltiples. 2011;(October 2014).spa
dc.relation.references149. Silla Stoel M, Rosón Hernández B. Evaluación del consumo de alcohol y diagnóstico de patrón de consumo. Trastor Adict. 2009;11(3):191–9.spa
dc.relation.references150. Herrán OF, Ardila MF, Barba DM. Consumo problemático de alcohol en Bucaramanga, Colombia: Diseño y validación de una prueba. Biomedica. 2008;28(1):25–37.spa
dc.relation.references151. Brown D. KNOWING YOUR LIMITS WITH ALCOHOL. Addiction CC on SU and, editor. 2019. 40 p.spa
dc.relation.references152. Vidal-Taboada JM, Cucala M, Herrero SM, Lafuente A, Cobos A. Satisfaction survey with DNA cards method to collect genetic samples for pharmacogenetics studies. BMC Med Genet. 2006;7:1–9.spa
dc.relation.references153. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.spa
dc.relation.references154. Espinosa L. Guía práctica sobre la técnica de PCR 517 Guía práctica sobre la técnica de PCR. Ecol Mol. 2007;517–36.spa
dc.relation.references155. Altschup SF, Gish, Warren1. Altschup SF, Gish W, Pennsylvania T PUBLAST 2Department of CSJMB 1990;3:403–10., Pennsylvania T, Park U. Basic Local Alignment Search Tool 2Department of Computer Science. J Mol Bio. 1990;3:403–10.spa
dc.relation.references156. Koressaar T RM. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91.spa
dc.relation.references157. IBM Corp. Released. IBM SPSS Statistics for Windows, Version 23.0. NY: IBM Corp.; 2015.spa
dc.relation.references158. Peakall R and SPE. GENALEX 6: genetic analysis in Exc. Popul Genet Softw Teach Res Mol Ecol Notes. 2006;(6):288-295.spa
dc.relation.references159. (https://www.snpstats.net/snpstats/start.htm).spa
dc.relation.references160. (http://epistasis.org).spa
dc.relation.references161. Wong AK*, Krishnan A*, Yao V*, Tadych A TO. IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. 2015;43:W128–33.spa
dc.relation.references162. Gómez Moya J. El alcoholismo femenino, una verdad oculta. Trastor Adict. 2006;8(4):251–60.spa
dc.relation.references163. Irati Fajó Roncal. Trabajo Fin de Grado Uso y abuso de sustancias psicoactivas en la adolescencia. 2020.spa
dc.relation.references164. Giménez-García C, Ruiz-Palomino E, Gil-Juliá B, García-Nebot JE, Ballester-Arnal R. Alcohol y juventud ¿existen diferencias en consumo de hombres y mujeres según edad de inicio? Int J Dev Educ Psychol Rev INFAD Psicol. 2018;2(1):317.spa
dc.relation.references165. Clínicas G, Basadas En La S, Científica E, Edición a, Pascual F, Guardia J, et al. Alcoholismo Alcoholismo Guias Clínicas SOCIDROGALCOHOL basadas en la EVIDENCIA CIENTÍFICA. Vol. 13. 2013. 5–1 p.spa
dc.relation.references166. A RAJ. Aspe ctos ge né ticos de l alcoholismo Genetic aspects of alcoholism. 2003;5(3):213–22.spa
dc.relation.references167. Pérez-Campo FM, Sañudo C, Krebesova R, Delgado-Calle J RJ. Estudio funcional de los polimorfismos del promotor del gen de la esclerostina. Rev Osteoporos Metab Miner. 2016;8(4):121–6.spa
dc.relation.references168. L. Phan, Y. Jin, H. Zhang, W. Qiang, E. Shekhtman, D. Shao, D. Revoe, R. Villamarin, E. Ivanchenko, M. Kimura, Z. Y. Wang, L. Hao, N. Sharopova, M. Bihan, A. Sturcke, M. Lee, N. Popova, W. Wu, C. Bastiani, M. Ward, J. B. Holmes, V. Lyoshin, K. Kaur, E. Mo and BLK. “ALFA: Allele Frequency Aggregator.” www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/. 2020.spa
dc.relation.references169. Lee C, Huang CH. LASAGNA-search: An integrated web tool for transcription factor binding site search and visualization. Biotechniques. 2013;54(3):141–53.spa
dc.relation.references170. Raiber EA, Kranaster R, Lam E, Nikan M, Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2012;40(4):1499–508.spa
dc.relation.references171. Kapelski P, Skibinska M, Maciukiewicz M, Wilkosc M, Frydecka D, Groszewska A, et al. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population. Schizophr Res. 2015;169(1–3):1–9.spa
dc.relation.references172. Foroud T, Wetherill LF, Liang T, Dick DM, Hesselbrock V, Kramer J, et al. Association of alcohol craving with α-synuclein (SNCA). Alcohol Clin Exp Res. 2007;31(4):537–45.spa
dc.relation.references173. Al WET, Wilcox CE, Claus ED, Ph D, Blaine SK, S MMM. Genetic Variation in the Alpha Synuclein Gene ( SNCA ). 2008;spa
dc.relation.references174. Brighina L, Schneider NK, Lesnick TG, de Andrade M, Cunningham JM, Mrazek D, et al. α-Synuclein, alcohol use disorders, and Parkinson disease: A case-control study. Park Relat Disord. 2009;15(6):430–4.spa
dc.relation.references175. Barve S, Kirpich IA, Mcclain CJ. Tumor necrosis factor alpha-induced receptor 1 signaling in alcoholic liver disease: A gut reaction? Hepatology. 2015 Mar;61(3):754–6.spa
dc.relation.references176. Clarimon J, Gray RR, Williams LN, Enoch MA, Robin RW, Albaugh B, et al. Linkage disequilibrium and association analysis of α-synuclein and alcohol and drug dependence in two American Indian populations. Alcohol Clin Exp Res. 2007;31(4):546–54.spa
dc.relation.references177. Lin Z, Walther D, Yu XY, Li S, Drgon T, Uhl GR. SLC18A2 promoter haplotypes and identification of a novel protective factor against alcoholism. Hum Mol Genet. 2005;14(10):1393–404.spa
dc.relation.references178. Ray LA, Sehl M, Bujarski S, Hutchison K, Blaine S, Enoch MA. The CRHR1 gene, trauma exposure, and alcoholism risk: A test of G × E effects. Genes, Brain Behav. 2013;12(4):361–9.spa
dc.relation.references179. Enoch MA, Hodgkinson CA, Yuan Q, Albaugh B, Virkkunen M, Goldman D. GABRG1 and GABRA2 as independent predictors for alcoholism in two populations. Neuropsychopharmacology. 2009;34(5):1245–54.spa
dc.relation.references180. Wang JC, Hinrichs AL, Bertelsen S, Stock H, Budde JP, Dick DM, et al. Functional variants in TAS2R38 and TAS2R16 influence alcohol consumption in high-risk families of African-American origin. Alcohol Clin Exp Res. 2007;31(2):209–15.spa
dc.relation.references181. Belfer I, Hipp H, McKnight C, Evans C, Buzas B, Bollettino A, et al. Association of galanin haplotypes with alcoholism and anxiety in two ethnically distinct populations. Mol Psychiatry. 2006;11(3):301–11.spa
dc.relation.references182. Levy DE DJJ. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62.spa
dc.relation.references183. Michel Goedert. Tau protein and neurodegeneration. Semin Cell Dev Biol. 2004;15(1):45–9.spa
dc.relation.references184. Sigma-Aldrich. Histopaque_-1077.spa
dc.relation.references185. KEVIN P. FOLEY, MARK W. LEONARD EJD. Quantitati0n of RNA using the p01ymerase chain reaction. Trends Genet. 1993;9(11):380–5.spa
dc.relation.references186. نکویی،زهره.صادقی،معصومه سخ, Roche Diagnostics GmbH, Bertrand D, Shaw J, Kalathiappan M, Ng AHQ, et al. How to use the LightCycler ® 96 System Guides [Internet]. Vol. 7, Antimicrobial Agents and Chemotherapy. 2019. 1–13 p. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.01130-19%0Ahttp://dx.doi.org/10.1038/s41385-018-0053-0%0Ahttp://www.biomedcentral.com/1471-2148/11/130%0Ahttp://aac.asm.org/lookup/doi/10.1128/AAC.01056-19%0Ahttps://lifescience.roche.com/documents/LightCycler96_Mspa
dc.relation.references187. Vargas Hernández JE, Rey Buitrago M. Frutas enteras y expresión génica inflamatoria: Un estudio piloto in vivo en humanos. Rev Española Nutr Humana y Dietética. 2020;24(1):4.spa
dc.relation.references188. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.spa
dc.relation.references189. Victor R. Preedy, Matthwe E. Reilly, Vinnod J. Patel PJR and TJP. Protein Metabolism in alcoholism: Effects on Specific Tissues and the Whole Body. Nutrition. 1999;15(7/8):604–8.spa
dc.relation.references190. Fei SS. Integrating genetics and protemics to study alcohol-drinking behavior. 2011;(April).spa
dc.relation.references191. Bönsch D, Reulbach U, Bayerlein K, Hillemacher T, Kornhuber J, Bleich S. Elevated Alpha Synuclein mRNA Levels Are Associated with Craving in Patients with Alcoholism. BIOL PSYCHIATRY. 2004;56:984–6.spa
dc.relation.references192. Guillot CR, Fanning JR, Liang T, Leventhal AM, Berman ME. An-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. J Anxiety Disord. 2015;30:41–7.spa
dc.relation.references193. Lugli G, Torvik VI, Larson J, Smalheiser NR. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem. 2008;106(2):650–61.spa
dc.relation.references194. Tarale P, Daiwile AP, Sivanesan S, Stöger R, Bafana A, Naoghare PK, et al. Manganese exposure: Linking down-regulation of miRNA-7 and miRNA-433 with α-synuclein overexpression and risk of idiopathic Parkinson’s disease. Toxicol Vitr. 2018;46:94–101.spa
dc.relation.references195. Tahara T, Shibata T, Nakamura M, Yamashita H. Effect of polymorphisms of IL-17A , -17F and MIF genes on CpG island hyper-methylation ( CIHM ) in the human gastric mucosa. 2009;563–9.spa
dc.relation.references196. Bucala R. MIF, MIF Alleles, and Prospects for Therapeutic Intervention in Autoimmunity. J Clin Immunol. 2014;33(Suppl 1):72–8.spa
dc.relation.references197. Janeczek P, Brooker C, Dodd PR, Lewohl JM. Differential expression of ␣ -synuclein splice variants in the brain of alcohol misusers : Influence of genotype. Drug Alcohol Depend. 2015;155:284–92.spa
dc.relation.references198. Zhao X-J, Dong Q, Bindas J, , Jon D. Piganelli AM, Reiser J, Kolls and JK. TRIF and IRF-3 Binding to the TNF Promoter Results in Macrophage TNF Dysregulation and Steatosis Induced by Chronic Ethanol. J Immunol. 2013;181(5):3049–56.spa
dc.relation.references199. Zhang Z, Cork J, Ye P, Lei D, Schwarzenberger PO, Summer WR, et al. Inhibition of TNF- ␣ processing and TACE-mediated ectodomain shedding by ethanol the mechanism of acute EtOH-induced TNF- ␣ sup-. 2000;spa
dc.relation.references200. Natri H, Garcia AR, Buetow KH, Trumble BC, Wilson MA. The Pregnancy Pickle: Evolved Immune Compensation Due to Pregnancy Underlies Sex Differences in Human Diseases. Trends Genet. 2019;35(7):478–88.spa
dc.relation.references201. Prescott CA. Sex differences in the genetic risk for alcoholism. Alcohol Res Heal. 2002;26(4):264–73.spa
dc.relation.references202. Weijers HG, Wiesbeck GA, Wodarz N, Keller H, Michel T, Böning J. Gender and personality in alcoholism. Arch Womens Ment Health. 2003;6(4):245–52.spa
dc.relation.references203. Shi X, Li J, Zhao C, Lv S, Xu G. Methylation analysis of hMLH1 gene promoter by a bisulfite-sensitive single-strand conformation polymorphism-capillary electrophoresis method. Biomed Chromatogr. 2006;20(8):815–20.spa
dc.relation.references204. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.spa
dc.relation.references205. Boyd VL, Moody KI, Karger AE, Livak KJ, Zon G, Burns JW. Methylation-dependent fragment separation: Direct detection of DNA methylation by capillary electrophoresis of PCR products from bisulfite-converted genomic DNA. Anal Biochem. 2006;354(2):266–73.spa
dc.relation.references206. Nakao Lm. Epigenetics: interaction of DNA methylation and chromatin. Gene. 2001;278(1–2):25–31.spa
dc.relation.references207. Sarah L. Hagerty, L. Cinnamon Bidwell NH and KEH. HHS Public Access. Alcohol Clin Exp Res. 2016;40(8):1633–40.spa
dc.relation.references208. C Liu, RE Marioni, ÅK Hedman, L Pfeiffer, P-C Tsai, LM Reynolds, AC Just, Q Duan, CG Boer, T Tanaka, CE Elks, S Aslibekyan, JA Brody, B Kühnel, C Herder, LM Almli21, D Zhi, Y Wang, T Huan CY, MM Mendelson, R Joehanes, L Liang, S-A Love, W Guan, S Shah, AF McRae, A Kretschmer HP, K Strauch, A Peters, PM Visscher, NR Wray, X Guo, KL Wiggins, AK Smith, EB Binder, KJ Ressler MI, DM Absher, D Hernandez, L Ferrucci, S Bandinelli, K Lohman, J Ding, L Trevisi, S Gustafsson, JH Sandling, L Stolk, AG Uitterlinden, I Yet, JE Castillo-Fernandez, TD Spector, JD Schwartz, P Vokonas, L Lind, Y Li MF, DK Arnett, NJ Wareham, N Sotoodehnia, KK Ong, JBJ van Meurs, KN Conneely, AA Baccarelli, IJ Deary, JT Bel, KE North, Y Liu, M Waldenberger, SJ London EI and DL. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry. 2016;00(November):1–12.spa
dc.relation.references209. Hillemacher T, Weinland C, Lenz B et al. DNA methylation of the LEP gene is associated with craving during alcohol withdrawal. Psychoneuroendocrinology. 2015;51:371–7.spa
dc.relation.references210. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics. 2011;6(7):828–37.spa
dc.relation.references211. Szabo G, Petrasek J, Bala S. Innate immunity and alcoholic liver disease. Dig Dis. 2012;30(SUPPL. 1):55–60.spa
dc.relation.references212. Zhu ZZ, Hou L, Bollati V, Tarantini L, Marinelli B, Cantone L, et al. Predictors of global methylation levels in blood DNA of healthy subjects: A combined analysis. Int J Epidemiol. 2012;41(1):126–39.spa
dc.relation.references213. Rosen AD, Robertson KD, Hlady RA, Muench C, Lee J, Philibert R, et al. DNA methylation age is accelerated in alcohol dependence. Transl Psychiatry. 2018;8(1).spa
dc.relation.references214. Xu H, Wang F, Kranzler HR, Gelernter J, Zhang H. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes. Sci Rep. 2017;7(February):1–10.spa
dc.relation.references215. Bönsch, Dominikus; Lenz, Bernd; Kornhuber, Johannes; Bleich S. DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport. 2005;16(2):167–70.spa
dc.relation.references216. Fiszer R, Frieling H. Lowered DNA methyltransferase ( DNMT-3b ) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. 2006;(October).spa
dc.relation.references217. Jowaed A, Schmitt I, Kaut O, Wu U. Methylation Regulates Alpha-Synuclein Expression and Is Decreased in Parkinson ’ s Disease Patients ’ Brains. 2010;30(18):6355–9.spa
dc.relation.references218. G S. The sp-family of transcriptional factors. Gene. 1999;238(2):291–300.spa
dc.relation.references219. Steffen Brenner, Christophe Wersinger TG. Transcriptional regulation of the α-synuclein gene in human brain tissue. Neurosci Lett. 2015;599:140–5.spa
dc.relation.references220. Kantor B, Tagliafierro L, Gu J, Zamora ME, Ilich E, Grenier C, et al. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Mol Ther. 2018;26(11):2638–49.spa
dc.relation.references221. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang I, Desai P, et al. Evidence That DNA ( Cytosine-5 ) Methyltransferase Regulates Synaptic Plasticity in the Hippocampus *. 2006;281(23):15763–73.spa
dc.relation.references222. Chaudhuri A, Chant J. Protein-interaction mapping in search of effective drug targets. BioEssays. 2005;27(9):958–69.spa
dc.relation.references223. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Vol. 20, Molecules. 2015. 13384–13421 p.spa
dc.relation.references224. Zhihong Ai, Juan Wang, Yanli Xu YT. Bioinformatics analysis reveals potencial candidate drugs for cervical cancer. J Obstet Gynaecol Res. 2013;39(5):1052-1058.spa
dc.relation.references225. Volkamer A, Kuhn D, Rippmann F, Rarey M. Dogsitescorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28(15):2074–5.spa
dc.relation.references226. Jesus FDS, Souza JB De. ANÁLISIS Y CARACTERIZACIÓN DE UNA PROMETEDORA DIANA. Rev CIENTÍFICA Multidiscip NÚCLEO DO CONHECIMENTO. 2020;9:99–132.spa
dc.relation.references227. Webb B, Sali A, Francisco S. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2016;54(ii):5.6.1–5.6.37.spa
dc.relation.references228. RAMACHANDRAN GN, RAMAKRISHNAN C S V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–9.spa
dc.relation.references229. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol. 2018;430(15):2237–43.spa
dc.relation.references230. Sun HW, Bernhagen J, Bucala R, Lolis E. Crystal structure at 2.6-Å resolution of human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1996;93(11):5191–6.spa
dc.relation.references231. Vyas N, Companioni RAC, Walfish A, Baum J, Alkhawam H, Tiba M. Association between vitamin D and gastric cancer. Am J Gastroenterol [Internet]. 2015;110:S1034. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72132558%5Cnhttp://dx.doi.org/10.1038/ajg.2015.281spa
dc.relation.references232. Schrödinger, L., & DeLano W. PyMOL. 2020. p. http://www.pymol.org/pymol.spa
dc.relation.references233. Lipinski CA. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev. 2016;101:34–41.spa
dc.relation.references234. Orita M, Yamamoto S, Katayama N, Aoki M, Takayama K, Yamagiwa Y, Seki N, Suzuki H, Kurihara H, Sakashita H, Takeuchi M, Fujita S, Yamada T TA. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J Med Chem. 2001;44(4):540–7.spa
dc.relation.references235. Bell RL, Lopez MF, Cui C, Egli M, Johnson KW, Franklin KM, et al. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol. 2015;20(1):38–42.spa
dc.relation.references236. Cho Y, Crichlow G V., Vermeire JJ, Leng L, Du X, Hodsdon ME, et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc Natl Acad Sci U S A. 2010;107(25):11313–8.spa
dc.relation.references237. Grodin EN, Bujarski S, Towns B, Burnette E, Nieto S, Lim A, et al. Ibudilast, a neuroimmune modulator, reduces heavy drinking and alcohol cue-elicited neural activation: a randomized trial. Transl Psychiatry. 2021;11(1):1–8.spa
dc.relation.references238. Gambini J, López-Grueso R, Olaso-González G, Inglés M, Abdelazid K, El Alami M, et al. Resveratrol: Distribución, propiedades y perspectivas. Rev Esp Geriatr Gerontol. 2013;48(2):79–88.spa
dc.relation.references239. Shakibaei M, Harikumar KB, Aggarwal BB. Review: Resveratrol addiction: To die or not to die. Mol Nutr Food Res. 2009;53(1):115–28.spa
dc.relation.references240. Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C. Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Mol Neurobiol. 2019;56(2):1502–16.spa
dc.relation.references241. Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol. 2021;(0123456789).spa
dc.relation.references242. Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, et al. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct. 2018;9(12):6414–26.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsPerfilación de la Expresión Génicaspa
dc.subject.decsGene Expression Profilingeng
dc.subject.decsVariantes Farmacogenómicasspa
dc.subject.decsPharmacogenomic Variantseng
dc.subject.decsAlcohólicosspa
dc.subject.decsAlcoholicseng
dc.subject.proposalGene Expressioneng
dc.subject.proposalMethylationeng
dc.subject.proposalPolimorfismo genéticospa
dc.subject.proposalAlcoholismospa
dc.subject.proposalExpresión génicaspa
dc.subject.proposalMetilaciónspa
dc.subject.proposalBlanco terapéuticospa
dc.subject.proposalGenetic polymorphismeng
dc.subject.proposalAlcoholismeng
dc.subject.proposalTherapeutic targeteng
dc.titleVariantes genéticas, expresión génica, metilación y búsqueda de blancos terapéuticos en vías de respuesta inflamatoria en una muestra de población universitaria colombiana con problemas de consumo de alcoholspa
dc.title.translatedGenetic variants, gene expression, methylation and search for therapeutic targets in inflammatory response pathways in a sample of a colombian university population with alcohol use problemseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio de genes de neuroinflamación, su expresión y estado de metilación en sujetos alcohol-dependientes Colombianosspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79495627.2022.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: